
The Complexity of Finding kth Most Probable
Explanations in Probabilistic Networks

Johan H.P. Kwisthout, Hans L. Bodlaender and Linda C. van der Gaag

Department of Information and Computing Sciences,
Utrecht University, Utrecht, the Netherlands

Abstract. In modern decision-support systems, probabilistic networks
model uncertainty by a directed acyclic graph quantified by probabilities.
Two closely related problems on these networks are the Kth MPE and
Kth Partial MAP problems, which both take a network and a positive
integer k for their input. In the Kth MPE problem, given a partition
of the network’s nodes into evidence and explanation nodes and given
specific values for the evidence nodes, we ask for the kth most probable
combination of values for the explanation nodes. In the Kth Partial
MAP problem in addition a number of unobservable intermediate nodes
are distinguished; we again ask for the kth most probable explanation.
In this paper, we establish the complexity of these problems and show

that they are FPPP- and FPPPPP

-complete, respectively.

1 Introduction

For modern decision-support systems, probabilistic networks are rapidly becom-
ing the models of choice for representing and reasoning with uncertainty. Appli-
cations of these networks have been developed for a range of problem domains
which are fraught with uncertainty. Most notably, applications are being re-
alised in the biomedical field where they are designed to support medical and
veterinary practitioners in their diagnostic reasoning processes; examples from
our own engineering experiences include a network for diagnosing ventilator-
associated pneumonia in critically ill patients [1] and a network for the early
detection of an infection with the Classical Swine Fever virus in pigs [2].

A probabilistic network is a model of a joint probability distribution over
a set of stochastic variables [3]. It consists of a directed acyclic graph, encod-
ing the variables and their probabilistic interdependences, and an associated set
of conditional probabilities. Various algorithms have been designed for proba-
bilistic inference, that is, for computing probabilities of interest from a network.
These algorithms typically exploit structural properties of the network’s graph to
decompose the computations involved. Probabilistic inference is known to be PP-
complete in general. Many other problems to be solved in practical applications
of probabilistic networks are also known to have an unfavourable complexity.

In many practical applications, the nodes of a probabilistic network are par-
titioned into evidence nodes, explanation nodes and intermediate nodes. The

evidence nodes model variables whose values can be observed in reality; in a
medical application, these nodes typically model a patient’s observable symp-
toms. The explanation nodes model the variables for which a most likely value
needs to be found; these nodes typically capture possible diagnoses. The interme-
diate nodes are included in the network to correctly represent the probabilistic
dependences among the variables; in a medical application, these nodes often
model physiological processes hidden in a patient. An important problem in
probabilistic networks now is to find the most likely value combination for the
explanation nodes given a specific joint value for the evidence nodes. When the
network’s set of intermediate nodes is empty, the problem is known as the most
probable explanation, or MPE, problem; the problem is coined the partial max-
imum aposteriori probability, or Partial MAP, problem otherwise. The MPE
problem is known to have various NP-complete decision variants [4, 5]; for the
Partial MAP problem NPPP-completeness was established [6].

In many applications, one is interested not just in finding the most likely
explanation for a combination of observations, but in finding alternative expla-
nations as well. In biomedicine, for example, a practitioner may wish to start
antibiotic treatment for multiple likely pathogens before the actual cause of in-
fection is known; alternative explanations may also reveal whether or not further
diagnostic testing can help distinguishing between possible diagnoses. In the ab-
sence of intermediate nodes in a network, the problem of finding the kth most
likely explanation is known as the Kth MPE problem; it is called the Kth Par-
tial MAP problem otherwise. While efficient algorithms have been designed for
solving the kth most probable explanation problem with the best explanation
as additional input [7], the Kth MPE problem without this extra information
is NP-hard in general [8]. The complexity of the Kth Partial MAP problem
is unknown as yet.

In this paper, we study the computational complexity of the Kth MPE and
Kth Partial MAP problems and show that these problems are complete for the
complexity classes FPPP and FPPPPP

, respectively. This finding suggests that the
two problems are much harder than the (already intractable) restricted problems
of finding a most likely explanation. Finding the kth most probable explanation
in a probabilistic network given partial evidence to our best knowledge is the
first problem with a practical application that is shown to be FPPPPP

-complete,
which renders our result interesting from a theoretical viewpoint.

