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On the potential of non-classical constituency

Horgan and Tienson doubt that classical cognitive science will be able to solve the frame
problem but have some expectations with respect to connectionism. Since the frame
problem arises in contexts where a potentially large amount of complex knowledge is
involved, connectionism has to prove that its models can represent and use well-struc-
tured information. Indeed, Horgan and Tienson note that the key question for the viability
of connectionism is whether representations with some kind of non-classical encoding of
constituency are susceptible to richly structure-sensitive processing. | will examine sev-
eral connectionist models and point out three reasons for doubting that work of this kind
can scale up to the extent required for dealing with the frame problem. | will conclude that
connectionism as of yet has no principled and satisfactory way of effectively representing
structured information in a distributed way. Hence, the frame problem provides a difficulty
to connectionism that is no less serious than the obstacle it constitutes for classical
cognitive science.

Introduction

The frame problem has played a prominent role in debates within cognitive
science. It has been claimed to be unsolvable for classical cognitive science (a.o.
Dreyfus & Dreyfus, 1987; Horgan and Tienson, 1996) but easily solved by its
main competitor connectionism (Churchland, 1989; Meyering, 1993). The
frame problem arises when one attempts to model the human ability to keep
track of relevant changes in the environment. In general, human beings easily
grasp what is going on in their surroundings, as is evident from their capacity
to rapidly predict, react or adjust to the important consequences of a certain
event. Although many different interpretations of the frame problem exist
(Fetzer, 1991; Haselager!, 1997; Hayes, 1991; Pylyshyn, 1987), the fundamen-
tal difficulty, in my view, is that everything we know is potentially relevant for

1'This paper uses some material taken from Haselager (1997) and Haselager & Van Rap-
pard (in press). Permission by the publishers is gratefully acknowledged.
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our interpretation of what is happening around us. Since we know a great deal,
the knowledge we possess must be stored and utilized in such a way that the
relevant parts of it are immediately brought to bear on the formation of our
beliefs. This imposes heavy demands on both the structuring and the processing
of represented information. In this paper I will investigate the potential of
connectionism to solve the frame problem. More specifically, I will claim that
since the frame problem arises in contexts where a potentially large amount of
often complex knowledge is involved, connectionism has to prove that its
models can represent and use well-structured information. Since connection-
ism’s potential to represent and use the structure of information has been exten-
sively discussed in relation to the issue of systematicity, I will examine some
proposed connectionist solutions to the problem of systematicity that are gener-
ally regarded as promising and that have also been advocated by Horgan and
Tienson. I will argue that such models are as of yet unsatisfactory and moreover
unlikely to be scaled up successfully to more realistic, complex tasks. In all, I
argue that although the difficulties encountered by connectionism when ad-
dressing the frame problem may be of a different kind compared to those of
classical cognitive science, they are no less serious.

The frame problem

Among the many problems cognitive science encounters an interesting and
hotly debated one is the so-called ‘frame problem’. In the history of Al, the
frame problem was first encountered (and named) by McCarthy and Hayes
(1969) in their attempt to create a general intelligence on the basis of a strictly
deductive inference mechanism. Their model decided what to do by deductively
inferring that a certain sequence of actions or events would lead to a desired
goal. An unfortunate consequence of this strategy, however, was that the model
would need not only rules specifying what would change because of an event
but also rules indicating what would remain the same. Otherwise the model
would not be able to deduce the new situation. Because of the overwhelming
amount of rules specifying non-changes the system would simply get lost in
performing irrelevant deductions. As such the frame problem has played an
important role in the development of non-monotonic logic (see Haselager, 1997
for a more extensive treatment of the history of the frame problem). Since the
article by McCarthy & Hayes, the frame problem has also become known as a
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more general difficulty for cognitive science. This has led to sometimes chaotic
discussions, as there seems to be little agreement on what exactly the frame
problem is, what the main reasons of its emergence are, how it should be solved,
and what would count as a solution?. In the context of this paper, I will not enter
this debate, but simply focus on the frame problem in the more general sense as
an obstacle encountered when trying to understand the psychological mecha-
nisms involved in common-sense reasoning, instead of as an issue in logic.
Psychologically speaking, people have an amazing ability to quickly see
the relevant consequences of certain changes in a situation. They understand
what is going on and are able to draw the right conclusions quickly, even if this
means retracting earlier beliefs and adopting new ones. The problem is how to
model this ability computationally. What are the computational mechanisms
that enable people to make common-sense inferences? Especially, how can a
computational model be prevented from fruitlessly engaging in time-consum-
ing, irrelevant inferences? A rather straightforward suggestion is that seeing the
relevant consequences of an event is made possible by an understanding of the
situation. One reaches an understanding of the situation by using what one
knows. Yet, human beings posses an enormous amount of information. The real
difficulty underlying the frame problem is how the relevant pieces of knowl-
edge are found and how they influence one’s understanding of the situation.
According to a specific approach to the frame problem (that I treat more
fully, together with its main alternative, in Haselager, 1997), the frame problem
can be thought of as being a consequence of using a classical symbolic repre-
sentational format. As is well known, Fodor (1975; Fodor & Pylyshyn, 1988)
has argued that in order to explain certain characteristics of cognition that are

