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Abstract 
Over the last decades, philosophers and cognitive scientists have argued that the brain 
constitutes only one of several contributing factors to cognition, the other factors being 
the body and the world. This position we refer to as Embodied Embedded Cognition 
(EEC). The main purpose of this paper is to consider what EEC implies for the task 
interpretation of the control system. We argue that the traditional view of the control 
system as involved in planning and decision making based on beliefs about the world 
runs into the problem of computational intractability. EEC views the control system as 
relying heavily on the naturally evolved fit between organism and environment. A ‘lazy’ 
control structure could be ‘ignorantly successful’ in a ‘user friendly’ world, by 
facilitating the transitory creation of a flexible and integrated set of behavioral layers that 
are constitutive of ongoing behavior. We close by discussing the types of questions this 
could imply for empirical research in cognitive neuroscience and robotics. 
 
Keywords: cognitive neuroscience, embodied embedded cognition, abduction, 
computational intractability, control architecture, reactive robotics  

1. Introduction 
The E. coli shines in its simplicity. This single-cell organism can locate food in its environment 
without having any plan on how to look for it, nor having any beliefs about the world it finds 
itself in. Instead it finds food, and avoids toxics, by moving its flagella in one of two ways: it 
either tumbles about randomly or it swims straight ahead. Without specific stimulation it changes 
between these two modes every few seconds, thereby engaging in a random exploration of its 
environment. Once a chemical gradient in its environment is sensed (e.g. an increase in sugar 
level or a decrease in toxic substances), it increases the amount of swimming and decreases the 
random tumbling resulting in a process called chemotaxis. In effect, the bacterium swims 
upwards along a stream of increasing nourishment towards a food source and downwards along a 



stream of decreasing toxics (Cairns-Smith, 1996, p. 90--94). The behavior of the E. coli could in 
principle be described in terms of the folk psychological concepts of beliefs, desires and 
intentions (Jonker, Snoep, Treur, Westerhoff, & Wijngaards, 2001), but these would be 
superfluous metaphorical ascriptions at best. It seems implausible and unnecessary to attribute 
such mental states to the E. coli as its behavioral success is readily explained in terms of the 
direct perception-action couplings in which sensed chemical gradients trigger different 
behavioral patterns (tumbling or swimming).  

Humans are much more complicated organisms than E coli. Humans have much richer 
behavioral repertoires than the E. coli do, and humans can apply this repertoire with an 
exceptionally high degree of flexibility and sensitivity to environmental conditions, both past, 
present and future. It is this flexibility that is seen as a mark of human intelligence and what has 
proven so difficult to replicate in robots. On the one hand, the increased flexibility makes 
humans’ lives easier, as it allows them to survive under wider environmental conditions than E. 
coli. But, on the other hand, it also seems to make things more difficult for humans, because it 
confronts them with a challenging control task. The challenge seems to be that humans need to 
decide what to do when. The E. coli do not have this problem (these bacteria do exactly what is 
triggered by the gradient of chemicals in their environment).  

The received view in cognitive science and artificial intelligence is that cognitive systems 
can come to display the kind of intelligent behavior that is characteristic of human beings only 
by maintaining more or less accurate mental representations of the world (i.e., beliefs), which 
they derive from perceptual information. Based on their beliefs about states of the world, humans 
are assumed to make plans (i.e., intentions) with the aim of guiding motor behaviors in a way 
that meets certain goals (i.e., desires). This internalist, cognitivist view of the relationship 
between cognizing and behavior is inherited by much of contemporary cognitive neuroscience, 
resulting in the explanation of intelligent cognitive behavior as the product of powerful brains 
that can maintain world models and devise plans. In other words, contemporary cognitive 
neuroscience tends to see cognizing as something that the brain does.  

We think that by construing the control problem posed to the brain in this way, cognitive 
neuroscience, like artificial intelligence, may be making a mistake. Maintaining a stable and 
approximately correct set of beliefs about the world that is sufficient for programming more or 
less successful behavior in situations of real-world complexity seems to pose a computationally 
too demanding task for a human (or any kind of) brain to perform. This computational 
intractability problem, long known to plague cognitivist models of cognition (Pylyshyn, 1987; 
Haselager 1997), clashes with the observation that people make split second decisions in 
everyday contexts, typically with good results. Hence, cognitive neuroscience may do well to 
consider alternative views of the control architecture of humans.  

In this chapter we make the case for one such alternative control structure. Our control 
structure is inspired by the theoretical framework of Embodied Embedded Cognition, or EEC for 
short (Brooks, 1999, Clark, 1997, Chiel & Beer, 1997). EEC proposes that cognition and 
behavior emerge from the bodily interaction of an organism with its environment. According to 
EEC, the physical structure of the body, the physical and social structure of the world, and the 
internal milieu of the organism’s body all provide important constraints that govern behavioral 
interactions. From this perspective behavior is best explained by a system of interacting 
components, where the brain is only one such component. In other words, the brain is best 
viewed not as a commander or director of behavior, but rather as only one of the players among 
equally important others (i.e., the body and the world). As a result, according to EEC, in a great 



number of cases, the processes subserving cognitive behavior cannot be directly mapped onto 
brain structures.  

