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Abstract. Many computational problems related to probabilistic net-
works are complete for complexity classes that have few ’real world’
complete problems. For example, the decision variant of the inference
problem (pr) is PP-complete, the map-problem is nppp-complete and
deciding whether a network is monotone in mode or distribution is co-
nppp-complete. We take a closer look at monotonicity; more specific, the
computational complexity of determining whether the values of the vari-
ables in a probabilistic network can be ordered, such that the network is
monotone. We prove that this problem – which is trivially co-nppp-hard

– is complete for the class co-npnppp in networks which allow implicit
representation.

1 Introduction

Probabilistic networks [6] (also called Bayesian or belief networks) represent a
joint probability distribution on a set of statistical variables. A probabilistic
network is often described by a directed acyclic graph and a set of conditional
probabilities. The nodes represent the statistical variables, the arcs (or lack of
them) represent (in)dependencies induced by the joint probability distribution.
Probabilistic networks are often used in decision support systems such as medical
diagnosis systems (see e.g. [2] or [11]). Apart from their relevance in practical
situations, they are interesting from a theoretical viewpoint as well.

Many problems related to probabilistic networks happen to be complete for
complexity classes that have few ’real world’ complete problems. For example,
the decision variant of the inference problem Pr (is the probability of a specific
instantiation of a variable higher than p) is PP-complete [3], where the exact
inference problem is #P-complete [7]. The problem of finding the most probable
explanation (mpe), i.e., the most likely instantiation to all variables, has an NP-
complete decision variant [8]. On the other hand, determining whether there is
an instantiation to a subset of all variables (the so-called map variables), such
that there exists an instantiation to the other variables with probability higher
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than p (the map problem) is nppp-complete [5]. Determining whether a network
is monotone (in mode or in distribution) is co-nppp-complete [10].

Monotonicity is often studied in the context of probabilistic classification,
where a network is constructed of evidence variables (like observable symptoms
and test results), non-observable intermediate variables, and one or more clas-
sification variables. Informally, the conditional probability of a variable C given
evidence variables E is monotone, if higher ordered instantiations to E always
lead to higher values of C (isotone) or always lead to lower values of C (anti-
tone). The question whether these relations are monotone is particularly relevant
during the construction and verification of the network. Often, domain experts
will declare that certain relations ought to be monotone, and the conditional
probabilities in the network should then respect these assumptions. When a vi-
olation is found, the probabilities should be reconsidered, by elicitating better
estimations or using more data to learn from.

While complexity results are known for the Monotonicity problem when
all variables have fixed orderings, no such results have been obtained yet for
the related problem where no such fixed order is presumed. Nevertheless, while
variables sometimes have a trivial ordering (e.g., always > sometimes > never),
such an ordering might be arbitrary, and determining a ’good’ ordering might
reduce the part of the network where monotonicity is violated. This problem is
interesting from a theoretical viewpoint as well. If we can determine whether
adding this extra ‘degree of freedom’ to the Monotonicity problem ‘lifts’ the
complexity of the problem into a broader class, we gain some insight in the
properties and power of these types of complexity classes.

In the remainder of this paper, some preliminaries are introduced in Section 2,
and various monotonicity problem variants and their computational complexity
are discussed in Section 3. In Section 4, we present an (alternative) proof for a
restricted version of the Monotonicity problem as presented in [10]. This proof
technique is then used in Section 5 to show that the Monotonicity problem

with no fixed orderings, is indeed complete for the class co-npnppp if we allow
a (rather broad) implicit probability representation. Finally, in Section 6 these
results are discussed and the paper is concluded.

2 Preliminaries

Before formalising the problems for which we want to determine their computa-
tional complexity, we first need to introduce some definitions and notations. Let
B = (G,Γ ) be a probabilistic or Bayesian network where Γ , the set of condi-
tional probability distributions, is composed of rational probabilities, and let Pr
be its joint probability distribution. The conditional probability distributions in
Γ can be explicit, i.e., represented with look-up tables, or implicit, i.e., repre-
sented by a polynomial time computable function. If Γ consists only of explicit
distributions then B will be denoted as an explicit network. Let Ω(V ) denote
the set of values that V ∈ V (G) can take. Vertex A is denoted as a predecessor



of B if (A,B) ∈ A(G). For a node B with predecessors A1, . . . , An, the configu-
ration template A is defined as Ω(A1)× . . .×Ω(An); a particular instantiation
of A1, . . . , An will be denoted as a configuration of A.