2To indicate this, it should suffice to say that the question has been raised whether or not
the frame problem can correctly be interpreted as (being related to), in alphabetical order: the
bookkeeping problem, the extended prediction problem, the inertia problem, the problem of the
metaphysical adequacy of representations, the problem of non-demonstrative inference, the prob-
lem of ordinariness, the problem of persistence, the prediction problem, the qualification prob-
lem, the ramification problem, the truth-maintenance problem, and the updating problem.
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referred to by the terms ‘productivity3’ and ‘systematicity’ it is necessary for
the representational system to be compositionald. This means that representa-
tions have a combinatorial syntax and semantics, which, according to Fodor, is
made possible by their concatenative constituent structure. This structure results
from the part/whole relationship between simple and complex representations.
The simple elements out of which complex representations are construed are
literally present in the complex representation. The concatenative constituent
structure of complex representations is of direct use in representing the structure
of the information represented.

On the classical view, information can have causal consequences only if
it is explicitly represented by means of symbolic structures and processed by
means of explicit structure-sensitive rules. The concatenative constituent struc-
ture of representations outlined above conforms to this requirement. Unfortu-
nately, the consequence of this suggestion is that all the objects, constraints and
relations found to obtain in the world have to be explicitly represented (e.g. by
means of links between symbolic structures in a hierarchy or through the use of
rules). This is problematic for if everything is explicitly represented there will
be great problems in quickly locating a particular represented item. Moreover,
to capture the potential relevance of everything to everything, every possible
relation between two concepts which might at a certain point in time and in a

3 Productivity refers to the thesis that, in principle, a cognitive system can entertain an
infinite number of thoughts. This indicates that the representational capacities of a cognitive
system are, in principle, unbounded. The only way to achieve this by finite means, Fodor argues,
is through a representational system that has a combinatorial syntax and semantics (Fodor, 1975,
p- 31-32; 1987, p. 137, p. 147-148; Fodor & Pylyshyn, 1988, p. 33-37).

4 The term ‘systematicity’ refers to the fact that the ability to understand and/or produce
certain thoughts is intrinsically related to the ability to think other thoughts. If a person is capable
of entertaining a thought like ‘John loves the girl’, he or she is bound to be able to have the
thought “The girl loves John’ as well. This can be explained by means of the compositionality
principle in the following way. The elementary mental representations (atoms) that together rep-
resent the content of the thought have a structured relationship (e.g. subject — predicate —
object) to one another. The structural relations are the same in both thoughts, only certain atoms
have changed place. Understanding or entertaining the first thought means that both the atoms
and the structural relations are understood, hence the other thought must be understood as well.

5 Although the exact nature and pervasiveness of productivity and systematicity are open
to discussion, it is generally agreed that a system must be able to represent complex structured
information in order to exhibit interesting cognitive functions. Any representational scheme that
is of interest to cognitive science must, at least to a considerable extent, be compositional
(Chalmers, 1993, p. 306; Hinton, 1990, p. 2-3; Pollack, 1990, p. 78; Smolensky, 1991, p. 288;
Van Gelder, 1990, p. 355-356).
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certain context become important needs to be represented explicitly through a
hierarchical link or a rule. Even if this were feasible, finding the relevant
information in the midst of a myriad of symbolic structures and their intercon-
nections quickly becomes computationally overwhelmingly complex.

Non-classical constituency

Horgan and Tienson (1996) adhere to a language of thought, but point out that
the part/whole relation between complex representations and their constituents
is not the only formal relation available for the encoding of causally effective
constituent structure (p. 74). Syntax does not entail a part/whole relationship (p.
71), but merely the systematic and productive encoding of semantic relation-
ships (p. 73). They state, correctly in my view, that

“the question is not whether constituents can play a causal role.
The question is whether the fact that a representation has a partic-
ular constituent can play a causal role. And that fact can play a
causal role if the representation carries the information that it has
that constituent.” (p. 79).

