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Abstract
An important aspect of human sociality is our ability to under-
stand the actions of others as being goal-directed. Recently,
the now classic rational approach to explaining this ability has
been given a formal incarnation in the Bayesian Inverse Plan-
ning (BIP) model of Baker, Saxe, and Tenenbaum (2009). The
BIP model enjoys considerable empirical support when tested
on ‘toy domains’. Yet, like many Bayesian models of cogni-
tion, it faces the charge of computational intractability: i.e., the
computations that the model postulates may be too resource
demanding for the model to be scalable to domains of real-
world complexity. In this paper, we investigate ways in which
the BIP model can possibly parry the charge. We will show
that there are specific conditions under which the computations
postulated by the model are tractable, despite the model being
rational and Bayesian.
Keywords: goal inference, inverse planning, computational
complexity, intractability, NP-hard, fixed-parameter tractabil-
ity

Introduction
Imagine a mother and her son, sitting in the same room, when
she hears his stomach rumble. She sees her son get up, walk
to the kitchen and start searching for something. At first he
finds a sour apple, which he discards in search of something
else. Then the mother sees her son finding a delicious candy
bar. When he starts to eat it she realizes her son is trying to
still his hunger and at the same time wanting to eat some-
thing sweet. In this scenario, the son goes through a pro-
cess of planning, choosing his actions to achieve his goals.
The mother observes the actions of her son and based on her
observations infers the goals she thinks her son is trying to
achieve. This process is called goal inference.

In line with a long tradition of explaining the human abil-
ity to understand actions as goal-oriented (Dennett, 1987;
Charniak & Goldman, 1991; Csibra, Gergely, Biró, Koós,
& Brockbank, 1999; Cuijpers, Schie, Koppen, Erlhagen, &
Bekkering, 2006), Baker, Saxe, and Tenenbaum (2009) have
proposed that goal inference can be seen as a form of inverse
planning, just as vision is a form of inverse graphics. Baker et
al. go beyond existing psychological approaches by providing
a precise formalization of ‘inverse planning’ in the form of a
Bayesian inference model. We will refer to this model as the
BIP model of goal inference (where BIP stands for Bayesian
Inverse Planning). The BIP model has been tested in several
experiments, and Baker et al. (2007, 2009) observed that it
can account for the dynamics of goal inferences made by hu-
man participants in several different experimental settings.

According to the BIP model, observers assume that actors
are ‘rational’ in the sense that they tend to adopt those actions

that best achieve their goals. Given the assumption of ratio-
nality, and (probabilistic) knowledge of the world and how
actions are affected by it, one can compute the probability
that an agent performs an action given its goals, denoted

P(action | goal, environment) (1)

When observing a given action, the probability in (1) can be
inverted using Bayes’ rule to compute the probability of a
given goal:

P(goal | action, environment) ∝

P(action | goal, environment)P(goal | environment) (2)

Of all the possible goals that an observer can (or does)
entertain, the goal that maximizes the probability in (2) best
explains why the observed action was performed and is the
goal that is inferred.1

Given that the BIP model belongs to the class of (ratio-
nal) Bayesian inference models—and Bayesian inference is
known to be intractable if no additional constraints are im-
posed (e.g. Chater, Tenenbaum, and Yuille (2006); see also
Kwisthout (2009))—the question arises if the computations
that it postulates can scale to situations of everyday complex-
ity. As Gigerenzer and colleagues put it:

The computations postulated by a model of cognition
need to be tractable in the real world in which people
live, not only in the small world of an experiment with
only a few cues. This eliminates NP-hard models that
lead to computational explosion, such as probabilistic
inference using Bayesian belief networks . . . including
its approximations. (Gigerenzer, Hoffrage, and Gold-
stein (2008) p. 236)

Although we share the stance of Gigerenzer et al. (2008) to-
wards intractable (NP-hard) models of cognition, we are not
as pessimistic about the viability of Bayesian models. In our
view, the key to understanding the computational feasibil-
ity of a Bayesian (or any cognitive) model lies in studying
domain-specific constraints that hold in the model’s domain
of application (e.g., action understanding or vision) and in-
vestigating if and how such constraints may render the com-
putations postulated by the model tractable for its domain,

1In other words, in the BIP model, goal inference is conceptu-
alized as a form of probabilistic inference to the best explanation,
a.k.a. abduction (e.g. Charniak and Shimony (1990)).



despite the intractability of those computations in general. In
this paper we set out to perform such an investigation for the
BIP model of goal inference.2

The remainder of this paper is organized as follows. We
first introduce specific versions of the BIP model that Baker
et al. (2007, 2009) formulated to account for their experimen-
tal data and observe that these versions are tractable but also
too specific. We then propose a generalized model that breaks
some implausible constraints in the original models. After
this we introduce a method that we use to analyze the com-
putational (in)tractability of the generalized model. We then
give an overview of the (in)tractability results, and discuss
their implications for Bayesian models of goal inference and
for dealing with the intractability of Bayesian models in gen-
eral.

