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Abstract
Over the last decades, philosophers and cognitiientists have argued that the brain
constitutes only one of several contributing fasttw cognition, the other factors being
the body and the world. This position we refer soEEmbodied Embedded Cognition
(EEC). The main purpose of this paper is to comsideat EEC implies for the task
interpretation of the control system. We argue that traditional view of the control
system as involved in planning and decision makiaged on beliefs about the world
runs into the problem of computational intractabilEEC views the control system as
relying heavily on the naturally evolved fit betweerganism and environment. A ‘lazy’
control structure could be ‘ignorantly successful a ‘user friendly’ world, by
facilitating the transitory creation of a flexilkded integrated set of behavioral layers that
are constitutive of ongoing behavior. We close Bgussing the types of questions this
could imply for empirical research in cognitive nescience and robotics.

Keywords: cognitive neuroscience, embodied embedded cognitiabduction,
computational intractability, control architectureactive robotics

1. Introduction
TheE. colishines in its simplicity. This single-cell orgami€an locate food in its environment
without having any plan on how to look for it, fwaving any beliefs about the world it finds
itself in. Instead it finds food, and avoids toxibg moving its flagella in one of two ways: it
either tumbles about randomly or it swims stragtad. Without specific stimulation it changes
between these two modes every few seconds, therefaging in a random exploration of its
environment. Once a chemical gradient in its emvitent is sensed (e.g. an increase in sugar
level or a decrease in toxic substances), it irggghe amount of swimming and decreases the
random tumbling resulting in a process caltbémotaxisin effect, the bacterium swims
upwards along a stream of increasing nourishmevdirtds a food source and downwards along a



stream of decreasing toxics (Cairns-Smith, 19960p-94). The behavior of tie. colicould in
principle be described in terms of the folk psycigital concepts of beliefs, desires and
intentions (Jonker, Snoep, Treur, Westerhoff, &Mygards, 2001), but these would be
superfluous metaphorical ascriptions at best.direeimplausible and unnecessary to attribute
such mental states to tke colias its behavioral success is readily explaingdrims of the
direct perception-action couplings in which sensleemical gradients trigger different
behavioral patterns (tumbling or swimming).

Humans are much more complicated organisms Eheoli. Humans have much richer
behavioral repertoires than tke colido, and humans can apply this repertoire with an
exceptionally high degree of flexibility and sensty to environmental conditions, both past,
present and future. It is this flexibility thatgeen as a mark of human intelligence and what has
proven so difficult to replicate in robots. On thee hand, the increased flexibility makes
humans’ lives easier, as it allows them to sururder wider environmental conditions than E.
coli. But, on the other hand, it also seems to nihk®s more difficult for humans, because it
confronts them with a challenging control task. Thallenge seems to be that humans need to
decidewhatto dowhen The E. coli do not have this problem (these b&ctio exactly what is
triggered by the gradient of chemicals in theiriesrvment).

The received view in cognitive science and artiiantelligence is that cognitive systems
can come to display the kind of intelligent behatiat is characteristic of human beings only
by maintaining more or less accurate mental reptatens of the world (i.ebeliefy, which
they derive from perceptual information. Basedwirtbeliefs about states of the world, humans
are assumed to make plans (iirgentiong with the aim of guiding motor behaviors in a way
that meets certain goals (i.desire3. This internalist, cognitivist view of the relatiship
between cognizing and behavior is inherited by mafotontemporary cognitive neuroscience,
resulting in the explanation of intelligent cognétibehavior as the product of powerful brains
that can maintain world models and devise plansthier words, contemporary cognitive
neuroscience tends to see cognizing as somethanghiEbrain does.

We think that by construing the control problemeub$o the brain in this way, cognitive
neuroscience, like artificial intelligence, mayrbaking a mistake. Maintaining a stable and
approximately correct set of beliefs about the @it is sufficient for programming more or
less successful behavior in situations of real-dvodmplexity seems to pose a computationally
too demanding task for a human (or any kind of)rbota perform. This computational
intractability problem, long known to plague cogngt models of cognition (Pylyshyn, 1987;
Haselager 1997), clashes with the observationpgibaple make split second decisions in
everyday contexts, typically with good results. Eerncognitive neuroscience may do well to
consider alternative views of the control architeetof humans.

In this chapter we make the case for one suchnaltiee control structure. Our control
structure is inspired by the theoretical framewairEmbodied Embedded Cogniticar EEC for
short (Brooks, 1999, Clark, 1997, Chiel & Beer, TZREEC proposes that cognition and
behavior emerge from the bodily interaction of agamism with its environment. According to
EEC, the physical structure of the body, the phatsand social structure of the world, and the
internal milieu of the organism’s body all provigkeportant constraints that govern behavioral
interactions. From this perspective behavior ig bgplained by a system of interacting
components, where the brain is only one such coemgoin other words, the brain is best
viewed not as a commander or director of behabiat yather as only one of the players among
equally important others (i.e., the body and theldyoAs a result, according to EEC, in a great



number of cases, the processes subserving coghéhavior cannot be directly mapped onto
brain structures.