In other words the constituent need not be physically present as long as the
information it carries is present (‘effectively manifested’) in the encompassing
representation (p. 80). Moreover, the representations are not processed by struc-
ture sensitive rules but exert their influence as defeasible causal tendencies
(based on their location in a well-molded, inclination-rich landscape). As far as
I can see then (but see Markic (this volume) for a more extensive treatment of
Horgan & Tienson’s views on the Language of Thought), they agree with
proponents of the Language of Thought hypothesis about what a representation-
al format has to be able to achieve (i.e. encode causally effective constituent
structure in representations), but they thoroughly disagree about sow this has to
be achieved. Syntax is necessary but it need not be based on concatenative
constituency.

In a similar vein, Van Gelder (1990, 1991a) has suggested that composi-
tionality can be achieved without a concatenative constituent structure. Accord-
ing to Van Gelder, a representation can represent a structured item without itself
having a constituent structure, as long as there are general, effective, and reli-
able processes by which to compose complex expressions from constituents and
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to decompose a complex expression back into its constituents. Processes are
general if they are applicable to arbitrarily complex representations, effective
when they can be performed mechanically, and reliable if they always generate
the same answer for the same input (Van Gelder, 1990, p. 361). He claims that
distributed representations® can comprise a functionally compositional repre-
sentational scheme that is at least in principle capable of representing and using
the structure inherent in information. Points in an activation or weight space are
standard examples of distributed representations. However, designing and im-
plementing proper compositional and decompositional processes is no easy
matter. It is even more difficult to create a model that is capable of a richly
content-appropriate processing of the representations thus created. In this re-
spect, I find Horgan and Tienson’s discussion of the ‘moving target’ strategy
most interesting.

The moving target strategy

Horgan and Tienson (1996, p. 7) view cognitive processes as the effect of
cognitive forces emitted by representations. From a connectionist perspective a
representation can be understood as a point or region in an activation space’ (p.

6 Van Gelder (1991b) has written a survey of the concept of ‘distribution’ as it occurs in
the literature. He concludes that the notion of super(im)position of representings over a portion
of representational resources is the most common theme in discussions on the nature of distribut-
ed representations (Van Gelder, 1991b, p. 42). A representation is distributed if it is representing
many items while using exactly the same resources (Van Gelder, 1992, p. 176). Importantly, there
is no direct relation between a single weight and a single represented item, but instead all weights
partake in representing all information the network possesses. The representation of distinct
items is superimposed on the same set of representational resources (Van Gelder, 1991b, p. 43).
No part of the representation should by itself be able to represent a distinct content. No matter
how the representational resources are sliced, each content item must be represented over the
same extent of the resources as the others (Van Gelder, 1992, p. 178). To put things differently;
the representings of distinct items are superposed if they occupy the same set of representational
resources (Van Gelder, 1991b, p. 43).

7However, Horgan and Tienson point out that not every point in an activation landscape
is considered to be a representation: “total cognitive states are mathematically realized by points
in high-dimensional activation space: from the perspective of the mathematical level of descrip-
tion, these points are the representations. (...) Not every point in activation space need be a
representation; in fact, typically, very few will be.” (p. 65). Typically, points that constitute rep-
resentations will be attractors: “Representations must be attractors because not all physical states
of a cognitive system are cognitive states, and cognitive states must evolve from cognitive states
to cognitive states.” (p. 195, n. 6).



W.F.G. HASELAGER 29

65). The relations between points in an activation landscape can embody seman-
tic information inherent in cognitive states, their interrelations and their constit-
uents (p. 149, 156). Cognitive forces actively dispose the cognitive system
toward a certain cognitive outcome (p. 150). This can be understood from a
dynamical perspective as the slope or incline on the activation landscape leading
to another point in the landscape (p. 151). That is, inclines in an activation
landscape constitute cognitive forces (p. 167). Importantly, the direction of
cognitive forces is determined by the structured content of the representations:

“Each token cognitive state undergoes its type of force-determin-
ing process because of its semantic constituents and their rela-
tions.” (p. 102, see also p. 98).

Horgan and Tienson suggest that automatic and systematic content-appropriate
cognitive transitions are the joint product of a subtly contoured activation land-
scape and a subtle realization relation from total cognitive states to points on
that landscape (p. 67). Cognitive forces and non-classical representations can
jointly produce this result by means of a training regime called the moving target
strategy. Thanks to the moving target strategy, both the activation landscape as
well as the realization of intentional states as points on this activation landscape
are changed. The weights, determining the shape of the activation landscape,
and the activation-vectors that ‘count’ as representations are set accurately for
the task at hand by the moving target strategy. By allowing the activation
vectors realizing representations to change one can strategically locate the rep-
resentations on the activation landscape instead of allocating them arbitrarily.
Thus, a controlled co-evolution of the activation landscape and the realization
for all representations can be achieved (p. 154).