The paper is organised as follows. In Section 2, our notational conventions as
well as the definitions used in the paper are introduced. We discuss the compu-
tational complexity of finding kth joint value assignments with full and partial
evidence in the Sections 3 and 4, respectively. Section 5 concludes the paper.

2 Definitions

In this section, we provide the definitions used in this paper. In Section 2.1, we
briefly review probabilistic networks and introduce our notational conventions.

In Section 2.2, we describe the problems under study. In Section 2.3, we review
various complexity classes and state some complete problems for these classes.

2.1 Probabilistic networks

A probabilistic network is a model of a joint probability distribution over a
set of stochastic variables. Before defining the concept of probabilistic network
more formally, we introduce some notational conventions. Stochastic variables
are denoted by capital letters with a subscript, such as Xi; we use bold-faced
upper-case letters X to denote sets of variables. A lower-case letter x is used for a
value of a variable X; a combination of values for a set of variables X is denoted
by a bold-faced lower-case letter x and will be termed a joint value assignment
to X. In the sequel, we assume that all joint value assignments to a set X are
uniquely ordered. If Pr(xi) = Pr(xj) for two joint value assignments xi and
xj , they are ordered lexicographically by their respective binary representation,
taking the value for X1 to be the most significant element. In general, xi ≺ xj

if and only if bin(Pr(xi),xi) ≺ bin(Pr(xj),xj).
A probabilistic network now is a tuple B = (G, Γ) where G = (V, A) is a

directed acyclic graph and Γ is a set of conditional probability distributions.
Each node Vi ∈ V models a stochastic variable. The set of arcs A of the graph
captures probabilistic independence: two nodes Vi and Vj are independent given
a set of nodes W, if either Vi or Vj is in W, or if every chain between Vi and
Vj in G contains a node from W with at least one emanating arc or a node Vk

with two incoming arcs such that neither Vk itself nor any of its descendants
are in W. For a topological sort V1, . . . , Vn, n ≥ 1, of G, we now have that
any node Vi is independent of the preceding nodes V1, . . . , Vi−1 given its set of
parents π(Vi). The set Γ of the network includes for each node Vi the conditional
probability distributions Pr(Vi | π(Vi)) that describe the influence of the various
assignments to Vi’s parents π(Vi) on the probabilities of the values of Vi itself.

A probabilistic network B = (G, Γ) uniquely defines a joint probability distri-
bution Pr(V) =

∏
Vi∈V Pr(Vi | π(Vi)) that respects the independences portrayed

by its digraph. Since it defines a unique distribution, a probabilistic network al-
lows the computation of any probability of interest over its variables [9].

2.2 The kth Most Probable Explanation Problems

The main problem studied in this paper is the problem of finding a kth most
probable explanation for a particular combination of observations, for arbitrary
values of k. Formulated as a functional problem, it is defined as follows.

Kth MPE
Instance: A probabilistic network B = (G, Γ), where V is partitioned into a
set of evidence nodes E and a set of explanation nodes M; a joint value
assignment e to E; and a natural number k.
Output: A kth most probable joint value assignment mk to M given e; if no
such assignment exists, the output is ⊥, that is, the universal false.

Note that the Kth MPE problem defined above includes the MPE problem as
a special case with k = 1. From Pr(m | e) = Pr(m,e)

Pr(e) , we further observe that
Pr(e) can be regarded a constant if we are interested in the relative order only
of the conditional probabilities Pr(m |e) of all joint value assignments m.

While for the Kth MPE problem, a network’s nodes are partitioned into
evidence and explanation nodes only, the Kth Partial MAP problem discerns
also intermediate nodes. We define a bounded variant of the latter problem.

Bounded Kth Partial MAP
Instance: A probabilistic network B = (G, Γ), where V is partitioned into a
set of evidence nodes E, a set of intermediate nodes I, and a set of explanation
nodes M; a joint value assignment e to E; a natural number k; and rational
numbers a, b with 0 ≤ a ≤ b ≤ 1.
Output: A tuple (mk, pk), where mk is a kth most probable assignment to M
given e from among all assignments mi to M with pi = Pr(mi, e) ∈ [a, b]; if no
such assignment exists, the output is ⊥.

Note that the original Kth Partial MAP problem without bounds is a special
case of the problem defined above with a = 0 and b = 1. Further note that the
bounded problem can be transformed into a problem without bounds in poly-
nomial time and vice versa, which renders the two problems Turing equivalent.
In the sequel, we will use the bounded problem to simplify our proofs.