We are well aware of the apparent tension betwadfELC perspective of the brain and
contemporary cognitive neuroscience research (seevan Dijk et al. in press). Much of current
cognitive neuroscience’s methodology (e.g., braiaging and single cell recordings) is built on
the idea that the brain implements an encapsufataghanism for cognizing that can be
understood by studying the brain in almost compktation, independent from any realistic
bodily interaction with the world. Accordingly, muexperimental effort in cognitive
neuroscience is devoted to figuring ettich of the cognitive subprocesses (perception,
abduction, planning, deciding) are perfornvgeerein the brain anthowthese processes are
neurally implemented. This research aim makes séonse presupposes that the body and
world are merely external factors (related to tifut and output) to cognition. But it is exactly
this presupposition that is questioned by EEC.

In this chapter we review argumemigainstthe exclusive adoption of the cognitivist
conception in cognitive neuroscience, &mdextending it with an EEC view. Of course,
empirical researchers are not easily swayed byétieal or philosophical argumentation alone,
nor should they be. If EEC is to inspire cognitheuroscience to extend its research
methodology, so that it aligns with an EEC viewilod role of the brain in cognitive behavior,
then EEC may do well to formulate concrete resequastions that are amenable to empirical
testing by cognitive neuroscientist in the neauffet In this chapter we therefore try to take some
steps towards the generation of such concreteigusst

1.1. Overview

The chapter is organized as follows. We start ictiSe 2 by explaining the computational
intractability problem, why it poses a formidabi®iplem for cognitivism, and why we think that
existing attempts to overcome the problem withgognitivist framework fail or are otherwise
problematic. In Section 3 we put forth some argusiéor, and speculations about, how
organisms can come to inhabit, and be adaptivelatively complex environments without the
need for continuous high-level world modeling, pleng and decision-making. Basically we
argue that due to a natural fit between organisthesavironment, most of the time organisms
can be ‘ignorantly successful’ in their ‘user-friltyi environments. In Section 4 we sketch the
contours of a ‘minimalistic’ control structure thaduld suffice for such ignorant successfulness
by introducing the metaphor of traffic facilitatias a way of conceiving the main task for
higher-level control mechanisms in the brain. Adiog to this view, the brain does not
primarily produce (through modeling, planning amtiding) behavior but rather, at least most
of the time, inhibits or disinhibits perception4actloops that are constitutive of ongoing
behavior. We discuss the types of questions taffidrfacilitator metaphor could imply for
empirical research in cognitive neuroscience expentation as well as robotics.

2. The computational unfeasibility of a brain in complete control
We examine the computational demands of the tasku#ed to the brain by the cognitivist.
Cognitivist accounts typically assume that centaadtrol systems work in two general stages:
first, based on the information provided by thessey input systems, ‘higher’ cognitive
processes (sometimes referred to as ‘central sggtéonm beliefs about how the world is; and
second, the central system selects from the engjrertoire of possible actions a sequence of
actions that when performed in the world as itabdved to be, will lead to the realization of
certain goals. Both stages can be shown to runthet@roblem of computational intractability



(Bylander, 1994; Joseph & Plantinga, 1985), buefmse of presentation we will focus on the
computational task posed by the first stage oi@early, the beliefs generated in the first stage
cannot be guaranteed to be true, always and evergwhut assuming that behavioral success is
to be explained by plans based on these beliejscduienot be arbitrarily wrong either. It seems
then that for a cognitivist account of adaptivedbr to work, one needs to assume that brains
have a capacity for forming at least more or lessigate beliefs, at least sufficiently accurate to
support the success of planned behavior most dfrtiee We present the following quote as just
one example of the cognitivist idea that highercpsses are involved in trying to make sense of
the world on the basis of imperfect informatiorondler to decide on action:

"Action selection is a fundamental decision prodessis, and depends on the state of
both our body and the environment. Because signalar sensory and motor systems
are corrupted by variability or noise, the nerveystem needs to estimate these states.”
[...] "The approach of Bayesian statistics is chamazed by assigning probabilities to
any degree of belief about the state of the worlBayesian statistics defines how new
information should be combined with prior beliefelehow information from several
modalities should be integrated." (Kdrding & Wolp&007, p. 319)

On this view, then, higher cognitive processes Ive in planning and decision-making are
engaged in generating abductive hypotheses tha ftiad most) sense of the perceived
information, given everything else the cognitiveteyn knows (Rock, 1983; Shanahan, 2005;
see also Fodor, 1983, 2000). The word ‘abducti®mat often used in neuroscientific literature.
However, in order to ensure that one’s beliefs abdmeiworld more or less correspond to what is
actually the case in the world one seems to mirynnatjuire a capacity for domain-general
abduction. Here, by ‘abduction’ is meant an inféigdprocess that takes as input partial
information about the world, or data (as producgddnsation and perception) and gives as
output hypotheses about which states of the waddalieved to currently hold and which ones
not. For example, if an object looks like a ducisign) and quacks like a duck (audition), then
we might (or might not — depending on what elsgperseive and believe) abduce that the object
in front of us is a duck. We furthermore, mightaight not abduce that the object is eatable, a
bird, 2 feet long, etc. By ‘domain-generality’ iamtboth that the abduction process can be
informed by information coming from all of the inpaystems (vision, audition, olfaction,
proprioception, etcandthat the entertained hypotheses, and the infooma&levant to
maintaining them, can span all kinds of content dimithat are potentially relevant for human
activity (the hypotheses can be about ducks, gbeople, about atoms, about the weather, etc.).
This domain generality is also expressed somethyesying that human abduction processes
are not informationally encapsulated (Pylyshyn,d,9%984).