We are well aware of the apparent tension between an EEC perspective of the brain and 
contemporary cognitive neuroscience research (see also van Dijk et al. in press). Much of current 
cognitive neuroscience’s methodology (e.g., brain imaging and single cell recordings) is built on 
the idea that the brain implements an encapsulated mechanism for cognizing that can be 
understood by studying the brain in almost complete isolation, independent from any realistic 
bodily interaction with the world. Accordingly, much experimental effort in cognitive 
neuroscience is devoted to figuring out which of the cognitive subprocesses (perception, 
abduction, planning, deciding) are performed where in the brain and how these processes are 
neurally implemented. This research aim makes sense if one presupposes that the body and 
world are merely external factors (related to the input and output) to cognition. But it is exactly 
this presupposition that is questioned by EEC.  

In this chapter we review arguments against the exclusive adoption of the cognitivist 
conception in cognitive neuroscience, and for extending it with an EEC view. Of course, 
empirical researchers are not easily swayed by theoretical or philosophical argumentation alone, 
nor should they be. If EEC is to inspire cognitive neuroscience to extend its research 
methodology, so that it aligns with an EEC view of the role of the brain in cognitive behavior, 
then EEC may do well to formulate concrete research questions that are amenable to empirical 
testing by cognitive neuroscientist in the near future. In this chapter we therefore try to take some 
steps towards the generation of such concrete questions.  

 
1.1. Overview 
The chapter is organized as follows. We start in Section 2 by explaining the computational 
intractability problem, why it poses a formidable problem for cognitivism, and why we think that 
existing attempts to overcome the problem within a cognitivist framework fail or are otherwise 
problematic. In Section 3 we put forth some arguments for, and speculations about, how 
organisms can come to inhabit, and be adaptive in, relatively complex environments without the 
need for continuous high-level world modeling, planning and decision-making. Basically we 
argue that due to a natural fit between organism and environment, most of the time organisms 
can be ‘ignorantly successful’ in their ‘user-friendly’ environments. In Section 4 we sketch the 
contours of a ‘minimalistic’ control structure that could suffice for such ignorant successfulness 
by introducing the metaphor of traffic facilitation as a way of conceiving the main task for 
higher-level control mechanisms in the brain. According to this view, the brain does not 
primarily produce (through modeling, planning and deciding) behavior but rather, at least most 
of the time, inhibits or disinhibits perception-action loops that are constitutive of ongoing 
behavior. We discuss the types of questions this traffic facilitator metaphor could imply for 
empirical research in cognitive neuroscience experimentation as well as robotics.   

2. The computational unfeasibility of a brain in complete control 
We examine the computational demands of the task attributed to the brain by the cognitivist. 
Cognitivist accounts typically assume that central control systems work in two general stages: 
first, based on the information provided by the sensory input systems, ‘higher’ cognitive 
processes (sometimes referred to as ‘central systems’) form beliefs about how the world is; and 
second, the central system selects from the entire repertoire of possible actions a sequence of 
actions that when performed in the world as it is believed to be, will lead to the realization of 
certain goals. Both stages can be shown to run into the problem of computational intractability 



(Bylander, 1994; Joseph & Plantinga, 1985), but for ease of presentation we will focus on the 
computational task posed by the first stage only.1 Clearly, the beliefs generated in the first stage 
cannot be guaranteed to be true, always and everywhere, but assuming that behavioral success is 
to be explained by plans based on these beliefs they cannot be arbitrarily wrong either. It seems 
then that for a cognitivist account of adaptive behavior to work, one needs to assume that brains 
have a capacity for forming at least more or less accurate beliefs, at least sufficiently accurate to 
support the success of planned behavior most of the time. We present the following quote as just 
one example of the cognitivist idea that higher processes are involved in trying to make sense of 
the world on the basis of imperfect information in order to decide on action:   
 

"Action selection is a fundamental decision process for us, and depends on the state of 
both our body and the environment. Because signals in our sensory and motor systems 
are corrupted by variability or noise, the nervous system needs to estimate these states." 
[…] "The approach of Bayesian statistics is characterized by assigning probabilities to 
any degree of belief about the state of the world ... Bayesian statistics defines how new 
information should be combined with prior beliefs and how information from several 
modalities should be integrated." (Körding & Wolpert, 2007, p. 319)  
 

On this view, then, higher cognitive processes involved in planning and decision-making are 
engaged in generating abductive hypotheses that make (the most) sense of the perceived 
information, given everything else the cognitive system knows (Rock, 1983; Shanahan, 2005; 
see also Fodor, 1983, 2000). The word ‘abduction’ is not often used in neuroscientific literature. 
However, in order to ensure that one’s beliefs about the world more or less correspond to what is 
actually the case in the world one seems to minimally require a capacity for domain-general 
abduction. Here, by ‘abduction’ is meant an inferential process that takes as input partial 
information about the world, or data (as produced by sensation and perception) and gives as 
output hypotheses about which states of the world are believed to currently hold and which ones 
not. For example, if an object looks like a duck (vision) and quacks like a duck (audition), then 
we might (or might not – depending on what else we perceive and believe) abduce that the object 
in front of us is a duck. We furthermore, might or might not abduce that the object is eatable, a 
bird, 2 feet long, etc. By ‘domain-generality’ is meant both that the abduction process can be 
informed by information coming from all of the input systems (vision, audition, olfaction, 
proprioception, etc.) and that the entertained hypotheses, and the information relevant to 
maintaining them, can span all kinds of content domains that are potentially relevant for human 
activity (the hypotheses can be about ducks, about people, about atoms, about the weather, etc.). 
This domain generality is also expressed sometimes by saying that human abduction processes 
are not informationally encapsulated (Pylyshyn, 1980, 1984).  