Monotonicity can be defined as stochastical dominance (monotone in distri-
bution) or in a modal sense (monotone in mode)1, furthermore monotonicity
can be defined on a global scale, or locally (only relations along the arcs of
the network are considered). In this paper, we discuss global monotonicity in
distribution only. We distinguish between weak and strong global monotonicity.

Definition 1 (global monotonicity [10]). Let FPr be the cumulative distri-
bution function for a node V ∈ V (G), defined by FPr(v) = Pr(V ≤ v) for all
v ∈ Ω(V ). Let C be a variable of interest (e.g., the main classifier or output
variable in the network), let E denote the set of observable variables, and let E
be the configuration template of E. The network is strongly monotone in E, if
either

e � e′ → FPr(c |e) ≤ FPr(c |e′) for all c ∈ Ω(C) and all e, e′ ∈ E , or
e � e′ → FPr(c |e) ≥ FPr(c |e′) for all c ∈ Ω(C) and all e, e′ ∈ E

The network is weakly monotone in E, if the network is strongly monotone in
{Ei}, for all variables Ei ∈ E.

Note that all networks that are strongly monotone in E are also weakly
monotone, but not vice versa: whereas the strong variant assumes a partial
order on all configurations of E, the weak variant allows independent isotone
or antitone effects for all variables in E. Put in another way: we could make a
weakly monotone network also strongly monotone by reversing the order of the
values of some variables in E, such that all effects are antitone or all effects are
isotone.

The above notions of monotonicity assume an implicit ordering on the values
of the variables involved. Such an ordering is often trivial (e.g., x > x̄ and always
> sometimes > never) but sometimes it is arbitrary, like an ordering of the
organs that might be affected by a disease. Nevertheless, a certain ordering is
necessary to determine whether the network is monotone, or to determine which
parts of the network are violating monotonicity assumptions. Thus, for nodes
where no a priori ordering is given, we want to order the values of these nodes
in a way that maximises the number of monotone arcs. We define the notion of
an interpretation of V to denote a certain ordering on Ω(V ), the set of values
of V . Note, that the number of distinct interpretations of a node with k values
equals k!, the number of permutations of these values.

Definition 2 (interpretation). An interpretation of V ∈ V (G), denoted IV ,
is a total ordering on Ω(V ). We will often omit the subscript if no confusion is
1 For variable set E, with value assignments e and e′ (e ≺ e′) and output C, the

network is isotone in distribution if Pr(C |e) is stochastically dominant over Pr(C |e′).
The network is isotone in mode if the most probable c ∈ C given assignment e is
lower ordered than the most probable c ∈ C given assignment e′



possible; for arbitrary interpretations we will often use σ and τ . The interpreta-
tion set IV is defined as the set of all possible interpretations of V .

In the remainder, we assume that the reader is familiar with basic concepts
of computational complexity theory, such as the classes P, NP and co-NP, hard-
ness, completeness, oracles, and the polynomial hierarchy (PH). For a thorough
introduction to these subjects, we refer to textbooks like [1] and [4].

In addition to these concepts, we use the counting hierarchy (CH) [12, 9]. The
counting hierarchy closely resembles (in fact, contains) the polynomial hierarchy,
but also involves the class PP (probabilistic polynomial time), i.e., the class that
contains languages accepted by a non-deterministic Turing Machine where the
majority of the paths accept a string if and only if it is in that language. Recall
that the polynomial hierarchy can be characterised by alternating existential
and universal operators applied to P , where ∃PP equals Σp

1 = NP, ∀PP equals
Πp

1 = co-NP, while ∀P∃P∀P . . . P equals Πp
k and ∃P∀P∃P . . . P equals Σp

k , where
k denotes the number of alternating quantifiers.

A convenient way to relate the counting hierarchy to the polynomial hier-
archy is by introducing an additional operator C, where Cp0 equals P, Cp1 equals
PP, and in general Cpk+1 = C · Cpk = (Cpk)pp. Interesting complexity classes can
be defined using these operators ∃P , ∀P and C in various combinations. For ex-
ample, ∃PCP equals the class nppp, ∀PCP equals co-npppand ∃P∀PCP equals

npnppp . Default complete problems for these kind of complexity classes are de-
fined by Wagner [12] using quantified satisfiability variants. In this paper we
consider in particular the complete problems Majsat, E-Majsat, A-Majsat,
EA-Majsat and AE-Majsat which will be used in the hardness proofs. These
problems are proven complete by Wagner [12] for the classes PP, nppp, co-nppp,

npnpppand co-npnppp , respectively. In all problems, we consider a boolean for-
mula φ with n variables Xi, with 1 ≤ i ≤ n, and we introduce quantifiers to
bound subsets of these variables.