“The realization relation exhibits increasing systematicity, coming
to reflect, in the way it positions representation-realizing points
relative to one another on the activation landscape, important rela-
tions among the intentional states being realized. The realization
relation and the landscape topography end up “made for each
other” with respect to the information-processing task the system
is being trained to perform: the final weight setting for the network
subserves a high-dimensional activation landscape whose overall
local topography yields systematically content-appropriate tempo-
ral trajectories under the operative intentional/mathematical real-
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ization relation. Thus, the key to the system’s design is that the
shape of the activation landscape and the overall positioning of the
representation-realizing points on that landscape are jointly just
right to subserve the relevant intentional transition function for a
very large class of potential intentional states.” (p. 62).

It should be noted that Horgan and Tienson explicitly mention the frame prob-
lem as one of the reasons for dismissing classical cognitive science. Their
acceptance of noncomputational dynamic cognition implies that they expect the
frame problem to be solvable this way (e.g. see p. 67 where they promise to
explore the potential of the nonclassical framework to overcome the problems
for classicism).

I think the basic idea of Horgan & Tienson in relation to the frame
problem is clear: Automatic content-appropriate interaction between cognitive
forces can be subserved by superimposed cognitive inclines between well-
located representational points in a high-dimensional activation landscape (p.
153). One may think of the weights of a network as reacting to input by creating
a landscape that will automatically ‘provide’ representational points with their
‘proper inclinations’.

The non-concatenative constituently structured representations allow for
a content-appropriate but very flexible and defeasible interaction (i.e. cognitive-
state transition functions that need not be tractably computable). Thus, the frame
problem might be solved or circumvented.

It bears emphasis that this proposed solution to the frame problem is
made possible precisely because connectionism forswears the symbolic repre-
sentational (i.e. classical concatenative constituency) format. Knowledge need
not be represented explicitly nor processed by structure-sensitive rules. Instead,
the knowledge of a network, embodied in its weights, directly and automatically
constrains the processing of incoming information. There is no need to search
for the relevant pieces of information before they can be applied. Moreover,
changing the knowledge of a system after an event has occurred need no longer
take the form of an explicit reconsideration of all symbolic structures and their
interconnections. Changing the setting of one weight automatically influences
all the information processing (‘landscape creation’) the network is capable of.
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The representational capacities of distributed representations

Connectionist research normally focuses on relatively small networks attempt-
ing to solve restricted tasks. But one of the characteristics of the frame problem
(as classical cognitive science belatedly discovered) is that it shows up especial-
ly in more realistically complex situations. The question therefore is whether
the basic suggestions and models of connectionism can be easily ‘scaled up’.
How can connectionist models handle large amounts of knowledge? Are dis-
tributed representations really adequate when it comes to the representation of
complex information involved in reasoning and understanding? Or is the gain
in automatic and direct retrieval or resonation of relevant knowledge overshad-
owed by a substantial loss in the capacity to represent the structure of informa-
tion? Serious doubts have been ventured in this respect (e.g. Fodor & Pylyshyn,
1988; Holyoak, 1991, p. 315-316; Thagard 1992, p. 242-243).

Horgan and Tienson claim that there are examples of a rudimentary kind
of structure-sensitive processing of non-classical constituently structured repre-
sentations. They are, furthermore, quite optimistic with respect to the potential
of connectionist models to preserve structure in the representations:

“The structural resources are certainly there, much more so than in
classicism: high-dimensional dynamical systems can have struc-
ture far richer than the intrinsic structure of computing machines,
and positional relations among points in a dynamical system can
exhibit structure far richer than the intrinsic structure of classicist
representations.” (p. 163, see also p. 154).

They refer to work by Pollack, Berg, Chalmers and Smolensky as examples of
the kind of nonclassical syntax they endorse. However, in my opinion it is far
from clear whether the models proposed actually succeed in capturing structure
and displaying systematicity. Furthermore, I will indicate reasons to doubt that
the mechanisms used allow a scaling up to realistically complex contexts. The
question, then, is whether syntactic sensitivity is possible to a realistically
complex extent without concatenative constituently structured (part/whole) rep-
resentations?
As van Gelder has put it, the challenge to connectionism is

“to devise models in which structure-sensitive processes operate
on the compound representations themselves without first stopping
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to extract the basic constituents. These processes must capitalize
directly on the inherent and systematic similarities among the non-
concatenative representations.” (Van Gelder, 1990, p. 381; see also
Chalmers, 1993, p. 312; and Fodor & McLaughlin, 1990, p. 202,
n. 14).