It is the requirement of domain-generality that in a sense causes trouble when one wishes 
to devise computational procedures for abduction. The reason is that it implies that we cannot, in 
general, have good abductions by considering only a handful of observational facts and only a 
                                                 
1 Alternatively, one may assume that the two steps are collapsed into one, in the sense that the probability of plan 
success is being evaluated by the central system for all possible plans against the background of all possible worlds 
consistent with current perceptions, and the plan that has the largest (or a large enough) probability of success is 
selected. For our purposes, the simplified two-step scenario suffices to make our points about the computational 
intractability of centralized (disembodied) inference, planning and decision-making. The same points would also 
apply to the collapsed-steps scenario sketched here, since its computational complexity is at least that of the two 
steps considered separately.  



handful of relevant beliefs. In contrast, whether or not one should entertain belief p, given 
observational facts d1, d2, …, dm, depends also on one’s whole system of background beliefs 
about the world, p1, p2, …, pn . Such belief systems may contain hundreds or thousands of 
beliefs, and hence n >> m. Moreover, these beliefs are not set in stone (neither are the 
observational facts by the way, which may be abduced to be misperceptions or illusions; see e.g. 
Thagard, 2000) and each and everyone of them is a potential candidate for updating when new 
observations are made. Given that the number of possible updates of beliefs (i.e., combinations 
of held beliefs) grows exponentially as a number of potentially held beliefs, efficient updating of 
the whole web of beliefs seems computationally prohibitive for minds/brains with finite 
computational resources. 

To give a numerical illustration of the problematic nature of such an exponential growth, 
assume that there are in total, say, n = 100 beliefs in ones entire system of beliefs (a gross 
underestimation, we would think). Then there are already 2n = 2100 > 1030 many possible truth 
assignments (‘true’ or ‘false’) possible; allowing values of believability between ‘true’ and 
‘false’, as preferred by probabilists, makes the number of possibilities even larger. Clearly, 
exhaustively searching this space to find which truth assignment is supported by the observations 
at hand is impossible. Even if a brain (or a super-computer) has at its disposable as many parallel 
computational channels as there are neurons in the human brain (about 1014), and if each such 
channel were capable of considering millions (106) of possible truth assignments per second, still 
the computation would require more than ten centuries to complete (>1010 seconds).  More 
importantly, there seems to be no other way possible to ensure that updating results in a stable 
and more or less accurate set of beliefs. This follows from the observation that all attempts to 
formally define the computational problem underlying abduction have resulted in a problem that 
is NP-hard (Abdelbar & Hedetniemi, 1998; Bylander, Allemang, Tanner, & Josephson, 1991; 
Thagard, 2000). What this means we explain next.  

NP-hard problems are problems for which no practicable (i.e., polynomial-time) 
algorithm is known and it is strongly conjectured that no such algorithm can ever exist. In other 
words, it is conjectured that NP-hard problems can only be solved by some variant of exhaustive 
search (i.e., exponential-time) algorithms, which is why these problems are considered 
computationally intractable (Garey & Johnson, 1979, p. 8). Although the conjecture is so far 
unproven, it has strong empirical support.2 There are currently thousands of NP-hard problems 
known (see e.g. the available online compendia). Moreover, it is known that if any one of these 
problems were computable in polynomial-time then all of them would be. Despite sustained 
efforts by mathematicians and computer scientists over the last four decades, nobody to this day 
has succeeded in devising a polynomial-time algorithm for an NP-hard problem--hence, the 
conviction that no such algorithm exists. Unless one would want to ascribe oracle-computing 

                                                 
2 As an aside, we note that the conjecture is also strongly supported by mathematical intuition. The mathematical 
intuition derives from the believed inequality of two problem classes, called NP and P. Here, informally, NP can be 
thought of as a class of problems whose solutions can be easily checked, and P can be thought of as a class of 
problems whose solutions can be easily found. Now, the mathematical intuition (and perhaps the layperson intuition 
as well) says that NP may contain problems that are not in P (not all easily checkable problems need be easily 
solvable). To assist the non-mathematician’s intuition, think of crossword puzzle or a game like Sudoku. For each 
such puzzle it is easy to check if a proposed solution is correct, but it is not clear that a solution is also always easy 
to find, i.e., there may be hard puzzles.  Now, for technical reasons we cannot go into here, it is known that if an 
NP-hard problem would be computable without some form of exhaustive search, then this would imply that NP = P, 
which would violate mathematical intuition (see Garey & Johnson, 1979, for more details).   
 



powers to central brain systems (something that would be akin to the avowed ‘homunculus’ in 
psychological explanation), it seems implausible that central brain systems have the capacity for 
efficiently computing NP-hard problems.   