It is the requirement of domain-generality thahisense causes trouble when one wishes
to devise computational procedures for abductidre feason is that it implies that we cannot, in
general, have good abductions by considering ohlgraiful of observational facts and only a

! Alternatively, one may assume that the two stepsallapsed into one, in the sense that the pitityatf plan
success is being evaluated by the central systeallfpossible plans against the background gbpadisible worlds
consistent with current perceptions, and the ghai lhas the largest (or a large enough) probalofiguccess is
selected. For our purposes, the simplified two-stamario suffices to make our points about thepedational
intractability of centralized (disembodied) infecen planning and decision-making. The same poioigdvalso
apply to the collapsed-steps scenario sketched i@ its computational complexity is at leastt thf the two
steps considered separately.



handful of relevant beliefs. In contrast, whethenot one should entertain belgfgiven
observational factd,, d,, ..., dn, depends also on one’s whole system of backgrbetiefs

about the worldp, p2, ..., pn. Such belief systems may contain hundreds or traissof

beliefs, and hence>> m. Moreover, these beliefs are not set in stondl{aeare the
observational facts by the way, which may be abducde misperceptions or illusions; see e.g.
Thagard, 2000) and each and everyone of them aseatpal candidate for updating when new
observations are made. Given that the number dilplesupdates of beliefs (i.e., combinations
of held beliefs) grows exponentially as a numbepaientially held beliefs, efficient updating of
the whole web of beliefs seems computationally itikie for minds/brains with finite
computational resources.

To give a numerical illustration of the problemateture of such an exponential growth,
assume that there are in total, gay, 100 beliefs in ones entire system of beliefgr(ss
underestimation, we would think). Then there areaaly 2 = 2!°°> 16°® many possible truth
assignments (‘true’ or ‘false’) possible; allowinglues of believability between ‘true’ and
‘false’, as preferred by probabilists, makes thehar of possibilities even larger. Clearly,
exhaustively searching this space to find whickhtassignment is supported by the observations
at hand is impossible. Even if a brain (or a suggenputer) has at its disposable as many parallel
computational channels as there are neurons inuiman brain (about 1), and if each such
channel were capable of considering millions’(18 possible truth assignments per second, still
the computation would require more than ten ceesud completeL0'° seconds). More
importantly, there seems to be no other way passdoensure that updating results in a stable
and more or less accurate set of beliefs. ThisWdlfrom the observation that all attempts to
formally define the computational problem undertyabduction have resulted in a problem that
is NP-hard (Abdelbar & Hedetniemi, 1998; Bylander, Allemafignner, & Josephson, 1991;
Thagard, 2000). What this means we explain next.

NP-hard problems are problems for which no prabteé.e., polynomial-time)
algorithm is known and it is strongly conjecturédttno such algorithm can ever exist. In other
words, it is conjectured that NP-hard problemsaaly be solved by some variant of exhaustive
search (i.e., exponential-time) algorithms, whghvhy these problems are considered
computationally intractabl¢Garey & Johnson, 1979, p. 8). Although the canjexis so far
unproven, it has strong empirical suppofhere are currently thousands of NP-hard problems
known (see e.g. the available online compendia)edeer, it is known that if any one of these
problems were computable in polynomial-time thérmfthem would be. Despite sustained
efforts by mathematicians and computer scientigés the last four decades, nobody to this day
has succeeded in devising a polynomial-time algorifor an NP-hard problem--hence, the
conviction that no such algorithm exists. Unless mould want to ascribe oracle-computing

2 As an aside, we note that the conjecture is atsngly supported by mathematical intuition. Thetmeanatical
intuition derives from the believed inequality @fct problem classes, called NP and P. Here, infdymidP can be
thought of as a class of problems whose solutiansoe easily checked, and P can be thought otkssa of
problems whose solutions can be easily found. Nbg&vmathematical intuition (and perhaps the laygeistuition
as well) says that NP may contain problems thahatén P (not all easily checkable problems nee@dsily
solvable). To assist the non-mathematician’s iignjtthink of crossword puzzle or a game like Suddkor each
such puzzle it is easy to check if a proposed ®wiu$ correct, but it is not clear that a solutisralso always easy
to find, i.e., there may beard puzzles. Now, for technical reasons we cannadhtgohere, it is known that if an
NP-hard problem would be computable without sormefof exhaustive search, then this would imply thet= P,
which would violate mathematical intuition (see &a& Johnson, 1979, for more details).



powers to central brain systems (something thatidvibe akin to the avowed ‘homunculus’ in
psychological explanation), it seems implausibbg tlentral brain systems have the capacity for
efficiently computing NP-hard problems.