Computational Models
Baker et al. (2009) propose three different versions of
Bayesian Inverse Planning (M1, M2 and M3) to account
for data gathered in several maze experiments. These
two-dimensional maze experiments, based on earlier work
(Gergely, Nádasdy, Csibra, & Biró, 1995; Schultz et al.,
2003), were designed to assess subjects’ inferences about the
goals of a planning agent. Subjects were shown videos of
agents moving in a maze, such as those in Fig. 1, and un-
der different timing and information conditions had to infer
the goal of the agent. In these experiments changes in lo-
cation were considered actions and the location of the agent
is considered its state. Specific locations (A, B and C) were
possible goals.

All three models M1–3 can be seen as special cases of a
more general BIP model, as depicted in Fig. 2, in which there
is a goal structure template G that can encode different types
of goal structures.3 The simplest goal structure is present in
M1 where the observer assumes that the agent has one single
goal that does not change over time (Fig. 3(a)). In M2 the
model allows the observer to infer the agent has a different
goal at any given time (Fig. 3(b)). This models the ability
of people to infer changes in an agent’s goal over time. For
instance, if someone is inspecting the contents of her fridge,
you may infer she wishes to cook dinner, but when she closes
the fridge, puts on her coat, and leaves the house, you may

2The authors are well aware of common claims of approxima-
bility of Bayesian inferences, and that approximation is generally
believed to provide a way to overcome the intractability of Bayesian
models. In this paper, we will depart from this standard viewpoint
for two reasons. First, the claims of approximability seem at worst
incorrect and at best unfounded; for instance it is known that approx-
imating the most probable explanation in a Bayesian network is itself
also intractable (Abdelbar & Hedetniemi, 1998). Second, we believe
that there are other, better ways of dealing with the intractability of
cognitive models, viz., by identifying model constraints that render
otherwise intractable models tractable (van Rooij, 2008).

3In the original BIP models (M1, M2 and M3) Baker et al. used
additional parameters to model the effect of noise (β), the proba-
bility of changing a goal in M2 (γ) and the probability of having
sub-goals in M3 (κ) to fit the model to the experimental data. As
these parameters are assumed constants, they can be safely ignored
for the purposes of our analyses.
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Figure 1: An illustration of the types of stimuli used in the
maze experiments of Baker et al. (2009). Participants observe
an agent (and the trail history as memory aid) move inside the
maze, and are asked to judge which of the three possible goals
(A, B or C) is most likely the agent’s goal. Here (a) depicts an
early judgement point where both human participants and the
model infer B as most likely goal. (b) depicts a later judgment
point where both human participants and the model infer A as
most likely goal. (c) A possible BIP model (in this case M1)
for the early judgement point.

infer she is going to eat out. Finally, in M3 the goal struc-
ture encodes hierarchical goals (Fig. 3(c)), such that the ob-
server can infer changes in the agent’s sub-goals, which are
subserving a common high-level goal. For instance, when
you see someone gathering kitchen utensils, each individual
gathering can be a sub-goal but the high-level goal is to cook
dinner.

Even though inference in Bayesian networks is hard in gen-
eral, the BIP models proposed by Baker et al. are tractable.4

This tractability is in some sense an artifact of the simplified
experiments for which these models were designed. In the
experiments an agent never has more than one (high-level)
goal at any given time. This property does not seem to hold
in general, however. Reconsider, for instance, the scenario
in our opening paragraph. There the mother infers that the
son wants to satisfy his hunger and he wants to eat some-
thing sweet. This type of goal inference where multiple goals
are inferred at the same time cannot be modelled by M1, M2
or M3. To accomodate for this observation, we propose an
extension called MULTIPLE GOALS BIP or MGBIP. Fig. 4