The theoretical obstacle posed by the computational intractability of abduction is greater 
than many cognitivists seem to realize. First of all, the problem cannot be detracted by choosing 
a different formalism for modeling abduction. Oaksford and Chater (1996), for example, argued 
for a switch from non-monotonic logics to Bayesianism for modeling human abductive inference 
based on the computational intractability of the former. But such a move seems in vein given that 
Bayesian models of abduction are as computationally intractable (if not more than) all other 
existing models of abductive inference---such as, non-monotonic logics, covering models, 
constraint satisfaction models, and neural network models (Abdelbar & Hedetniemi, 1998; Bruck 
& Goodman, 1990; Bylander et al, 1991; Cooper, 1990; Thagard & Verbeurt, 1998; Thagard, 
2000). 

Second, the computational intractability problem also cannot be detracted by loosening 
the quality of the abductions. It is often suggested in the cognitive science literature that 
computationally intractable problems can be approximately computed efficiently (e.g., Chater, 
Oaksford, Nakisa, & Redington, 2003; Chater, Tenenbaum, & Yuile, 2006, Love, 2000), but this 
seems at best a misrepresentation of the state of the art. It is well known that many NP-hard 
problems cannot be efficiently approximated (Arora, 1998; Yoa, 1992), and almost all are 
inapproximable if only a constant sized error is allowed (Garey & Johnson, 1979). Moreover, 
models of abduction are NP-hard to approximate even for quite liberal criteria of approximation 
(Abdelbar & Hedetniemi, 1998; Roth, 1991), and where claims are made of polynomial-time 
‘approximation’ algorithms for abduction problems (e.g., Thagard & Verbeurgt, 1998) those 
algorithms do not approximate the required solution itself (i.e., the truth assignment), but instead 
its associated value, e.g., coherence or probability (see Hamilton et al., 2007, for a discussion). 

Third, computationally intractable problems cannot be rendered tractable by a divide and 
conquer strategy. For example, in the cognitive science literature it is sometimes suggested that 
the computationally intractability problem plaguing a single, central abduction / planning system 
can be overcome by postulating the existence of a large set of ‘modules’ each being able to 
efficiently update beliefs, or make plans, for a specific domain of situations or ‘contexts’ (cf. the 
‘massive modularity’ of Cosmides and Tooby, 1994, the ‘toolbox of heuristics’ of Todd and 
Gigerenzer, 1999, and the ‘multiple models’ of Wolpert and Ghahramani, 2000; see also 
Carruthers (2003a/b) and Sperber (2002) for discussions). If each such module implements a 
tractable computation, then it may seem that the whole system could tractably update our beliefs, 
and make plans, in all psychologically relevant contexts. However, even granting the number of 
required modules could be efficiently stored in the human brain (think of the potentially quite 
large number of possible contexts), a modular system cannot tractably compute any 
computationally intractable problem at risk of contradiction. If a problem were to be tractably 
computable by a modular system, then this would imply that that problem does not belong to the 
class of computationally intractable problems.3 If a problem is intractable, as seems to be the 
case for domain-general abduction, then no algorithm for tractably computing it can exist.   

                                                 
3 It would also mean that Q is tractably computable by a single non-modular system, because a non-modular system 
could tractably compute Q by (i) simulating the process by which the modular system selects the right module for 
the current context, and (ii) simulating the workings of the selected module. If both steps are tractable for the 
modular system, then the simulation is also tractable for the non-modular system. 



Much more can be said about the topic of computational intractability, its proposed 
solutions and their failings (see, e.g., van Rooij, in press), but for our purposes the point is 
merely this: The computational intractability problem is not going to go away for cognitivist 
models of planning and action control. The only way to achieve tractability of control, so it 
seems, is to assign an easier computational task to control processes than domain-general 
abductive inference, and in effect make the explanation of success of behavior to a large extent 
independent of the success of our abductions of beliefs about the world. The question, of course, 
is how the successfulness of behavior in the world can be explained if not by an appeal to a 
control system that plans on the basis of beliefs about the world. In the next section will put forth 
an argument for why it may be plausible to assume that organisms with control structures that 
maintain no internal model of the world can nevertheless behave successfully and adaptively in 
the world. Moreover, we argue, that such organisms may very well come to inhabit the most 
complex or challenging worlds that their control structures can successfully handle, or 
approximations thereof.  