2.3 Complexity classes and complete problems

We assume throughout the paper that the reader is familiar with the standard
notion of a Turing machine and with the basic concepts from complexity theory.
We further assume that the reader is acquainted with complexity classes such
as NPPP, for which certificates of membership can be verified in polynomial time
given access to an oracle. For these classes, we recall that the defining Turing
machine can write a string to an oracle tape and takes the next step conditional
on whether or not the string on this tape belongs to a particular language; for
further details on complexity classes involving oracles, we refer to [10–12].

While Turing Machines are tailored to solving decision problems, halting
either in an accepting state or in a rejection state, Turing Transducers can gen-
erate functional results: if a Turing Transducer halts in an accepting state, it
returns a result on an additional output tape. The complexity classes FP and
FNP now are the functional variants of P and NP, and are defined using Turing
Transducers instead of Turing Machines. Just like a Turing Machine, a Turing
Transducer can have access to an oracle; for example, FPNP is the class of func-
tions computable in polynomial time by a Turing Transducer with access to
an NP oracle. Since the kth most probable explanation problems under study
require the computation of a result, we will use Turing Transducers in the sequel.

Metric Turing Machines are used to show membership in complexity classes
like PNPor PPP[11]. A metric Turing Machine M̂ is a polynomial-time bounded
non-deterministic Turing Machine in which every computation path halts with
a binary number on a designated output tape. OutM̂(x) denotes the set of
outputs of M̂ on input x; OptM̂(x) is the smallest number in OutM̂(x), and
KthValueM̂(x, k) is the k-th smallest number in OutM̂(x). Metric Turing Trans-
ducers T̂ are defined likewise as Turing Transducers with an additional output
tape; these transducers are used for proving membership in FPNP or FPPP.

A function f is polynomial-time one-Turing reducible to a function g, written
f ≤FP

1-T g, if there exist polynomial-time computable functions T1 and T2 such
that f(x) = T1(x, g(T2(x))) for every x [12]. A function f now is in FPNP if and
only if there exists a metric Turing Transducer T̂ such that f ≤FP

1-T OptT̂ . Cor-
respondingly, a set L is in PNP if and only if a metric Turing Machine M̂ can be
constructed, such that OptM̂(x) is odd if and only if x ∈ L. Similar observations
hold for FPPP and PPP, and the KthValueM̂ and KthValueT̂ functions [11, 12].
FPNP- and FPPP-hardness can be proved by a reduction from a known FPNP- and
FPPP-hard problem, respectively, using a polynomial-time one-Turing reduction.

We now introduce some functional variants of the satisfiability problem which
we will use in the sequel, and state their completeness results.

Kth SAT
Instance: A Boolean formula φ(X1, . . . , Xn), n ≥ 1; a natural number k.
Output: The lexicographically kth truth assignment xk to X = {X1, . . . , Xn}
that satisfies φ; if no such assignment exists, the output is ⊥.

The LexSat problem is the special case of the Kth SAT problem with k = 1.
Kth SAT and LexSat are complete for FPNP and FPPP, respectively [11, 12].

KthNumSat
Instance: A Boolean formula φ(X1, . . . , Xm, . . . , Xn),m ≤ n, n ≥ 1; natural
numbers k, l.
Output: The lexicographically kth assignment xk to {X1, . . . , Xm} with
which exactly l assignments xl to {Xm+1, . . . , Xn} satisfy φ; the output is ⊥ if
no such assignment exists.

The LexNumSat problem is the special case of the KthNumSat problem with
k = 1. KthNumSat and LexNumSat are FPPPPP

- and FPNPPP

-complete; proofs
will be provided in a full paper [13].

3 Complexity of Kth MPE

We study the complexity of the Kth MPE problem as introduced in Section
2.2 and prove FPPP-completeness. To prove membership of FPPP, we show that
the problem can be solved in polynomial time by a metric Turing Transducer;
we prove hardness by a reduction from the Kth SAT problem from FPPP.