David Chalmers (1990; 1993) has attempted to meet this challenge. Chalmers
presents a connectionist network utilizing distributed representations that mod-
els the transformation of sentences in the active to the passive mode. He uses
syntactic transformation as an example of structure-sensitive operations
(Chalmers, 1993, p. 313). For instance, the sentence ‘John loves Michael’
should be transformed by the network into ‘Michael is loved by John’. Note that
the information present in the structure of the sentence is that John is the one
that loves Michael, and not vice versa. On Fodor’s account, a network is inca-
pable of distinguishing between ‘John loves Michael” and ‘Michael loves John’
since it is ‘structurally blind” and merely associates ‘John’, ‘loves’ and ‘Micha-
el’. Providing a transformation into the correct passive mode, then, indicates
that the network is able to recognize and use the structure in the information
represented.

First, syntactically structured sentences (represented by trees) are trans-
formed into distributed representations. This is accomplished by Pollack’s
(1990) RAAM network3. The resulting distributed representations are used by
the actual transformation network (a basic, three layer feed-forward network,
learning through back-propagation) that performs the passivisation directly on
the distributed representations without using a decomposition process first. The
resulting output is of course again a distributed representation which is then fed
into the RAAM, translating it back to its syntactic structure. The question, of

8 RAAM is an acronym for ‘recursive auto-associative memory’. Basically, it is capable
of representing the information inherent in symbolic tree structures of arbitrary depth as distrib-
uted activation patterns. It can compress the representations of the terminal nodes into one acti-
vation pattern which represents their parent, and then, recursively, compress all parents one layer
up into another single pattern, compress these patterns yet again, etc., thus working from the
leaves to the root. Similarly it can reconstruct the children from the distributed representation of
the root, reconstructing them recursively until the leaves are reached (Pollack, 1990, p. 84). The
RAAM-architecture is general (it applies to tree structures of arbitrary depth), effective (the
(de)composing processes are performed mechanically) and reliable (after sufficient training)
(Chalmers, 1990, p. 55-56).
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course, is whether Chalmers’ network is able to use the structure that is implic-
itly contained in the activation patterns provided by the RAAM network.
After training, the transformation net was tested with new sentences.
Chalmers (1990, p. 60) reports a 65% generalization rate, which, high in
itself, went up to 100% after correction of RAAM errors. Chalmers con-
cludes:

“Not only is compositional structure encoded implicitly in a pat-
tern of activation, but this implicit structure can be utilized by the
familiar connectionist devices of feed-forward/backpropagation in
a meaningful way.” (Chalmers, 1990, p. 60; see also Chalmers,
1993, p. 314).

So, Chalmers claims, his results contradict Fodor’s thesis that concatenative
constituent structure has to be present in representations in order to be of use to
information processing mechanisms. There is no need for an explicit tokening
of the simple parts of the representation in the complex one. Distributed repre-
sentations can have enough formal structure to be functionally compositional
and of direct use to the system’s processing.

Lawfulness versus coincidence

Importantly, Horgan and Tienson (1996, p. 80) claim that the existence and
useability of non-classical representations that carry constituency information
can be read off of systems like Chalmers’ that perform constituent-sensitive
operations. That is, it is the performance of the models on which their claim of
non-classical effective syntax is based:

“It is quite clear that tensor-product representations and RAAM
representations do carry constituency information within or rela-
tive to a system, and that this information is available to the system.
It is clear because the systems perform constituent-sensitive oper-
ations. That the representations carry this information is shown by
the whole system of dispositions of the successful system.” (p. 80).
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They stress that it is the capacity of the system to “perform properly on inputs
not among the training corpus.” (p. 75) that substantiates claims for a rudimen-
tary form of effective syntax.

Yet, precisely with respect to the network’s capacity to generalize to
novel input serious criticisms can been raised. For instance, Hadley (1994a, p.
261) notes that the novel corpus of sentences that Chalmers used to test his
network contained no new words (i.e, no words not already encountered during
training) nor words occupying new syntactic positions (i.e, the network had
encountered all words in all syntactically possible places during training). In
other words, the novelty of Chalmers’ corpus of test sentences is rather moder-
ate9. As Hadley says (1994a, p. 262), if a completely new word were introduced
in an otherwise familiar sentence, this might result in such disruption of the
network that it would not even recognize the familiar lexical items.