4For the formal proof of these claims we refer the reader to the
Supplementary materials available online at
http://tinyurl.com/suppl2010
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Figure 2: A graphical representation of the dynamic Bayesian
network that describes the general form of BIP. Nodes rep-
resent variables, for example state node St is a variable and it
can assume values corresponding to the state of the agent at
time t. Arrows represent dependencies, for example the prob-
ability that a state St+1 has a certain value depends on the
previous state St and previous action At . States and actions
are observed, i.e. the values of the states and action variables
are given as input to the model. Given these observations the
most probable combination of values for the goal variables
in G. Finally, shaded nodes are observed and their values
considered part of the input of the model. Examples of the
possible contents of G are illustrated in Fig. 3

illustrates the dynamic Bayesian network of MGBIP.5

Because it is more general, MGBIP has wider range of ap-
plicability than M1–3. The introduced generality also comes
at a cost: Whereas M1, M2 and M3 are tractable, MGBIP is
intractable, in the sense that there are no tractable (more pre-
cisely: polynomial time) algorithms that can implement this
model.4 Even so, in real-world situations humans are often
able to quickly infer an agent is pursuing multiple simultane-
ous goals. This suggests that, if MGBIP is to be psychologi-
cally plausible, we need to assume that some domain-specific
constraints apply in those situations that render the goal infer-
ences tractable under the MGBIP model (despite the model
being intractable without such additional constraints). The
next section describes how we set out to indentify such pos-
sible constraints.

Identifying Sources of Intractability
In order to find constraints on the input domain of MG-
BIP that render the (restricted) model tractable, we adopt a
method for identifying sources of intractability as described
in (van Rooij, Evans, Müller, Gedge, & Wareham, 2008) (see
also van Rooij and Wareham (2008)). The method works as
follows.

5Baker et al. (2009) also note, that the simplified models M1–
3 unlikely suffice to model human action understanding in general
and they argue that the models will need to be extended in various
directions if they are to apply to real-world scenarios. Our extension
can be seen as one such possible direction in which to extend the
model. Other directions of extension are possible as well (see e.g.
(Ullman, Baker, Macindoe, Goodman, & Tenenbaum, 2009).
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Figure 3: Graphical representation of G for M1, M2 and M3.
In M1 (a) goals are modeled by a single static goal. All ac-
tions are dependent on this goal. In M2 (b) goals can change
over time. Actions at time t are dependent on goals at time t.
In M3 (c) goals can consist of multiple subgoals. Actions at
time t are dependent on subgoals at time t.

First, one identifies a set of model parameters K =
{k1,k2, ...,km} in the model M under study (for us, MGBIP).
Then one tests if it is possible to solve M in a time that can
grow excessively fast (more precisely: exponential or worse)
as a function of the elements in K yet slowly (polynomial)
in the size of the input.6 If this is the case, then M is said
to be fixed-parameter (fp-) tractable for parameter set K, and
otherwise it is said to be fp-intractable for K.

Observe that if a parameter set K is found for which M
is fp-tractable then the problem M can be solved quite effi-
ciently, even for large inputs, provided only that the members

6More formally, this would be a time on the order of
f (k1,k2, ...,km)nc, where f is an arbitrary computable function, n
is a measure of the overall input size, and c is a constant.
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Figure 4: Graphical representation of the dynamic Bayesian
network that describes MULTIPLE GOALS BIP (MGBIP).

of K are relatively small. In this sense the “unbounded” na-
ture of K can be seen as a reason for the intractability of M.
Therefore we call K a source of intractability of M.

The MGBIP model has several natural parameters, each of
them a candidate source of intractability. In this paper we
consider, five such parameters (see Table 1 for an overview
and Fig. 5 for an illustration).

First consider parameters T , denoting the maximum num-
ber of observations the observer makes, and 1/T , denoting
the poverty of observations. Note that T is small if few ob-
servations are made, and 1/T is small if many observations
are made. Based on intuition one might think, the less infor-
mation we have, the harder it is to understand actions. This
makes 1/T a candidate source of intractability. However as T
grows, so does the size of the network and the necessary num-
ber of calculations and this also makes T a likely candidate
source of intractability.

Second, parameter k is the maximum number of multi-
ple goals that (the observer assumes) the agent can pursue.
This parameter is also an excellent candidate source of in-
tractability, because large k’s introduce an exponential num-
ber of combinations of possible multiple goals leading to a
combinatorial explosion.