The theoretical obstacle posed by the computatiotractability of abduction is greater
than many cognitivists seem to realize. First bfthe problem cannot be detracted by choosing
a different formalism for modeling abductigdaksford and Chater (1996), for example, argued
for a switch from non-monotonic logics to Bayessanifor modeling human abductive inference
based on the computational intractability of therfer. But such a move seems in vein given that
Bayesian models of abduction are as computationatgctable (if not more than) all other
existing models of abductive inference---such as-monotonic logics, covering models,
constraint satisfaction models, and neural netwookiels (Abdelbar & Hedetniemi, 1998; Bruck
& Goodman, 1990; Bylander et al, 1991; Cooper, 19%@gard & Verbeurt, 1998; Thagard,
2000).

Second, the computational intractability problespatannot be detracted by loosening
the quality of the abductions. It is often suggestethe cognitive science literature that
computationally intractable problems can be appnately computed efficiently (e.g., Chater,
Oaksford, Nakisa, & Redington, 2003; Chater, Teaent, & Yuile, 2006, Love, 2000), but this
seems at best a misrepresentation of the state airt. It is well known that many NP-hard
problems cannot be efficiently approximated (Ardr@98; Yoa, 1992), and almost all are
inapproximable if only a constant sized error Isvaéd (Garey & Johnson, 1979). Moreover,
models of abduction are NP-hard to approximate éwequite liberal criteria of approximation
(Abdelbar & Hedetniemi, 1998; Roth, 1991), and veheaims are made of polynomial-time
‘approximation’ algorithms for abduction problenesg., Thagard & Verbeurgt, 1998) those
algorithms do not approximate the required soluiiself (i.e., the truth assignment), but instead
its associated value, e.g., coherence or probalsiée Hamilton et al., 2007, for a discussion).

Third, computationally intractable problems canbetendered tractable by a divide and
conquer strategy. For example, in the cognitiversm literature it is sometimes suggested that
the computationally intractability problem plaguiagingle, central abduction / planning system
can be overcome by postulating the existence afgelset of ‘modules’ each being able to
efficiently update beliefs, or make plans, for agfic domain of situations or ‘contexts’ (cf. the
‘massive modularity’ of Cosmides and Tooby, 1994, ‘toolbox of heuristics’ of Todd and
Gigerenzer, 1999, and the ‘multiple models’ of Wastpand Ghahramani, 2000; see also
Carruthers (2003a/b) and Sperber (2002) for disonsk If each such module implements a
tractable computation, then it may seem that theleviystem could tractably update our beliefs,
and make plans, in all psychologically relevantteats. However, even granting the number of
required modules could be efficiently stored in ioenan brain (think of the potentially quite
large number of possible contexts), a modular syst@nnot tractably compute any
computationally intractable problem at risk of gawliction. If a problem were to be tractably
computable by a modular system, then this wouldyrtigat that problem does not belong to the
class of computationally intractable problefifa problem is intractable, as seems to be the
case for domain-general abduction, theralgorithm for tractably computing it can exist.

% It would also mean that Q is tractably computatyle single non-modular system, because a non-rapgystem
could tractably compute Q by (i) simulating thegess by which the modular system selects the nigiatule for
the current context, and (ii) simulating the wodsrof the selected module. If both steps are toéetar the
modular system, then the simulation is also trdetédy the non-modular system.



Much more can be said about the topic of computatimtractability, its proposed
solutions and their failings (see, e.g., van Raoipress), but for our purposes the point is
merely this: The computational intractability pretvl is not going to go away for cognitivist
models of planning and action control. The only w@gchieve tractability of control, so it
seems, is to assign an easier computational tasbntiool processes than domain-general
abductive inference, and in effect make the explanaf success of behavior to a large extent
independent of the success of our abductions afeelbout the worldThe question, of course,
is how the successfulness of behavior in the wealdbe explained if not by an appeal to a
control system that plans on the basis of belibtaiathe world. In the next section will put forth
an argument for why it may be plausible to assumédrganisms with control structures that
maintain no internal model of the world can nevelgks behave successfully and adaptively in
the world. Moreover, we argue, that such organisrag very well come to inhabit the most
complex or challenging worlds that their contralstures can successfully handle, or
approximations thereof.