 
3. Ignorantly successful in a user-friendly environment 

No animal is behaviorally adapted to react in appropriate ways to all possible changes of all 
possible variables existing in the ‘world out there’. Consider an ant, stamped upon by a casual 
pedestrian: this poor creature 'has no idea’ what hit him, and, more importantly, it has no means 
whatsoever to counteract such occasions. The ant is either extremely lucky, or it dies. From the 
perspective of the ant, a passing pedestrian is a true Deus ex Machina. Still ants are successful 
creatures. On the whole, every organism seems to get by pretty successfully, using the behavioral 
capacities it possesses. So how is it that organisms can be successful in a complex and 
unpredictable world? The speculative idea we pursue in this section is based on the assumption 
that the local, or personal environment in which an intelligent creature is situated is not formed 
independent from the organism’s own behavioral and evolutionary history. “Environments” are 
not simply pre-given, arising out of nothing. Organisms do not wake up to find themselves in 
completely new, unfamiliar, and hostile worlds. In a confined region of the global chaos we call 
reality, each creature ‘makes a living’, based on its sensory capacities and its behavioral 
repertoire, thereby creating its own Umwelt (Von Uexkull, 1934; Ziemke & Sharkey, 2001). In 
the words of Varela, Thompson and Rosch (1991) one might say that the organism, by its own 
actions, brings forth, or enacts, a world. In yet other words, organisms and their environments 
can be said to co-evolve (Chiel & Beer,1997; Deacon, 1997), or as Mead (1934) put it: 
  

"The sort of environment that can exist for the organism, then, is one that the organism in 
some sense determines. If in the development of the form there is an increase in the 
diversity of sensitivity there will be an increase in the responses of the organism to its 
environment, that is the organism will have a correspondingly larger environment.(…) In 
this sense it selects and picks out what constitutes its environment. It selects that to which it 
responds and makes use of it for its own purposes, purposes involved in its life-processes. 
It utilises the earth on which it treads and through which it burrows, and the trees that it 
climbs; but only when it is sensitive to them." (Mead, 1934, 245, quoted in Jarvilehto, 
1999). 

 
Our suggestion is that it is this interdependency between organisms and their environments that 
makes these environments generally facilitative to interaction. It is this intimate ‘fit’, we 
speculate, which ensures that actions, once taken, will generally prove to be successful/adaptive. 



Moreover, under most, ordinary, circumstances, inappropriate actions will generally prove to be 
repairable: we are allowed to make mistakes in our Umwelt, so that we may even learn 
something along the way. For example, think of the way in which parents provide safe 
environments for their offspring to explore and learn in. In other words, the naturally emerging 
embodied embedded behaviors of an organism generally tend to be quite effective for the 
survival of that organism in that Umwelt. Consider that most ants live their lives successfully, 
without knowing about, nor having had to deal with, stamping feet. Most ants are ignorantly 
successful. And so, we claim, are we humans. 

An ignorantly successful interaction with a by and large user-friendly environment might 
very well be an apt description of what takes place during ongoing behaviors of individual 
human beings in daily life. As an illustration of this, consider a situation in which a human being 
is in need of ‘locating an often used object in the kitchen during cooking’, e.g. a milk-beater. In 
cognitivist theory this is a problem of search, involving not only inspecting the visual scene, but 
also memory, as when we try to remember (or form hypotheses about) where we may have put 
the object. In practice, however, memory search is often not needed. In many situations the 
structure of the environment naturally constrains the kind of actions that can be performed, and 
one may question whether the brain needs to search through mental models and memory stores at 
all. For instance, in a kitchen, some drawers and shelves are more easily reached by the agent 
than others. Such drawers and shelves will be among the first to be inspected, that is, if the 
natural flow of body-world interaction is followed. Note that this is a physical constraint that 
exists because of the bodily characteristics of the person and the physical organization of the 
kitchen, and independent from any potential deliberation in the person’s mind. Chances are that a 
daily used object like a milk-beater is also put on one of those easily reachable shelves or 
drawers, perhaps even by the person herself. So when we experience ourselves doing a 
seemingly random inspection of drawers and shelves instead of a rational search, we are actually 
being constrained both by body and world, leading to higher chances of behavioral success even 
if these actions in isolation would seem to be senseless or random. The example illustrates how 
success of behavior can follow from the ‘fit’ between the person’s behaviors and the local 
environment. Where you can put objects most easily is also where you can look for them most 
easily, which in turn is where you have a high chance of finding the object that you where 
looking for. 

Environments can thus be ‘user-friendly’, not unlike a well-designed interface. An 
agent’s natural tendencies for action can tend to match the environmental structure in ways that 
turn out to be functional with respect to the agent’s needs. This would be the case, for example, 
when the agent’s behavioral repertoire and the structure of the situated environment co-
developed with one another4. In such a process of co-evolution organism and situated 
environment (Umwelt) are mutually affected by one another. Evolution is sometimes seen as a 
one-way effect in which an animal adapts to changes in its environment. What is less often 
recognized is the reversed process, in which changes in an organism’s structure might also lead 
to changes in the (situated) environment. Have polar-bears turned white because their 
environment became snowy? Or did the whiter-colored polar-bears use their skin-colour to their 
advantage, leading them to travel ever further up north into snowy territory? Or consider the 
human eye. From a traditional perspective, the eye would be viewed as the animal’s solution to 

                                                 
4 Incidentally, such a fit between organism and environment might, at least for human beings, emerge not only for a 
species on an evolutionary timescale but also, for an individual, from the ongoing interaction with the environment 
during his lifetime. 