Majsat
Instance: Let X denote the configuration template for φ.
Question: Does at least half of the instantiations of X satisfy φ?

E-Majsat
Instance: Let 1 ≤ k ≤ n, let XE denote the configuration template for
the variables X1 to Xk and let XM denote the configuration template for
Xk+1 to Xn.
Question: Is there an instantiation to XE, such that at least half of the
instantiations of XM satisfy φ?

A-Majsat
Instance: Sets XA and XM as in E-Majsat.
Question: Does, for every possible instantiation to XA, at least half of



the instantiations of XM satisfy φ?

EA-Majsat
Instance: Let 1 ≤ k ≤ l ≤ n, let XE, XA, and XM denote the config-
uration templates for the variables X1 to Xk, Xk+1 to Xl, and Xl+1 to
Xn, respectively.
Question: Is there an instantiation to XE, such that, for every possible
instantiation of XA, at least half of the instantiations of XM satisfy φ?

AE-Majsat
Instance: Sets XA, XE, and XM as in EA-Majsat.
Question: Is there, for all instantiations to XA, a possible instantiation
of XE, such that at least half of the instantiations of XM satisfy φ?

In the remainder, we denote the complement of a problem P as not-P, with
’yes’ and ’no’ answers reversed with respect to the original problem P. Note
that, by definition, if P is in complexity class C, then not-P is in co-C, and,
likewise, if not-P is in C, then P is in co-C.

3 Monotonicity variants and their complexity

In this paper, we study the computational complexity of various variants of global
monotonicity. The following problems are defined on a probabilistic network
B = (G,Γ ), where G = (V,A) is a directed acyclic graph.

1. The strong Global Monotonicity problem is the problem of testing
whether B is strongly globally monotone, given an interpretation for V .
This problem is co-nppp-complete [10] for explicit networks.

2. The weak Global Monotonicity problem is the problem of testing
whether B is weakly globally monotone, given an interpretation for V .

3. The Global E-Monotonicity problem is the problem of testing whether
there exists an interpretation to Ω(V ), such that B is globally monotone.

Note that, if there exists an interpretation such that B is weakly monotone,
there must also be an interpretation such that B is strongly monotone.

weak Global Monotonicity and Global E-Monotonicity will be
discussed in Sections 4 and 5. In these sections, we use a proof technique intro-
duced by Park and Darwiche [5] to construct a probabilistic network Bφ from
a given Boolean formula φ with n variables. For all variables Xi(1 ≤ i ≤ n) in
this formula, we create a variable Xi in G, with possible values T and F and
uniform probability distribution. For each logical operator in φ, we create an
additional variable, whose parents are the corresponding sub-formulas (or single
variable in case of a negation operator) and whose conditional probability table
is equal to the truth table of that operator. For example, the ∧-operator would
have a conditional probability of 1 if and only if both its parents have the value
T , and 0 otherwise. Furthermore, we denote the top-level operator in φ with Vφ.
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Fig. 1. The probabilistic network corresponding to ¬(x1 ∨ x2) ∧ ¬x3

In Figure 1 such a network is constructed for the formula ¬(x1∨x2)∧¬x3. Now,
for any particular instantiation x of the set of all variables X in the formula
we have that the probability of Vφ, given the corresponding configuration equals
1 if x satisfies φ, and 0 if x does not satisfy φ. Without any instantiation, the
probability of Vφ is #q

2n , where #q is the number of satisfying instantiations of
X. Using such constructs, Park and Darwiche proved that the decision variant of
the map problem is nppp-complete; we will use this construct as a starting point
to prove completeness results for weak Global Monotonicity and Global
E-Monotonicity in the following Sections.

4 Weak Global Monotonicity

In this section, we present a proof for weak Global Monotonicity (with ex-
plicit representations) along the lines of Park and Darwiche. Note that strong
Global Monotonicity has been proven to be co-nppp-complete in [10] using
a reduction from the decision variant of the map-problem, and that hardness of
the weak variant can be proven by restriction. We construct a reduction from
A-Majsat, the relevant satisfiability variant discussed in Section 2, in order to
facilitate our main result in the next section. First, we state the relevant decision
problem:

weak Global Monotonicity
Instance: Let B = (G,Γ ) be a Bayesian network where Γ is composed of
explicitly represented rational probabilities, and let Pr be its joint prob-
ability distribution. Let C ∈ V (G) and E ⊆ V (G) \ {C}.
Question: Is B weakly monotone in distribution in E?