3. Ignorantly successful in a user-friendly environment
No animal is behaviorally adapted to react in appate ways to all possible changes of all
possible variables existing in the ‘world out tHe@onsider an ant, stamped upon by a casual
pedestrian: this poor creature ‘has no idea’ whdtiitm, and, more importantly, it has no means
whatsoever to counteract such occasions. The aither extremely lucky, or it dies. From the
perspective of the ant, a passing pedestrianrisealleus ex Machina. Still ants are successful
creatures. On the whole, every organism seemst toygeretty successfully, using the behavioral
capacities it possesses. So how is it that organean be successful in a complex and
unpredictable world? The speculative idea we punstigis section is based on the assumption
that thelocal, or personalenvironment in which an intelligent creature isigted is not formed
independent from the organism’s own behavioral@rautionary history. “Environments” are
not simply pre-given, arising out of nothing. Organs do not wake up to find themselves in
completely new, unfamiliar, and hostile worldsalconfined region of the global chaos we call
reality, each creature ‘makes a living’, basedtsrsénsory capacities and its behavioral
repertoire, thereby creating its owmwelt(Von Uexkull, 1934; Ziemke & Sharkey, 2001). In
the words of Varela, Thompson and Rosch (1991)wigat say that the organism, by its own
actions brings forth orenactsa world. In yet other words, organisms and theuinments
can be said too-evolve(Chiel & Beer,1997; Deacon, 1997), or as Mead ) $Rit it:

"The sort of environment that can exist for theamigm, then, is one that the organism in
some sense determines. If in the development dbtine there is an increase in the
diversity of sensitivity there will be an increasehe responses of the organism to its
environment, that is the organism will have a cgpandingly larger environment.(...) In
this sense it selects and picks out what conssittgesnvironment. It selects that to which it
responds and makes use of it for its own purpgaeposes involved in its life-processes.
It utilises the earth on which it treads and thitoughich it burrows, and the trees that it
climbs; but only when it is sensitive to them.” (e 1934, 245, quoted in Jarvilehto,
1999).

Our suggestion is that it is this interdependergtyvieen organisms and their environments that
makes these environments generally facilitativeteraction. It is this intimate ‘fit’, we
speculate, which ensures that actions, once tak#mgenerally prove to be successful/adaptive.



Moreover, under most, ordinary, circumstances,pnagriate actions will generally prove to be
repairable: we are allowed to make mistakes inlbuwelt, so that we may even learn
something along the way. For example, think offag in which parents provide safe
environments for their offspring to explore andrtem. In other words, the naturally emerging
embodied embedded behaviors of an organism geyésalll to be quite effective for the
survival ofthat organism irthat Umwelt. Consider that most ants live their livasessfully,
without knowing about, nor having had to deal w#tamping feet. Most ants are ignorantly
successful. And so, we claim, are we humans.

An ignorantly successful interaction with a by dadje user-friendly environment might
very well be an apt description of what takes pldaeng ongoing behaviors of individual
human beings in daily life. As an illustration bfd, consider a situation in which a human being
is in need of ‘locating an often used object inkfiehen during cooking’, e.g. a milk-beater. In
cognitivist theory this is a problem of search,alwing not only inspecting the visual scene, but
also memory, as when we try to remember (or forpokiyeses about) where we may have put
the object. In practice, however, memory searditen not needed. In many situations the
structure of the environment naturally constralreskind of actions that can be performed, and
one may question whether the brain needs to séareiigh mental models and memory stores at
all. For instance, in a kitchen, some drawers dedives are more easily reached by the agent
than others. Such drawers and shelves will be arttenfirst to be inspected, that is, if the
natural flow of body-world interaction is followeblote that this is a physical constraint that
exists because of the bodily characteristics op#rson and the physical organization of the
kitchen, and independent from any potential deiben in the person’s mind. Chances are that a
daily used object like a milk-beater is ajaat on one of those easily reachable shelves or
drawers, perhaps even by the person herself. So whexperience ourselves doing a
seemingly random inspection of drawers and shehstead of a rational search, we are actually
being constrained both by body and world, leadnbigher chances of behavioral success even
if these actions in isolation would seem to be slass or random. The example illustrates how
success of behavior can follow from the ‘fit’ beemethe person’s behaviors and the local
environment. Where you can put objects most eas#yso where you can look for them most
easily, which in turn is where you have a high deaof finding the object that you where
looking for.

Environments can thus be ‘user-friendly’, not ualkwell-designed interface. An
agent’s natural tendencies for action can tendatcimthe environmental structure in ways that
turn out to be functional with respect to the ageneeds. This would be the case, for example,
when the agent’s behavioral repertoire and thetrea of the situated environment co-
developed with one anotffetn such a process of co-evolution organism ancsd
environment (Umwelt) are mutually affected by onetaer. Evolution is sometimes seen as a
one-way effect in which an animal adapts to chamgés environment. What is less often
recognized is the reversed process, in which clsimgan organism’s structure might also lead
to changes in the (situated) environment. Havergmars turned white because their
environment became snowy? Or did the whiter-col@adr-bears use their skin-colour to their
advantage, leading them to travel ever furtheramhninto snowy territory? Or consider the
human eye. From a traditional perspective, theveydd be viewed as the animasslutionto

* Incidentally, such a fit between organism and emment might, at least for human beings, emergenly for a
species on an evolutionary timescale but alscamondividual, from the ongoing interaction witketenvironment
during his lifetime.