an environmental problem. An evolutionary explanation might begin by stating that, at some 
point, due to a change in the environment, the ability to detect the visible spectrum of light 
became relevant for survival (where previously it had not been). How to acquire the capacity to 
use light can be seen as the problem. Selection forces then procure a sensor that is able to detect 
light, in humans the eye. This is the solution. We think that such a view need not be correct. For 
one thing, it has been argued that sometimes structural properties of organisms emerge and 
persist (over numerous generations) long before the property in question becomes adaptive 
(Goodwin, 1994). In other words, evolution creates exaptations (Gould & Vrba, 1982; Gould, 
1991), which in a way can be seen as ‘solutions’ for problems that don’t even exist (yet). A 
perhaps even more fundamental question is why the visible spectrum of light became relevant for 
survival in the first place. In many situations, it is not unreasonable to suggest that such aspects 
of the environment co-evolve with changes in the behavioral repertoire of the organism itself. 
Consider, as a hypothetical example, a blind creature that has developed the means to move 
significantly faster than before. Now speed may be a useful adaptation, but it also presents 
dangers, such as a fatal collision. For this animal, sensitivity to distal (e.g. visual) rather than 
proximal sources now becomes adaptive, whereas its slow ancestor would have had no use for it. 
Hence, once the eye has evolved, the system relaxes into a stable relation between animal and 
environment, in which its new eyes team up nicely with its fast legs. But that is not the end of it. 
Once there is vision, the environment ‘broadens up’ once more. A ‘visual environment’ might 
help the animal in dealing with the dangers of going fast (the original ‘problem’), but it also 
creates new challenges. As Lock (2003, p.105) states: 
 

“Simpler organisms can handle their simpler worlds by less complex means, but once 
evolution has come up with the where-withal for simpler organisms to handle their 
somewhat simpler selection problems, then it effectively creates for itself a new problem. 
That is, as organisms find ways of sustaining themselves, they create new potential sources 
of energy that can be preyed upon. And as new sources of energy, they present more 
complex worlds for their possible prey to operate in." 

 
That is, when compared to its blind ancestors, the eyed creature faces some challenges of its 
own: How to cross that distant river, how to climb that far-away tree, how to fight that 
approaching competitor, and so on. The idea is thus that behavioral capacities co-evolve with 
changes in the organism’s environment in a corresponding manner. New capacities enable the 
animal to be adaptive in that new environment. But the new situation has both ‘advantages’ and 
‘disadvantages’. The advantage is that the new extension to the behavioral repertoire helps the 
organism in dealing ‘better’ with some aspects of the environment than before. On the other 
hand, the disadvantage is that the animal has now projected itself into a new environment and 
this environment poses new cognitive challenges as compared to the previous situation. The 
development of new capacities, seen as a means to resolve some tension between organism and 
environment, can therefore also be seen as generating new challenges as well: new kinds of 
behaviors lead to an extension of the environment, which poses new demands. Therefore, instead 
of saying that animals become more adaptive with each step in evolution, we would rather 
formulate it as animals becoming equally adaptive again and again, at each new critical 
equilibrium (Goodson, 2003), albeit in a broader range of (more complex) environments. For a 
related view of the co-evolution of psycho-linguistic capacities and socio-linguistic 
environments, see Deacon (1997). 



In sum, we propose that the local, situated environments in which organisms are 
embedded are relatively comfortable and safe environments. Organisms and their environments 
co-develop, making environments generally ‘user-friendly’ life-worlds. We argued that success 
of behavior follows from the ‘fit’ between the embodied embedded repertoire of the organism 
and the structure of the situated environment. Next, we showed how new capacities in effect 
broaden up the situated environment, which has both upsides as well as downsides: new 
possibilities for action and perception may be useful in dealing with certain existing challenges, 
but they also generate new challenges as well.  
 
4. Generating research questions for cognitive neuroscience and robotics 
As indicated in the introduction, EEC it would be highly desirable for EEC to formulate concrete 
research questions that can provide the basis for research in cognitive neuroscience. A first 
apparent obstacle is that in the current neuroimaging methodology the movements of subjects 
have to be restricted almost completely in order to reduce noise. This prevents anything like the 
occurrence of the natural organism-environment fit, discussed above, that forms the basis for the 
view on brain control to be outlined in this section. Another problem is that the perspective of 
EEC tends to get formulated at a rather abstract, philosophical or even generally descriptive, 
level. Hence, most statements (including our own so far) about the value of EEC tend to be far 
removed from concrete empirical research questions in cognitive neuroscience. A third problem 
is that existing theories and models of EEC commonly deal with relatively low-level organism-
environment interactions, usually as far removed from the complexity of daily life behaviors as 
the research of the often scorned cognitivist perspective (hence, e.g., Clark & Toribio’s (1994) 
challenge to deal with ‘representation-hungry’ cases of behavior; see also van Rooij et al. 
(2002)). These problems are indeed formidable and cannot be solved within one chapter. 
However, we do feel that there are enough ingredients available, from the area of robotics as well 
as from neuroscience, in order to at least tentatively sketch a view that might lend itself to 
empirical testing. In this section, then, we will try to work our way from a metaphorical 
depiction of high-level brain functioning during common sense behavior to its consequences for 
empirical research in robotics and cognitive neuroscience. 