We will see that any instance (φ,XA,XM) of A-Majsat can be translated in
a probabilistic network that is monotone, if and only if (φ,XA,XM) is satisfiable.
As an example, let us consider the formula φ = ¬(x1 ∧ x2) ∨ ¬x3 (Figure 2),
and let XA = {x1, x2} and XM = {x3}. This is a ’yes’-instance of A-Majsat
because, for every configuration of XA, at least half of the configurations of
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Fig. 2. Construct for hardness proof Monotonicity

XM satisfies φ. From φ we construct a network Bφ as described in the previous
section. Furthermore, a node C (’classifier’) and a node S (’select’) is added, with
arcs (S,C) and (Vφ, C), where Vφ is the top node in Bφ. S has values T and
F with uniform distribution, and C has conditional probabilities as denoted in
Table 1. We claim, that Pr(C |S∧XA) in the thus constructed network, is weakly
monotone in distribution, if and only if the corresponding A-Majsat-instance
(φ,XA,XM) is satisfiable.

c1 c2 c3
S = T ∧ Vφ = T 0.5 0.25 0.25

S = T ∧ Vφ = F 0.5 0.25 0.25

S = F ∧ Vφ = T 0.25 0.375 0.375

S = F ∧ Vφ = F 0.375 0.5 0.125

Table 1. Conditional probability table for C

Theorem 1. weak Global Monotonicity is co-nppp-complete

Proof. To prove membership of co-nppp, we consider not-weak Global Mo-
notonicity and prove membership of nppp. In this complement problem we
want to know if there exist instantiations to the evidence variables E such
that B is not monotone in distribution. This is clearly in nppp: we can non-
deterministically choose instantiations e1 � e2 to E and values c < c′ ∈ Ω(C),
and verify that FPr(c | e1) ≤ FPr(c′ | e1), but FPr(c′ | e2) ≤ FPr(c | e2) since Pr
is pp-complete.

To prove co-nppp-hardness, we construct a transformation from A-Majsat.
Let (φ,XA,XM) be an instance of this problem, and let Bφ be the network
constructed from φ as described above. Given a particular configuration x of all



n variables in XA ∪ XM, Pr(Vφ | x) equals 1 if x is a satisfying configuration
and 0 if it is not, hence, for any configuration XA, Vφ ≥ 1

2 if at least half of
the instantiations to XM satisfy φ. Since C is conditioned on Vφ, it follows from
Table 1 that if any configuration of XA leads to Pr(Vφ) < 1

2 , then C is no
longer monotone in S ∧ XA, since FPr(c1 | S = T ) > FPr(c1 | S = F ), but
FPr(c2 | S = T ) < FPr(c2 | S = F ) as we can calculate2 from the conditional
probability table for C.

Thus, if we can decide whether Bφ is weakly globally monotone in S ∪XA,
we are able to decide (φ,XA,XM). On the other hand, if (φ,XA,XM) is a
satisfying instantiation of A-Majsat, then Pr(Vφ) ≥ 1

2 and thus Bφ is weakly
globally monotone. Therefore weak Global Monotonicity is co-nppp-hard.

ut

5 Global E-Monotonicity

We now use the proof technique from the previous section to prove that Global

E-Monotonicity is co-npnppp-complete if we allow implicit representations
for the conditional probability distributions, using a reduction from not-EA-
Majsat, which is equivalent to AE-Majsat3. Again, we start with a formal
definition of the relevant decision problem:

Global E-Monotonicity
Instance: Let B = (G,Γ ) be a Bayesian network where Γ is composed of
rational probabilities, and let Pr be its joint probability distribution. Let
Ω(V ) denote the set of values that V ∈ V (G) can take, and let C ∈ V (G)
and E ⊆ V (G) \ {C}.
Question: Is there an interpretation IV for all variables V ∈ V (G), such
that B is monotone in distribution in E?