Third, the parameter g is the maximum number of goal val-
ues per goal variable. As the number of possible values that
a goal variable can take increases the necessary number of
calculations, also g is a candidate source of intractability.

Finally, the parameter 1− p measures how far the most
likely goal inference is from being completely certain (here p
is the probability of the most likely explanation). If 1− p is
small, this means that the most likely explanation is much
more likely than any competitor explanation. If the value
is large, it means that the most likely explanation has many
competitor explanations of non-negligable probability (see
e.g. Table 2). It seems intuitive that finding the most likely
explanation is easier in the former case than in the latter case,
and therefore also 1− p can be considered a candidate source
of intractability.

Table 1: A list of parameters with short descriptions and their
values based on the running example.

parameter description value
T maximum observations 6

1/T maximum observation poverty 1/6
k maximum # multiple goals 2
g maximum # goal values 3

1− p distance from certainty 0.4
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Figure 5: Illustration of the Bayesian network and different
parameters of the MGBIP model applied to the “mother ob-
serves son”-example.

Table 2: Example probability distribution over the combina-
tions of goal values. In this example p = 0.6 and 1− p = 0.4.

satisfy hunger desire sweet P
big hunger yes 0.05
medium hunger yes 0.05
little hunger yes 0.6
big hunger no 0.3
medium hunger no 0.0
little hunger no 0.0

We have now reviewed five parameters that—on intu-
itive grounds—may be considered candidate sources of in-
tractability in the MGBIP model. It is known, however, that
human intuitions about what makes a computation tractable
or intractable can be mistaken. Therefore it is necessary to
verify such intuitions by means of mathematical proof.

Results
In this section we present our fp-(in)tractability results for
the different parameters of the MGBIP model, and we explain
how these results bear on the question ‘which constraints ren-
der the MGBIP model tractable?’. Full details and proofs can



be found in the Supplementary materials.7

Result 1. MGBIP is fp-intractable for every subset of
parameters K ⊆ {T,1/T,g}.

Result 1 shows—contrary to the intuitions sketched in the
previous section—that none of the parameters T , 1/T and g,
nor any combination of them is a source of intractability for
MGBIP. This means that even if we assume that one or more
of these parameters is small for the domain of application,
goal inference under the MGBIP model is still intractable.

Besides this negative result (Result 1), we also have two
positive results (Results 2 and 3).

Result 2. MGBIP is fp-tractable for parameter {k}.

Result 2 confirms parameter k is a source of intractability.
This means that goal inference is tractable under the MGBIP
model provided only that we impose the constraint that (the
observer assumes that) the agent can pursue only a handful of
goals simultaneously. Importantly, this is true regardless the
size of T , 1/T , g or 1− p. This is quite a powerful result,
with great potential for explaining the speed of real-world
goal inferences within the confines of a BIP model. After
all, it seems to be a plausible constraint that real-world agents
do not (typically) pursue a large number of goals in parallel
at the same time (possibly also to keep their own planning
tractable).

Result 3. MGBIP is fp-tractable for parameter {1− p}.

Finally, Result 3 confirms parameter 1− p is a source of in-
tractability. This means that goal inference is tractable under
the MGBIP model for those inputs where the most probable
goal explanation is quite probable. Again, this is true regard-
less the size of T , 1/T , g or k. Also, this result has potential
for explaining the speed of real-world goal inferences within
the confines of a BIP model, at least for certain situations—
viz., those situations where the actions of the observed agents
unambigously suggest a particlar combination of goals. For
all we know, real world cases of speedy goal inference may
very well match exactly these situations. Whether or not this
is indeed the case is an empirical question which can be ad-
dressed by testing the speed of human goal inference for dif-
ferent degrees of goal ambiguity.

Discussion
We have analyzed the computational resource requirements
of the Inverse Bayesian Planning (BIP) model of goal infer-
ence in order to study its viability as a model of inferences
made by resource-bounded minds as our own. We generated
several interesting theoretical findings. First, we observed
that the three specialized models—M1, M2, and M3—that
were developed by Baker et al. (2007, 2009) to account
for their experimental data in maze experiments are in fact
computationally tractable. This means that these specialized

7See http://tinyurl.com/suppl2010

Bayesian models do not seem to make unrealistic assump-
tions about the computational powers of human minds/brains,
even when operating on large networks of beliefs and obser-
vations. That being said, these models do seem to be theoret-
ically problematic for a different reason: they are too special-
ized to count as models of goal inference in general.