an environmentgbroblem An evolutionary explanation might begin by stgtthat, at some

point, due to a change in the environment, thatahd detect the visible spectrum of light
became relevant for survival (where previouslyaitlmot been). How to acquire the capacity to
use light can be seen as flreblem Selection forces then procure a sensor thatléstaldetect
light, in humans the eye. This is tbalution We think that such a view need not be correat. Fo
one thing, it has been argued that sometimes stalgiroperties of organisms emerge and
persist (over numerous generations) long befor@tbperty in question becomes adaptive
(Goodwin, 1994). In other words, evolution crearaptations (Gould & Vrba, 1982; Gould,
1991), which in a way can be seen as ‘solutionspfoblems that don’t even exist (yet). A
perhaps even more fundamental question is whyittiele spectrum of light became relevant for
survival in the first place. In many situationsisinot unreasonable to suggest that such aspects
of the environment co-evolve with changes in thieaveoral repertoire of the organism itself.
Consider, as a hypothetical example, a blind credhat has developed the means to move
significantly faster than before. Now speed may huseful adaptation, but it also presents
dangers, such as a fatal collision. For this anisedsitivity to distal (e.g. visual) rather than
proximal sources now becomes adaptive, whereatoitsancestor would have had no use for it.
Hence, once the eye has evolved, the system ralaxes stable relation between animal and
environment, in which its new eyes team up nicely s fast legs. But that is not the end of it.
Once there is vision, the environment ‘broadensamge more. A ‘visual environment’ might
help the animal in dealing with the dangers of gdast (the original ‘problem’), but it also
creates new challenges. As Lock (2003, p.105)state

“Simpler organisms can handle their simpler wollgidess complex means, but once
evolution has come up with the where-withal for glien organisms to handle their
somewhat simpler selection problems, then it effebt creates for itself a new problem.
That is, as organisms find ways of sustaining tredves, they create new potential sources
of energy that can be preyed upon. And as new sswfenergy, they present more
complex worlds for their possible prey to operaté i

That is, when compared to its blind ancestorsetlesl creature faces some challenges of its
own: How to cross that distant river, how to clithiat far-away tree, how to fight that
approaching competitor, and so on. The idea isttmatsbehavioral capacities co-evolve with
changes in the organism’s environment in a cornegdipg manner. New capacities enable the
animal to be adaptive in that new environment. tBatnew situation has both ‘advantages’ and
‘disadvantages’. The advantage is that the newnsida to the behavioral repertoire helps the
organism in dealing ‘better’ with some aspectshefénvironment than before. On the other
hand, the disadvantage is that the animal has mopqgbed itself into a new environment and
this environment poses new cognitive challengeagpared to the previous situation. The
development of new capacities, seen as a mearsdtve some tension between organism and
environment, can therefore also be seegemeratingnew challenges as well: new kinds of
behaviors lead to an extension of the environmehich poses new demands. Therefore, instead
of saying that animals becomereadaptive with each step in evolution, we wouldheat
formulate it as animals becomiegually adaptive again and agaiat, each new critical
equilibrium (Goodson, 2003), albeit in a broadergeof (more complex) environments. For a
related view of the co-evolution of psycho-linguistapacities and socio-linguistic
environments, see Deacon (1997).



In sum, we propose that the local, situated enwr@mts in which organisms are
embedded are relatively comfortable and safe enmemts. Organisms and their environments
co-develop, making environments generally ‘usezrdly’ life-worlds. We argued that success
of behavior follows from the ‘fit’ between the enthed embedded repertoire of the organism
and the structure of the situated environment. Negtshowed how new capacities in effect
broaden up the situated environment, which has bpsides as well as downsides: new
possibilities for action and perception may be ulsief dealing with certain existing challenges,
but they also generate new challenges as well.

4. Generating research questionsfor cognitive neur oscience and robotics

As indicated in the introduction, EEC it would bgtily desirable for EEC to formulate concrete
research questions that can provide the basig$march in cognitive neuroscience. A first
apparent obstacle is that in the current neurointgagiethodology the movements of subjects
have to be restricted almost completely in ordeetiuce noise. This prevents anything like the
occurrence of the natural organism-environmentifgcussed above, that forms the basis for the
view on brain control to be outlined in this sentidnother problem is that the perspective of
EEC tends to get formulated at a rather abstradpgophical or even generally descriptive,
level. Hence, most statements (including our owfagpabout the value of EEC tend to be far
removed from concrete empirical research questimnegnitive neuroscience. A third problem
is that existing theories and models of EEC commdehl with relatively low-level organism-
environment interactions, usually as far removedfthe complexity of daily life behaviors as
the research of the often scorned cognitivist peEasype (hence, e.g., Clark & Toribio’s (1994)
challenge to deal with ‘representation-hungry’ sasebehavior; see also van Rooij et al.
(2002)). These problems are indeed formidable andat be solved within one chapter.
However, we do feel that there are enough ingresliavailable, from the area of robotics as well
as from neuroscience, in order to at least tergtisketch a view that might lend itself to
empirical testing. In this section, then, we wijl to work our way from a metaphorical

depiction of high-level brain functioning duringmamon sense behavior to its consequences for
empirical research in robotics and cognitive neciergce.