Hadley concludes that Chalmers’ model does not succeed in capturing
the kind of systematicity argued by Fodor as being characteristic of human
cognition. Concerning this problem, I think that Hadley’s proposed criterion of
generalization ability, i.e. the network’s capacity to deal with genuinely novel
sentences, is adequate. Hadley (1994a, p. 271) notes that in the light of this
criterion the work of Chalmers and several other connectionist attempts (includ-
ing the work of Pollack, Smolensky and others) to answer Fodor’s challenge do
not succeed in displaying the strong degree of systematicity characteristic of
humans.

Hadley’s criticism raises the important and more general point that one
has to be very careful that the structure sensitive behavior of a network is not
simply the result of prearranged statistically large similarities between the train-
ing data to which the network has become tuned and the test data. This hampers
a straightforward assessment of the force of connectionist examples of structure
sensitive processing.

The matter of distinguishing real systematicity from prearranged statisti-
cal coincidence also comes to the fore in the discussion about Fodor’s repeated

9 According to Hadley (1994a, pp. 250-251), a network exhibits weak systematicity if it
can handle test sentences that contain words that occur only at syntactic positions already occu-
pied by these words in the training set. The training set is then fully representative of the test set.
A system exhibits strong systematicity if it can exhibit weak systematicity and moreover can
process novel simple and novel embedded sentences containing familiar words in new syntactic
positions. Hadley (pp. 252-254) points to much empirical evidence that children exhibit system-
aticity in this strong sense.
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claim that merely providing counterexamples is far from sufficient to show that
connectionism can deal with compositionality in a completely satisfactory way.
As he says, it is a law that cognitive capacities are systematic (Fodor &
McLaughlin, 1990, p. 202-203; Fodor & Pylyshyn, 1988, p. 48). That is, it is
easy to ‘wire up’ a non-systematic connectionist network, but it is impossible
to create an unsystematic classical system. The point of the law-requirement, as
Butler (1993, p. 323) notes, is that merely showing that systematicity is possible
on the basis of a connectionist architecture is not enough; it must be indicated
why systematicity is necessary given the architecture. Likewise, Butler contin-
ues, a theory of planetary motion that merely allowed for the possibility of
elliptical orbits of planets would be considered as insufficient. To really count
as an explanation, it would have to show that the nature of such orbits necessar-
ily followed from the theory. Similarly, connectionists have to demonstrate that
systematicity necessarily follows from the architecture 10,

The plausibility of learning conditions

Now, one can, as does Chalmers (1993, p. 316), quite rightly point out that the
fact that ‘differently wired’” networks could easily be insufficient at best shows
that not all possible connectionist architectures are satisfactory. To be accept-
able, Chalmers says, the class of rightly wired networks would have to be
compositional and display systematicity under many different learning condi-
tions. I think Chalmers is right in this, but it only helps to underscore the fact
that merely demonstrating that a rightly wired connectionist network with dis-
tributed representations can be compositional is not sufficient, since this might
be an artificial result of the specific characteristics of the training and testing
data. Fodor’s requirement that systems must be compositional can, I suggest,
most beneficially be seen as an attempt to provide a safeguard against too
readily taking ‘accidental’ signs of systematicity for the real thing. I propose,
then, to take the requirement of displaying systematicity under many different

10 Of course, one may question whether it is really a ‘law of nature that you can’t think
aRb if you can’t think bRa’ as Fodor claims (Fodor & McLaughlin, 1990, p. 203). The ‘lawful-
ness’ of systematicity has indeed been doubted by several writers (Dennett, 1991, p. 27; Mc-
Namara, 1993, p. 114; Wilks, 1990, p. 331). However, though there may be room for discussion
about the exact extent of systematicity, it is quite clear that children and adults display systema-
ticity in a strong sense (Hadley, 1994a, p. 252-254, p. 270).
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(or at least psychologically realistic) learning conditions as a second constraint,
in addition to the generalization requirement discussed above.

The importance of this second constraint becomes clear if one considers
connectionist attempts to deal with Hadley’s generalization criterion. For in-
stance, Christiansen & Chater (1994) present two simulations, one in which the
network failed to exhibit strong generalization (in a genitive context) and one
in which it succeeded (in the context of noun phrase conjunctions). E.g., when
presented with the sentence ‘Mary’s girls run’ (where ‘girls’ had never occurred
in a genitive context in the training set), the network failed to behave similarly
to ‘Mary’s cats run’ (‘cats’ having occurred in the genitive context in the
training set). However, when presented with ‘Mary says that John and boy from
town eat’ (‘boy’ not occurring in a noun phrase conjunction in the training set),
the network correctly predicted a plural verb, thereby making the strong gener-
alization that a noun phrase conjunction (even an unfamiliar one) requires a
plural verb.