We will see that any instance (φ,XE,XA,XM) of not-EA-Majsat can be
translated in a probabilistic network for which exists an ordering of the values of
its variables that makes the network monotone, if and only if (φ,XE,XA,XM)
is unsatisfiable. As an example of the Global E-Monotonicity problem, let
us consider the formula φ = ¬((x1 ∨ x2) ∧ (x3 ∨ x4)) ∧ x5 (Figure 3), let XE =
{x1, x2} and let XA = {x3, x4} and XM = {¬x5}. One can verify that this is
indeed a ’yes’-instance of not-EA-Majsat: For every configuration of XE, the
configuration x3 = x4 = F ensures that at least half of the instantiations of XM

satisfies φ. Thus, there does not exist an instantiation to XE, such that for all
2 FPr(c1 | S = T ) = Pr(c1 | Vφ = T ∧ S = T ) · Pr(Vφ = T ) + Pr(c1 | Vφ = F ∧ S =
T ) · Pr(Vφ = F ) = (0.5 + ε) · 0.5 + (0.5 − ε) · 0.5 = 0.5. Likewise, FPr(c1 | S =
F ) = 0.25 · (0.5 − ε) + 0.375 · (0.5 + ε) = 0.3125 + 0.125ε. On the other hand,
FPr(c2 |S = T ) = Pr(c1 |S = T ) + Pr(c2 |S = T ) = 0.5 + 0.25 < FPr(c2 |S = F ) =
Pr(c1 |S = F )+Pr(c2 |S = F ) = (0.3125+0.125ε)+(0.4375+0.125ε) = 0.75+0.25ε.

3 Thus, instead of ∀P∃P C we use the equivalent problem statement ¬∃P∀P¬C. The
reader can verify that this is an equivalent problem formulation.
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Fig. 3. Construct for hardness proof E-Monotonicity

instantiations to XA at least half of the instantiations of XM does not satisfy
φ.

Again, we denote Vφ as the top node in Bφ. We now add three additional
variables, C with values c1, c2, c3, D with values d1, d2, and a variable ψ. This
variable is implicitly defined and has (implicit) values w0 to w2m−1 (m =| XE |)
that correspond to configurations xE of XE. These values are ordered by the
binary representation of each configuration xE, e.g. for an instantiation xE =
X1 = F, . . . ,Xm−1 = F,Xm = T the binary representation would be 0 . . . 01
and therefore this particular configuration would correspond with w1. Likewise,
all possible configurations of XE are mapped to values wi of ψ. Furthermore,
there are arcs (Vφ, C), (ψ,C), (C,D), and from every variable in XE to ψ. The
conditional probability Pr(C |Vφ∧ψ) is defined in Table 2, where ε is a sufficiently
small number, e.g. ε ≤ 1

2m+3 . The conditional probabilities Pr(ψ |XE) and Pr(D |
C) are defined in Table 3. Note, that the conditional probability distribution
of both ψ and C are defined implicitly. The conditional probabilities of D are
chosen in such a way, that D is monotone in C if and only if IC = {c1 < c2 < c3}.
We claim, that there is a possible interpretation I for all variables in XE∪{ψ} in
the thus constructed network, such that the network is globally monotone, if and
only if the corresponding not-EA-Majsat-instance is satisfiable. To support
this claim, we take a closer look at the example. The possible values of ψ are
numbered as follows: w0 = {X1 = F,X2 = F}, w1 = {X1 = F,X2 = T}, w2 =
{X1 = T,X2 = F}, w3 = {X1 = T,X2 = T}. For i = 0 . . . 3, the conditional
probability table Pr(C |Vφ∧ψ = wi) is defined as in Table 4. We have already seen
that, for all configurations to XA, the configuration X3 = X4 = F of XE ensures
that the majority of the possible configurations of XM satisfies φ. Therefore, for
all configurations of XA, there is at least one configuration of ψ (namely, ψ = w0)
such that Vφ ≥ 1

2 . Since C is conditioned on Vφ, we can calculate from the table
that monotonicity is violated: FPr(c1 | ψ = w0) = 0.625 − 0.5ε > FPr(c1 | ψ =
w1) = 0.4375 but FPr(c2 | ψ = w0) = 0.75 − 0.5ε < FPr(c2 | ψ = w1) = 0.75.



Pr(C = c1 |Vφ = T ∧ ψ = wi) = 1
2
− i

2m+1 − ε if i = 0

1
2
− i

2m+1 otherwise

Pr(C = c2 |Vφ = T ∧ ψ = wi) = i+1
2m − 1

2m+1

Pr(C = c3 |Vφ = T ∧ ψ = wi) = 1
2
− i+1

2m+1 + ε if i = 0

1
2
− i+1

2m+1 otherwise

Pr(C = c1 |Vφ = F ∧ ψ = wi) = 1− i+1
2m

Pr(C = c2 |Vφ = F ∧ ψ = wi) = i+1
2m+1

Pr(C = c3 |Vφ = F ∧ ψ = wi) = i+1
2m+1

Table 2. Conditional probability for C

d1 d2

c1 0.20 0.80 Pr(ψ = wi |xE) = 1 if wi corresponds to xE

c2 0.40 0.60 0 otherwise
c3 0.60 0.40

Table 3. Conditional probabilities for Pr(D |C) and Pr(ψ |X)