¬

∧

Vφ

X3 X4X1 X2

∨ ¬

X

T

∨

Fig. 1. The acyclic directed graph of the probabilistic network Bφex constructed from
the Boolean formula φex = ((X1 ∨ ¬X2) ∧X3) ∨ ¬X4

We begin by describing the construction of a probabilistic network Bφ from
the Boolean formula φ of an instance of the Kth SAT problem; upon doing so,
we use the formula φex = ((X1 ∨ ¬X2) ∧ X3) ∨ ¬X4 for our running example.
For each Boolean variable Xi in φ, we include a root node Xi in the network
Bφ, with true and false for its possible values; the nodes Xi with each other are
called the variable-instantiation part X of the network. The prior probabilities
pi = Pr(Xi = true) for the nodes Xi are chosen such that the prior probability
of a joint value assignment x to X is higher than that of x′ if and only if
the corresponding truth assignment x to the Kth SAT variables X1, . . . , Xn

is lexicographically ordered before x′. More specifically, we set pi = 1
2 −

2i−1
2n+1 .

In our running example with four Boolean variables, the prior probabilities for
the nodes X1, . . . , X4 thus are set to p1 = 15

32 , p2 = 13
32 , p3 = 9

32 , and p4 = 1
32 .

Note that we have that pi · pi+1 · . . . · pn > pi · pi+1 · . . . · pn for every i. Since
the root nodes Xi are mutually independent in the network under construction,
therefore, the ordering property stated above is attained. Further note that the
associated prior probabilities can be formulated using a number of bits which is
polynomial in the number of variables of the Kth SAT instance.

For each logical operator in the Boolean formula φ, we create an additional
node in the network Bφ. The parents of this node are the nodes corresponding
with the subformulas joined by the operator; its conditional probability table
is set to mimic the operator’s truth table. The node associated with the top-
level operator of φ will be denoted by Vφ. The operator nodes with each other
constitute the truth-setting part T of the network. The probabilistic network
Bφex that is constructed from the example formula φex is shown in Figure 1. From
the above construction, it is now readily seen that, given a value assignment x
to the variable-instantiation part of the network, we have Pr(Vφ = true |x) = 1
if and only if the truth assignment x to the Boolean variables Xi satisfies φ.

Theorem 1. Kth MPE is FPPP-complete.

Proof. To prove membership, we show that a metric Turing Transducer can be
constructed to solve the problem. Let T̂ be a metric Turing Transducer that on
input (B, e, k) performs the following computations: it traverses a topological sort
of the network’s nodes V; in each step i, it non-deterministically chooses a value
vi for node Vi (for a node Ei from the set E of evidence nodes, the value conform
e is chosen), and multiplies the corresponding (conditional) probabilities. Each
computation path thereby establishes a joint probability Pr(v) =

∏
Vi∈V Pr(vi |

π(Vi)) for a thus constructed joint value assignment v to V. Note that Pr(v) =
Pr(m, e) for an assignment m to the explanation variables M. Further note that
the computations involved take a time which is polynomial in the number of
variables in the Kth MPE instance. The output of the transducer is, for each
computation path, a binary representation of 1 − Pr(m, e) with sufficient (but
polynomial) precision, combined with a binary representation of the assignment
m itself. KthValueT̂ (B, e, k) now returns an encoding of the kth most probable
explanation for e. We conclude that Kth MPE is in FPPP.

To prove hardness, we reduce the Kth SAT problem to the Kth MPE prob-
lem. Let (φ, k) be an instance of Kth SAT. From φ we construct the network
Bφ as described above; we further let E = {Vφ} and let e be the value assign-
ment Vφ = true. The thus constructed instance of the Kth MPE problem is
(Bφ, Vφ = true, k); note that the construction can be performed in polynomial
time. For any joint value assignment x to the variable-instantiation part X of Bφ,
we now have that Pr(X = x |Vφ = true) = Pr(X=x,Vφ=true)

Pr(Vφ=true) = α ·Pr(X = x, Vφ =
true) for a normalisation constant α, since the prior probability Pr(Vφ = true)
can be regarded a constant. For any satisfying assignment x to the variables X,
we have that Pr(X = x | Vφ = true) = α · Pr(X = x); for any non-satisfying
assignment x on the other hand, we find that Pr(X = x, Vφ = true) = 0 and
hence that Pr(X = x | Vφ = true) = 0. All satisfying joint value assignments
thus are ordered before all non-satisfying ones. We now observe that the set M
of explanation nodes contains both the variable-instantiation nodes X and the
truth-setting nodes T. Since the values of the nodes from T are fully determined
by the values of their parents, we have that, given evidence Vφ = true, the kth
MPE corresponds to the lexicographically kth satisfying value assignment to the
variables in φ, and vice versa. Given an algorithm for solving Kth MPE, we
can thus solve KthSat as well, which proves FPPP-hardness of Kth MPE. 2

We now turn to the case where k = 1, that is, to the MPE problem, for which
we show FPNP-completeness by a similar construction as above.