Although Christiansen and Chater (1994, p. 285) conclude on the basis
of their work that future progress is possible, in my view these mixed results
underline the importance of Fodor’s law-requirement. Why did the network
succeed in the context of noun phrase conjunctions but fail in the genitive
context? Christiansen and Chater do not present a principled explanation of
these results. In my view, this considerably detracts from the value of their
models. After all, one would like an explanation of systematicity, not just a mere
demonstration (see also Niklasson & Van Gelder, 1994, p. 297). Furthermore,
Christiansen and Chater suggest that the network might be able to succeed ‘if a
different kind of representation is used or the details of the training are altered’
(1994, p. 282). But it is exactly this kind of ‘fetching’ that Fodor’s law-require-
ment is aimed at preventing.

A second point of concern involves the enormous amount of training that
is necessary before the network can be said to have learned its task. Christiansen
and Chater (1994, p. 280) report a total of 32 epochs, each one presenting the
network with the full training corpus of 10.000 sentences for a relatively simple
phrase structure grammar (6 rules) and a small vocabulary (34 items11). It seems
unavoidable that the amount of training needed will become unmanageable in

11 Christiansen & Chater (1994, p. 279) specify that the vocabulary consists of 2 proper
nouns, 3 singular nouns, 5 plural nouns, 8 verbs in plural and singular form, a singular and a
plural genitive marker, 3 prepositions and 3 nouns indicating locations
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the case of a grammar and vocabulary of a realistically large size. Finally one
has to notice the complexity of the training setup, with many carefully arranged
details (including, for instance, the periodic resetting of context units12). Given
the constraint, presented above, that systematicity has to be demonstrated under
a variety of learning conditions, this provides a further reason to regard the
results as unconvincing.

A second connectionist attempt to answer Hadley’s generalization con-
straint, by Niklasson and Van Gelder (1994), concentrates on the case where test
sentences contain at least one atomic constituent that did not appear anywhere
in the training set. Using the same kind of architecture as Chalmers, they
introduce a novel symbol (‘s”) to the network that has been trained to transform
formulas according to the following inference rule: p d'p q. The network suc-
ceeds in handling formulae containing the new symbol after a huge amount of
training (4000 passes through the training set of 600 formulae (p. 294-295; they
speak of an ‘exhaustive exposure to a training set’, p. 299). Niklasson and Van
Gelder (1994, p. 298) conclude that points in an activation space can function
as representations in a way that allows spatial structure to preserve syntactic
structure useable for further processing. However, I want to emphasize that a
proper localization of representational points within the spatial structure has
been prearranged by Niklasson and Van Gelder by means of a seperate RAAM
network, called the ‘representation generator’13. As they say:

“The design and training regime of the representation generator
results in representations that are systematically positioned in the

12 The point I am making is not that no constraints on the training setup are allowable.
Rather, the details of training should be reasonably general and justifiable on psychological
grounds. For instance, the periodic resetting of context units as used by Christiansen and Chater
might not be completely devoid of psychological plausibility. Elman (1993) and Clark and
Thornton (1997) argue that a periodic resetting of context-units provides for a kind of limited
memory that allows the system to learn the most basic distinctions first. In later phases, the
window can be enlarged (by resetting the context units after longer intervals), so the network can
learn the finer distinctions, necessary to fulfil its task. They refer to psychological evidence that
developmental limitations of this kind exist and are beneficial. This aspect of the model would
therefore satisfy the second constraint. My point is that most details of the training regimes lack
such justification.

13 The representation generator creates distributed representations for atomic constitu-
ents, by encoding the tree structures containing type information about the constituents, e.g.
whether they are connectives, propositions or symbols (Niklasson & Van Gelder, 1994, p. 296-
297).
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space so that the representation for ‘s’ occupies the space in be-
tween the ‘known’ constituents” (Niklasson and Van Gelder, 1994,
p- 297-298; my emphasis; see also Hadley, 1994b, p. 437-438).

As in the case of Christiansen and Chater, I conclude that the results are largely
dependent on a meticulously designed architecture and training regime, thus
violating the constraint that systematicity has to be demonstrated under a variety
of learning circumstances.

In all, I conclude that connectionist models as presented by Chalmers,
Christiansen and Chater, and Niklasson and Van Gelder depend for their limited
successes on very strict, carefully arranged and psychologically unrealistic
learning circumstances (i.e. the amount and details of training). Hence, I do not
think there are good reasons to expect that models of this kind will succeed
when confronted with more realistically complex tasks. Yet, it is precisely under
these more realistic circumstances that the frame problem arises, so I fail to see
how connectionism would be able to deal with that problem successfully. Be-
fore drawing my final conclusions, I will point briefly to a further difficulty, in
addition to the problems of generalization and the specificity of learning condi-
tions, that may make the idea of functional compositionality seem even less
promising.