The over-specialization of M1, M2 and M3 is revealed
when pondering the assumptions that these models make
about the agent and the observer. For instance, all three mod-
els assume that (the observer assumes that) the agent can pur-
sue at most one goal at a time. In the real-world, however,
people often can and do act in ways so as to try and achieve
two or more goals at the same time, and observers can also
often understand what these simultanous goals are from ob-
serving the actors behave in systematic ways. Recall, for
example, the scenario from our Introduction where the son
searches the kitchen for a candy bar. Under different circum-
stances, the mother may understand that her son has the goal
to still his hunger (goal 1), to satisfy his craving for sweet
(goal 2), to see how many bars are left (goal 3), to pretend
that he did not hear his mom’s request to clean up his room
(goal 4), to bring back a candy bar for his mom (goal 5), etc.,
or any combination of these goals.

To accomodate the fact that real-world goal inference is
not restricted to one goal at a time, we defined a more gen-
eral BIP model—having M1, M2 and M3 as special cases—
which we refer to as MULTIPLE GOALS BIP, or MGBIP for
short. Complexity Analysis of the MGBIP model revealed
that it is computationally intractable (i.e., NP-hard), meaning
that this model, in all its generality, does indeed make unreal-
istic assumptions about the computational powers of human
minds/brains. We took this negative theoretical result to mean
that—if the BIP model is to account for human goal inference
at all—it must be the case that in those situations where hu-
mans are able to infer multiple simulatenous goals quickly
and effortlessly, specific constraints apply that render the in-
ferences under the MGBIP model tractable.

To investigate which types of constraints could render the
MGBIP model tractable, we used a methodology for identify-
ing sources of intractability in NP-hard computational models
(e.g. van Rooij and Wareham (2008)) and derived several the-
oretical results. For instance, we ruled out the possibility of
explaining speedy real-world (multiple) goal inferences by an
appeal to small values of T (modeling situations when goals
can be inferred using only few observations) or an appeal to
large values of T (modelling situations where a lot of infor-
mation is available on which to base a goal inference). Simi-
larly, we ruled out that the speed of such inferences could be
explained by an appeal to a small number of values per goal
node. Besides these negative theoretical results, we also had
two important positive results. For one, we established that as
long as the number of goals that can be simulatenously pur-
sued, k, is not too large then goal inference is tractable under
the MGBIP. Secondly we have shown that goal inference is
tractable under the MGBIP model whenever the probability



of the most likely combination of simultaneous goals, p, is
not too far from 1.

Whereas our negative theoretical results are useful to clar-
ify that tractability is not a property that is trivially achieved
(and often our intuitions about what constraints would render
a model tractable can be wrong; cf. van Rooij et al. (2008)),
our positive results show that a model of action understanding
can nevertheless be rational, Bayesian, and tractable. More-
over, the nature of the constraints that need to be introduced
to render the Bayesian Inverse Planning model of goal infer-
ence tractable yield new empirically testable predictions.

For instance, based on our results, we predict that human
participants will be able to make quick and accurate goal in-
ferences in the types of experimental set-ups such as used by
Baker et al. (2007) (but see also Csibra et al. (1999)), but only
if the number of simulatenous goals that the observed agents
are pursuing is not too large, or the probability of the most
likely combination of goals is not too small, or both. If both
of these contraints were to be alleviated at the same time, we
would predict that human performance on the goal inference
task would deteriorate significantly. If our prediction were
to be confirmed then this would provide corroborative sup-
port for the BIP model of goal inference, and validate that
our theoretical results help explain the tractability of human
goal inferences. If, on the other hand, the prediction were to
be disconfirmed, then this would suggest that either the BIP
model fails as an account of human goal inferences, or some
constraint other than the ones we considered also suffices to
render the BIP model tractable. The latter option may then be
one that BIP modelers may be interested in pursuing further.

In closing, we remark that our approach can be seen as
exemplary of a general strategy for dealing with intractabil-
ity in Bayesian models, whether of action understanding or
otherwise. Our approach reveals that—contrary to popular
belief—Bayesian models can possibly scale to complex, real-
world domains. To achieve this, Bayesian modelers need only
identify constraints that apply in the real-world and suffice to
render their models’ computations tractable. By restricting
Bayesian models in this way these models also become bet-
ter testable: the constraints required to guarantee tractability
of the models yield new predictions (specifically, about the
speed of inferences) that can be used to perform more strin-
gent tests of such models.
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