Proposition 1. MPE is FPNP-complete.

Proof. To prove membership, a metric Turing Transducer as above is con-
structed. OptT̂ (B, e) then returns the most probable explanation given the evi-
dence e. To prove hardness, we apply the same construction as above to reduce,
in polynomial time, the LexSat problem to the MPE problem. 2

Note that the functional variant of the MPE problem is in FPNP, while its
decision variant is in NP [5]. This relation between the decision and functional

variants of a problem is quite commonly found in optimisation problems: if the
solution of a functional problem variant has polynomially bounded length, then
there exists a polynomial-time Turing reduction from the functional variant to
the decision variant of that problem, and hence if the decision variant is in NP,
then the functional variant of the problem is in FPNP [14].

4 Complexity of K-th Partial MAP

While the decision variant of the MPE problem is complete for the class NP, the
decision variant of the Partial MAP problem is known to be NPPP-complete
[6]. In the previous section, we proved that the functional variant of the Kth
MPE problem is FPPP-complete. Intuitively, these results suggest that the Kth

Partial MAP problem is complete for the complexity class FPPPPP

. To the best
of our knowledge, no complete problems have been discussed in the literature
for this class. We will now show that the Kth Partial MAP problem indeed
is complete for the class FPPPPP

, by a reduction from the KthNumSat problem.
We first describe the construction of a probabilistic network Bφ from an

instance (φ(X1, . . . , Xm, . . . , Xn), k, l), m ≤ n, n ≥ 1, of the KthNumSat
problem. For our running example, we again use the Boolean formula φex =
((X1 ∨ ¬X2) ∧X3) ∨ ¬X4, for which we now want to find the lexicographically
second assignment to the variables {X1, X2} with which exactly three truth as-
signments to {X3, X4} satisfy φex, that is, k = 2 and l = 3; the reader can verify
that the instance has the solution X1 = true, X2 = false. As before, we create a
root node Xi for each Boolean variable Xi from φ, this time with a uniform prior
probability distribution. The nodes X1, . . . , Xm with each other constitute the
variable-instantiation part X of the network Bφ; the nodes from this part will
be the MAP nodes for the Kth Partial MAP instance under construction.

For the logical operators from the formula φ, we create additional nodes in the
network as before, with Vφ for the node associated with the top-level operator.
For any joint value assignment x to the instantiation nodes X, we now have that
Pr(Vφ = true |x) = s

2n−m , where s is the number of truth value assignments to
the Boolean variables {Xm+1, . . . , Xn} that, jointly with x, satisfy φ.

We now further construct an enumeration part N for the network. To the
variable-instantiation part X, we add nodes Y1, . . . , Ym, with values true and
false, with Xi the unique parent of Yi (1 ≤ i ≤ m). We take, for 1 ≤ i ≤ m:

Pr(Yi = true |Xi = false) =
1

2i+n−m+1
.

and
Pr(Yi = true |Xi = true) = 0.

To this, we add a binary tree with ∨-nodes (i.e., nodes with a probability table
such that the node attains value true if and only if at least one parent has value
true. The leaves of this tree are exactly the nodes Y1, . . . , Ym; we call the root
of the tree Eφ.

∨

∧

¬

X4X1 X2 X3

C

¬

∨

Y1 Y2

Eφ

Fig. 2. The acyclic directed graph of the probabilistic network Bφex constructed from
the KthNumSat instance with the Boolean formula φex = ((X1 ∨ ¬X2) ∧X3) ∨ ¬X4

and the MAP nodes X1, X2. Note that Eφ is an ∨-node.

For example, when m = 4, we have three ∨-nodes, one with parents Y1 and
Y2, one with parents Y3 and Y4, and one with parents the two other new ∨-nodes;
the latter is Eφ. In our running example, Eφ has Y1 and Y2 as parents. We have
that Pr(Y1 = true |X1 = false) = 1

24 , and Pr(Y2 = true |X2 = false) = 1
25 .