Interacting distributed representations

Granting for the moment that structured information might be adequately rep-
resented by distributed means under a variety of learning conditions, there is the
further issue of how representations of this kind can interact. This is of especial
relevance to the domain of common-sense reasoning, the area in which the
frame problem looms large. In this respect, it is remarkable that connectionist
attempts to model common-sense reasoning ultimately refrain from using fully
distributed representations and instead use a hybrid (if not completely classical)
representational format, as (each to a different extent) in the case of Derthick
(1990), Shastri & Ajjanagadde (1993), and Sun (1994).

For instance, a recent and ingenious connectionist model of com-
mon-sense reasoning is outlined by Shastri & Ajjanagadde (1993). The repre-
sentational theory that they implement in a connectionist architecture is a rather
classical one of (complex) facts, rules and conceptual hierarchies. Moreover,
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they explicitly reject the use of distributed representations as being unsuited for
representing large amounts of structured knowledge, because it “cannot have
the necessary combination of expressiveness, inferential adequacy and scalabil-
ity” (p. 485). The problem is that when distributed representations are combined
into more complex (and still distributed) representations, a loss of binding
information (e.g. as to which objects are bound to which predicates) seems
unavoidable. Hummel and Holyoak (1993) similarly point out that distributed
representations of, for instance, predicates and objects cannot be combined into
larger distributed structures, without losing information about which objects are
bound to which predicates. For instance, a distributed representation of ‘Ted
gave Mary flowers’ is difficult to combine with a distributed representation of
‘Jane knows that p’ into a distributed representation of ‘Jane knows that Ted
gave Mary flowers’ without losing information as to who knows what or who
gave what to whom. That is, there is an “inherent tradeoff between distributed
representations and systematic bindings among units of knowledge” (p. 464)
that becomes clear as soon as several distributed representations have to be
combined. I want to emphasize that the difference with the task RAAM is
fulfilling is that in the case of RAAM non-distributedly represented constituents
or complexes are added to a distributed representation, whereas in the case
discussed by Hummel and Holyoak distributed representations are added to
distributed representations.

So, even if one assumes that proposals a la Chalmers, Christiansen and
Chater or Niklasson and Van Gelder ultimately might satisfy the constraints of
generalizing under a variety of learning conditions, the problem is not complete-
ly solved. Even if one may accomplish structure sensitive processing of distrib-
uted representations of chunks of information separately, the applicability of
such a proposal to realistically complex cases, where distributed representations
of structured information have to inferact in various ways, remains blocked.

Conclusion

The frame problem is generally regarded as a serious, sometimes even unsolv-
able, difficulty for classical cognitive science. The fact that the symbolic repre-
sentational format allows for a distinction between what is explicitly and im-
plicitly represented can be thought of as the underlying cause of the problem.
From such a perspective, distributed representations can be seen as promising.
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However, although I consider the potential of distributed representations to be
most interesting, I do not think that an easy victory awaits connectionism. Since
the frame problem involves the use of a substantial amount of interrelated
knowledge, representing the structure of information is an essential precondi-
tion for making progress. I have analyzed connectionist attempts to represent
and utilize structure in relation to the issue of systematicity. Although the results
are generally presented and regarded as favorable to connectionism, I have
indicated three reasons for a more negative appraisal. Genuine doubts may be
raised about whether the performance achieved indicates the true capabilities of
distributed representations or whether they largely depend on the specifics of
the training and testing data. The capacity to generalize is small, and has not
been demonstrated under a variety of learning circumstances. Moreover, the
capacity of distributed representations to preserve the structure of the informa-
tion while interacting with other distributed representations seems severely
limited. The conclusion must be that connectionism has no principled and
satisfactory way of effectively representing structured information in a distrib-
uted way. Even if distributed representations could be shown to be successful
on small-scale problems (of the kind investigated by Chalmers and others), it is
hard to see how their range of application could be extended to a more serious
level of complexity. This, in turn, implies that connectionism still has to prove
that its models are able to deal with realistically complex situations and events,
as classical cognitive science is still trying to do. The connectionist approach to
the frame problem may have, in comparison with the classical approach, differ-
ent problems to cope with, but these present no less significant obstacles to
overcome. In all, Horgan and Tienson’s expectations may not be justified.
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