Brooks (1999, p.81) suggested that it is fundamental for an organism to have “the ability 
to move around in a dynamic environment sensing the surroundings to a degree sufficient to 
achieve the necessary maintenance of life and reproduction.” He modeled this capacity by means 
of his well-known layered architecture: reactive creatures consisting of behavioral layers that 
each instantiate a direct input-output coupling. According to Brooks, it is a major advantage of 
his approach that no intermediate (in between input and output) world modeling, planning and 
decision making takes place. Instead, layers compete for dominance on the basis of the input 
received by the system. From this perspective a creature can be seen as a repertoire of behavioral 
dispositions and the environment selects from it. A creature is inclined, in virtue of its bodily 
possibilities and its history of interactions with its environment, to respond to stimuli in specific 
ways without high-level thought or planning. Perception, action and world are structurally 
coupled to form a temporarily stable behavioral pattern that is functional with respect to the task. 
We call this structural coupling a ‘basic interaction cycle’. A creature carries its set of potential 
behaviors with it across contexts, and if these contexts fit with the creatures’ behavioral 
repertoire (as well may the case, as indicated in Section 3) its overall conduct may be satisfactory 
for a long time.  



 The fit between environment and behavioral repertoire might to a large extent underlie 
the relative success of most of our common sense behavior in daily life, such as having a drink in 
a bar, going home, or making dinner, etc. Common sense behavior actually consists in quite 
complicated sequences of behavior, even though it does not require the type of planning and 
decision making characteristic of say playing a chess game or buying a house. Instead we seem 
to operate more or less on ‘autopilot’; our behavior flows naturally out of the stimulations from 
the environment.  

In the reactive robots of the early 90’s, the number of distinct behavioral layers was 
typically small and the precedence relations between them were set beforehand and were 
hardwired into the system. This resulted in creatures not unlike the E. coli discussed earlier. 
However, once the set of basic behavioral capacities of a creature become larger, and its 
sensorimotor capacities quite rich, a more flexible and integrated way of setting up behavioral 
layers and their interrelations becomes necessary. To illustrate, consider the following: If an 
organism has n basic behavioral layers available, then it could come to display, in principle, as 
many as 2n distinct behavioral patterns by simply turning “on” some layers and turning others 
“off”. With even as few as 32 layers this could result in as many as 232 = 1010 distinct potential 
behaviors, which would, to quote Wolpert and Kawato, be “sufficient for a new behavior for 
every second of one’s life” (1998, p. 1318). If additionally quantitative adjustments are possible-
--i.e., states in between “on” and “off”, possibly implementing dominance relations---then the 
same organism would have the capacity for displaying an even larger number of possible 
behaviors. To help regulating the selection (or dominance relations) of behavioral layers, we 
suggest, is the main task of the high-level control function of the brain. In other words, instead of 
interpreting the brain’s control system as the driver or pilot of the body, we see it as a traffic 
regulator (van Dijk et al., in press)---it is (merely, but importantly) assisting the environment 
driven selection from the behavioral repertoire. Notably, we do not propose that this traffic 
facilitation is achieved by computing the best (or even, a good enough) behavior from the set of 
possible behaviors given the current context (see, e.g., Körding & Wolpert, 2007; Wolpert. & 
Ghahramani, 2000; Wolpert & Kawato, 1998), because doing so would lead us right back to the 
computational intractability problem discussed in Section 2. Therefore, contrary to the traditional 
view of the control system as involved in world modeling, planning and decision making, we 
would like to hypothesize that the control function of the brain works in a, dare we say, more 
‘lazy’ way.  

There may be several ways in which one could conceive of a ‘lazy’ control system. We 
will describe just one such possibility here, drawing on an analogy with the control system of the 
E coli. Recall that the E coli can perform two modes of behaviors (tumbling or swimming), and 
the probability with which it switches between these two modes depends on chemicals (food or 
poison) it picks up from the environment. In a similar vein, our lazy control system may work by 
stochastically sampling from the set of behavioral options with a non-uniform bias, i.e., not 
every behavioral option is equally likely to be selected. The bias can be represented by a 
probability distribution P over the set of possible behaviors (e.g., combinations of “on” and “off” 
layers and/or combinations of dominance relations), where P(t, i) would denote the probability 
that behavioral disposition i is sampled at time t. Here, the bias P may be fixed, but more likely it 
is variable over time, e.g., as a function of experience and the organism’s internal (homeostatic) 
milieu. This proposal raises several (more or less) concrete questions for cognitive neuroscience: 
How is P implemented in the human brain? What is the shape of the distribution P for humans? 
Is P fixed or variable? If P is variable, what is it a function of? If P is a function of experience 



and/or homeostatic states, how do these factors contribute to changes in the distribution P over 
time, both descriptively and mechanically?  