Brooks (1999, p.81) suggested that it is fundantdéotan organism to have “the ability
to move around in a dynamic environment sensingtineundings to a degree sufficient to
achieve the necessary maintenance of life and deption.” He modeled this capacity by means
of his well-known layered architecture: reactiveatures consisting of behavioral layers that
each instantiate a direct input-output couplingc@ding to Brooks, it is a major advantage of
his approach that no intermediate (in between iapdtoutput) world modeling, planning and
decision making takes place. Instead, layers coerfpetdominance on the basis of the input
received by the system. From this perspective @tare can be seen as a repertoire of behavioral
dispositions and the environment selects from itréature is inclined, in virtue of its bodily
possibilities and its history of interactions with environment, to respond to stimuli in specific
ways without high-level thought or planning. Petgap action and world are structurally
coupled to form a temporarily stable behavioratgratthat is functional with respect to the task.
We call this structural coupling a ‘basic interaaticycle’. A creature carries its set of potential
behaviors with it across contexts, and if thesdeods fit with the creatures’ behavioral
repertoire (as well may the case, as indicatecenti@n 3) its overall conduct may be satisfactory
for a long time.



The fit between environment and behavioral repertmight to a large extent underlie
the relative success of most of our common sensaviia in daily life, such as having a drink in
a bar, going home, or making dinner, etc. Commased&ehavior actually consists in quite
complicated sequences of behavior, even thougbe$ dot require the type of planning and
decision making characteristic of say playing asshgame or buying a house. Instead we seem
to operate more or less on ‘autopilot’; our behaflmvs naturally out of the stimulations from
the environment.

In the reactive robots of the early 90’s, the nundjalistinct behavioral layers was
typically small and the precedence relations betvieem were set beforehand and were
hardwired into the system. This resulted in cresgunot unlike th&. coli discussed earlier.
However, once the set of basic behavioral capaaitie@ creature become larger, and its
sensorimotor capacities quite rich, a more flexéd integrated way of setting up behavioral
layers and their interrelations becomes neces3arijlustrate, consider the following: If an
organism has basic behavioral layers available, then it cowdhe to display, in principle, as
many as 2distinct behavioral patterns by simply turning *seme layers and turning others
“off”. With even as few as 32 layers this coulduieén as many as®2 = 10°distinct potential
behaviors, which would, to quote Wolpert and Kawa® “sufficient for a new behavior for
every second of one’s life” (1998, p. 1318). If ambshally quantitative adjustments are possible-
--i.e., states in between “on” and “off”, possilotyplementing dominance relations---then the
same organism would have the capacity for disptagim even larger number of possible
behaviors. To help regulating the selection (or shamce relations) of behavioral layers, we
suggest, is the main task of the high-level corftrottion of the brain. In other words, instead of
interpreting the brain’s control system as the elrior pilot of the body, we see it asraffic
regulator (van Dijk et al., in press)---it is (merely, bmportantly) assisting the environment
driven selection from the behavioral repertoiretaditdy, we do not propose that this traffic
facilitation is achieved by computing the bestgeen, a good enough) behavior from the set of
possible behaviors given the current context (s&p, Kérding & Wolpert, 2007; Wolpert. &
Ghahramani, 2000; Wolpert & Kawato, 1998), becalasreg so would lead us right back to the
computational intractability problem discussed attn 2. Therefore, contrary to the traditional
view of the control system as involved in world retidg, planning and decision making, we
would like to hypothesize that the control functmfithe brain works in a, dare we say, more
‘lazy’ way.

There may be several ways in which one could cercef a ‘lazy’ control system. We
will describe just one such possibility here, dragvon an analogy with the control system of the
E coli. Recall that th& coli can perform two modes of behaviors (tumbling oinswing), and
the probability with which it switches between thé®&o modes depends on chemicals (food or
poison) it picks up from the environment. In a s$aniein, our lazy control system may work by
stochastically sampling from the set of behaviogions with a non-uniforrbias, i.e., not
every behavioral option is equally likely to bees#ted. The bias can be represented by a
probability distributionP over the set of possible behaviors (e.g., comiginatof “on” and “off”
layers and/or combinations of dominance relationggre P{, i) would denote the probability
that behavioral dispositionis sampled at time Here, the biaP may be fixed, but more likely it
is variable over time, e.g., as a function of eigrae and the organism’s internal (homeostatic)
milieu. This proposal raises several (more or lesscrete questions for cognitive neuroscience:
How isP implemented in the human brain? What is the sloéiee distributiorP for humans?

Is P fixed or variable? IP is variable, what is it a function of?Rfis a function of experience



and/or homeostatic states, how do these factotsiloote to changes in the distributi®over
time, both descriptively and mechanically?