c1 c2 c3 c1 c2 c3
ψ = w0 ∧ Vφ = T 0.5− ε 0.125 0.375 + ε ψ = w0 ∧ Vφ = F 0.75 0.125 0.125
ψ = w1 ∧ Vφ = T 0.375 0.375 0.25 ψ = w1 ∧ Vφ = F 0.5 0.25 0.25
ψ = w2 ∧ Vφ = T 0.25 0.625 0.125 ψ = w2 ∧ Vφ = F 0.25 0.375 0.375
ψ = w3 ∧ Vφ = T 0.125 0.875 0 ψ = w3 ∧ Vφ = F 0 0.5 0.5

Table 4. Conditional probability for C in the example

Thus, independent of the way the values of Ω(ψ) are ordered, there is always at
least one violation of monotonicity for any interpretation in Iψ if Vφ ≥ 1

2 . If, on
the other hand, there does not exist such configuration to XE, then Vφ < 1

2 for all
possible configurations of XE, and thus there is an ordering of the interpretations
in Iψ such that Pr(C |XA) is monotone. Note that we cannot assume an a priori
ordering on the values of ψ in this situation: although all configurations of XE

lead to Vφ < 1
2 , some may be closer to 1

2 than others and thus, because of the
conditioning on Vφ, lead to higher values in C.

Theorem 2. Global E-Monotonicity is co-npnppp-complete

Proof. For a membership proof we use not-weak Global Monotonicity as
an nppporacle. With the aid of this oracle, an interpretation for the values of the
variables that violates monotonicity is an NP membership certificate for not-

Global E-Monotonicity , thus by definition the problem is in co-npnppp .
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Fig. 4. Known complexity results

To prove co-npnppp-hardness, we construct a transformation from not-EA-
Majsat. Let (φ,XE,XA,XM) be an instance of this problem, and let Bφ be
the network constructed from φ as described above. If (φ,XE,XA,XM) is not
satisfiable, then there exists an instantiation to ψ, such that Pr(Vψ) ≥ 1

2 and thus
– again, because of the conditioning of C on Vψ – monotonicity is violated. But if
this is the case, then there exist wi, wj ∈ ψ and c < c′ ∈ C such that FPr(c |ψ =
wi) ≤ FPr(c′ |ψ = wi), but FPr(c′ |ψ = wj) ≤ FPr(c |ψ = wj) independent of
the ordering of the values of ψ. Note that the variable-and operator-nodes have
binary values, making an ordering irrelevant4, and the ordering on C and D is
imposed by the conditional probability Pr(D |C). Thus, if we would be able to
decide that there is an interpretation of the values of the variables of Bφ such that
Bφ is globally monotone in distribution, we are able to decide (φ,XE,XA,XM).
On the other hand, given that the network is globally monotone, we know that
there cannot be an instantiation to XE such that (φ,XE,XA,XM) is satisfied.

Hence, Global E-Monotonicity is co-npnppp-hard.
It may not be obvious that the above construction can be made in polynomial

time. Note that, however large XE may become, both the conditional probabili-
ties Pr(ψ |XE) and Pr(C |Vφ∧ψ) can be described using only a constant number
of bits, since we explicitly allowed Γ to have implicit representations. Therefore,
we need only time, polynomial in the size of the input (i.e., the not-EA-Majsat
instance), to construct Bφ. ut

6 Conclusion

In this paper, several variants of the Monotonicity problem in probabilistic
networks were introduced. In Figure 4, the known complexity results for strong
and weak global monotonicity variants, with explicit or implicit conditional prob-
ability distribution, and fixed or variable variable orderings are presented. The

4 if Bφ is isotone for x < x̄, it is antitone for x̄ < x and vice versa



main result is the completeness proof of Global E-Monotonicity with im-
plicit probability representation. It is established that this problem is complete

for the class co-npnppp , a class for which few real-world problems are known
to be complete. Unfortunately, a similar complexity result for the variant with
explicit representation (or, with a representation where the variables are explic-
itly defined, while the probabilities are implicit) could not be established. This

leaves us with a number of problems that are either in co-nppp, co-npnppp , or
somewhere in between.
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