It seems to us that these questions can in principle be researched using (existing and 
developing) cognitive neuroscientific methods. Consider for instance the question of how such a 
lazy control system could be implemented in the brain. A concept that could help to elucidate 
how the brain might be involved in the temporary creation of a relevant behavioral repertoire is 
Edelman’s (1992; Edelman & Tononi, 2000) notion of functional clusters. A functional cluster 
consists of “elements within a neural system that strongly interact among themselves but interact 
much less strongly with the rest of the system” for a certain amount of time (Edelman & Tononi, 
2000, p.120, see also pp. 184--185). Several neuronal groups form a strongly integrated assembly 
for brief periods (most likely to be measured in the range of 50-100 milliseconds). In other 
words, functional clusters exist only temporarily, consist of various contributing areas that are 
recruited for the specific occasion and are changeable over contexts. A similar concept, that of 
neuronal assemblies, is discussed by Chakraborty, Sandberg & Greenfield (2007, p.491):  
 

“Large-scale, coherent, but highly transient networks of neurons, ‘neuronal assemblies’, 
operate over a sub-second time frame. Such assemblies of brain cells need not necessarily 
respect well-defined anatomical compartmentalisation, but represent an intermediate 
level of brain organisation” 

 
Functional clusters or neuronal assemblies can be assumed to implement short-lived changes in 
the organisms behavioral dispositions.  In that case, the nature of the postulated bias P with 
which behavior dispositions are sampled could be experimentally investigated by studying the 
stochastic dependencies between different possible functional clusterings over time. We may 
observe that of the many different ways in which neural systems may cluster in principle, only 
relatively few cluster types happen with high frequency in practice over long periods of time 
under constant conditions. If so, this would suggests that P is relatively high peaked, 
implementing a stronger bias than when P would be flat throughout. Also, the hypothesis of non-
constancy of P could be investigated by trying to fit a constant model to the observed stochastic 
dependencies and see if it fails to account for the observations. Following this, different Ps, each 
a different hypothesized function of internal conditions and environmental factors, can be 
formulated and tested for their ability to explain observed stochastic dependencies of clustering 
over time and under variable conditions. Of particular interest and relevance for the latter type of 
experimental investigation would be to consider internal homeostatic states as variables for the 
function P, since by analogy with the E coli we hypothesize that much (if not all) of the bias in 
our sampling of behavioral dispositions is a function of such states.  

Our proposal of a ‘lazy’ traffic facilitator control system also raises a question that we 
think may be answered using robotic simulation: How can humans, or any other complex 
organism, come to have a bias P that works well enough for the organism to get around the 
world on ‘auto-pilot’, without giving the selection of behaviors much thought, most of the time? 
We think that the answer lies in the type of co-evolution of control systems (in this case the bias 
P) with the life world of the organism, as described in Section 3. This explanation may be tested, 
or at least a proof of concept may be given, using robotic simulation. For example, a robotic 
simulation could start by endowing robotic systems with a ‘lazy’ control system P0 and letting it 
evolve for n generations through P1, P2, … Pn in interaction with its life world. By systematically 
manipulating (i) the set of layers available to the robot, (ii) the nature of the initial P0, (iii) the 



way each Pi depends on internal and external conditions of life world i, (iv) aspects of the 
environment, and (v) the nature of the evolution process, one could get a better understanding of 
how these factors (i)–(v) interrelate. Hypotheses about the interrelation generated in the 
simulation process may serve as hypotheses for how these factors relate for (higher) organisms. 
To the extent that such hypotheses pertain to factors (i) – (iv) for animal and human brains, 
bodies and environments they can again be subjected to cognitive neuroscience testing.  

Although we realize that our suggestions for experimentation in cognitive neuroscience 
and robotics need to be worked out more concretely in order to result in actual simulations and 
experiments, we do feel that they indicate that the traffic facilitation metaphor and the general 
view of EEC underlying it are not too far removed from empirical investigations.  
 
5. Conclusion 
Compared to for instance the E. coli, humans have an exceptionally rich behavioral repertoire 
that gets applied with great flexibility and sensitivity to environmental conditions. We argued 
against the received view in cognitive neuroscience, i.e. that cognitive systems can display this 
behavior only by maintaining mental representations of the world on the basis of which plans are 
made in order to achieve specific goals. We explained how such a position leads to the problem 
of computational intractability. We proposed that effective control may be possible for a more 
tractable, even ‘lazy’, control system that does not maintain any internal models of the world, 
assuming that such ‘lazy’ control systems co-evolve with the bodies and environments of 
organisms. This co-evolution ensures a certain degree of “fit” between the control system of an 
organism and its life world.  The ‘lazy’ control mechanism that we postulated raises several 
interesting questions, each of which we think is amenable to experimental investigation using 
brain measuring methods.  Also, our claim that ‘lazy’ control systems can plausible evolve, even 
for quite complex organisms in quite complex environments, can be directly investigated using 
the methods of robotic simulation. In all, we hope to have shown that an EEC view on the 
higher-level control functions of the brain is not only possible, but that it can be made precise 
enough to suggest experimental investigation in cognitive neuroscience, as well as robotics. 
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