It seems to us that these questions can in prinbplresearched using (existing and
developing) cognitive neuroscientific methods. Gdesfor instance the question of how such a
lazy control system could be implemented in thebr& concept that could help to elucidate
how the brain might be involved in the temporamyation of a relevant behavioral repertoire is
Edelman’s (1992; Edelman & Tononi, 2000) notiorfusfctional clusters. A functional cluster
consists of “elements within a neural system thaingly interact among themselves but interact
much less strongly with the rest of the system”daertain amount of time (Edelman & Tononi,
2000, p.120, see also pp. 184--185). Several nalgsaups form a strongly integrated assembly
for brief periods (most likely to be measured ia tange of 50-100 milliseconds). In other
words, functional clusters exist only temporardgnsist of various contributing areas that are
recruited for the specific occasion and are chaplgeaver contexts. A similar concept, that of
neuronal assemblies, is discussed by Chakrabaahdlsrg & Greenfield (2007, p.491):

“Large-scale, coherent, but highly transient neksasf neurons, ‘neuronal assemblies’,
operate over a sub-second time frame. Such assewdflbrain cells need not necessarily
respect well-defined anatomical compartmentalisatiut represent an intermediate

level of brain organisation”

Functional clusters or neuronal assemblies carsfenaed to implement short-lived changes in
the organisms behavioral dispositions. In thaectwe nature of the postulated birawith

which behavior dispositions are sampled could hEeamentally investigated by studying the
stochastic dependencies between different podsibgional clusterings over time. We may
observe that of the many different ways in whichraésystems may cluster in principle, only
relatively few cluster types happen with high fregay in practice over long periods of time
under constant conditions. If so, this would suggydsatP is relatively high peaked,
implementing a stronger bias than whwould be flat throughout. Also, the hypothesisioh-
constancy oP could be investigated by trying to fit a constarttdel to the observed stochastic
dependencies and see if it fails to account foroteervations. Following this, differeRs, each

a different hypothesized function of internal cdimis and environmental factors, can be
formulated and tested for their ability to explaimserved stochastic dependencies of clustering
over time and under variable conditions. Of patéicinterest and relevance for the latter type of
experimental investigation would be to consideelinal homeostatic states as variables for the
functionP, since by analogy with tHe coli we hypothesize that much (if not all) of the hias

our sampling of behavioral dispositions is a fumctof such states.

Our proposal of a ‘lazy’ traffic facilitator confreystem also raises a question that we
think may be answered using robotic simulation: H@am humans, or any other complex
organism, come to have a bRashat works well enough for the organism to getiatbthe
world on ‘auto-pilot’, without giving the selectiasf behaviors much thought, most of the time?
We think that the answer lies in the type of cotetron of control systems (in this case the bias
P) with the life world of the organism, as descritbe®&ection 3. This explanation may be tested,
or at least a proof of concept may be given, usagtic simulation. For example, a robotic
simulation could start by endowing robotic systemith a ‘lazy’ control systen®, and letting it
evolve forn generations throughy, P», ... Py in interaction with its life world. By systematlba
manipulating (i) the set of layers available to tbkot, (ii) the nature of the initi&ly, (iii) the



way eachP; depends on internal and external conditions efibrldi, (iv) aspects of the
environment, and (v) the nature of the evolutiomcpss, one could get a better understanding of
how these factors (i)—(v) interrelate. Hypothedasua the interrelation generated in the
simulation process may serve as hypotheses forthese factors relate for (higher) organisms.
To the extent that such hypotheses pertain to fa¢tp— (iv) for animal and human brains,
bodies and environments they can again be subjéztasgnitive neuroscience testing.

Although we realize that our suggestions for expentation in cognitive neuroscience
and robotics need to be worked out more concraétedyder to result in actual simulations and
experiments, we do feel that they indicate thatithiic facilitation metaphor and the general
view of EEC underlying it are not too far removednh empirical investigations.

5. Conclusion

Compared to for instance tke coli, humans have an exceptionally rich behavioralntepe

that gets applied with great flexibility and sey to environmental conditions. We argued
against the received view in cognitive neuroscieneethat cognitive systems can display this
behavior only by maintaining mental representatwine world on the basis of which plans are
made in order to achieve specific goals. We exptaimow such a position leads to the problem
of computational intractability. We proposed thii¢etive control may be possible for a more
tractable, even ‘lazy’, control system that doesmaintain any internal models of the world,
assuming that such ‘lazy’ control systems co-evalith the bodies and environments of
organisms. This co-evolution ensures a certainegegf “fit” between the control system of an
organism and its life world. The ‘lazy’ control ofeanism that we postulated raises several
interesting questions, each of which we think i®aable to experimental investigation using
brain measuring methods. Also, our claim thatylaontrol systems can plausible evolve, even
for quite complex organisms in quite complex enviments, can be directly investigated using
the methods of robotic simulation. In all, we hapéave shown that an EEC view on the
higher-level control functions of the brain is maotly possible, but that it can be made precise
enough to suggest experimental investigation imitiMg neuroscience, as well as robotics.
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