Note that for each joint value assignment m to the nodes X1, . . . , Xm, we
have that Pr(Eφ = true | m) < 1

2n−m . More precisely, using the third law of
probability theory, one can easily show that if m is the jth lexicographically
largest joint value assignment to X1, . . . , Xm, then Pr(Eφ = true |m) = j−1

2n+1 .
In particular, this shows that if a joint value assignment m to the MAP nodes is
lexicographically ordered before m′, then Pr(Eφ = true |m′) > Pr(Eφ = true |
m).

To conclude the construction, we add to the network an additional node C
with Vφ and Eφ for its parents, with the following conditional probability table:

Pr(C = true |Vφ, Eφ) =


1 if Vφ = true, Eφ = true
1
2 if Vφ = true, Eφ = false
1
2 if Vφ = false, Eφ = true
0 if Vφ = false, Eφ = false

Since Pr(Eφ = true | x) < 1
2n−m for any joint value assignment x to the MAP

nodes, this table ensures that the probability Pr(C = true | x) lies within the
interval [s

2n−m+1 , s+1
2n−m+1], where s is the number of value assignments to the

Boolean variables {Xm+1, . . . , Xn} that, jointly with x, satisfy the formula φ.

Theorem 2. Bounded Kth Partial MAP is FPPPPP

-complete.

Proof. The membership proof is quite similar to the membership proof for the
Kth MPE problem from Theorem 1, that is, we construct a metric Turing Trans-
ducer to solve the problem. Note that for the complexity class FPPPPP

we are now
allowed to consult a more powerful oracle than for the class FPPP. We observe
that for the Bounded Kth Partial MAP problem, we actually need an ora-
cle of higher power, since we need to solve the #P-complete problem of Exact
Inference to compute the required joint probabilities: while for the Kth MPE
problem we could efficiently compute probabilities for joint value assignments
to all variables, taking polynomial time, we must now compute probabilities of
joint value assignments to a subset of the variables, which involves summing over
all assignments to the intermediate variables involved. Now, if the probability
Pr(m, e) obtained for a joint value assignment m to the MAP variables M is
within the interval [a, b], the transducer outputs binary representations of m and
1 − Pr(m, e); otherwise, it outputs ⊥. Clearly, KthValueT̂ returns an encoding
of the kth most probable value assignment to the MAP variables in view of the
evidence e. We conclude that Bounded Kth Partial MAP is in FPPPPP

.
To prove hardness, we construct a probabilistic network Bφ from a given in-

stance φ(X1, . . . , Xm, . . . , Xn), as described above. The conditional probabilities
in the constructed network ensure that the probability of a value assignment x
to the nodes {X1, . . . , Xm} such that l truth value assignments to the variables
{Xm+1, . . . , Xn} satisfy φ, is in the interval [l

2n−m+1 , l+1
2n−m+1]. Moreover, if both x

and x′ are such that l truth value assignments to the variables {Xm+1, . . . , Xn}
satisfy φ, then Pr(C = true | x) > Pr(C = true | x′) if the truth value that
corresponds with x is lexicographically ordered before x′. Thus, with evidence
C = true and ranges [s

2n−m+1 , s+1
2n−m+1], the kth Partial MAP corresponds to the

lexicographical kth truth assignment to the variables X1, . . . , Xm for which ex-
actly s truth assignments to Xm+1, . . . , Xn satisfy φ. Clearly, the above reduction
is a polynomial-time one-Turing reduction from KthNumSat to Kth Partial

MAP. This proves FPPPPP

-hardness of Bounded Kth Partial MAP. 2

FPNPPP

-completeness of Bounded Partial MAP, the special case of Bounded
Kth Partial MAP where k = 1, follows with a very similar proof.

Proposition 2. Bounded Partial MAP is FPNPPP

-complete.

5 Conclusion

In this paper, we addressed the computational complexity of two problems that
are relevant for the practical use of probabilistic networks. Intuitively, the prob-

lems state, for a given probabilistic network, what is the kth most likely explana-
tion for a given set of observations, called the evidence. The first variant, which
is FPPP-complete, has as evidence all variables that are not given as explanation,
while the second variant, being FPPPPP

-complete has intermediate variables; these
neither are used as evidence or as explanation. The contribution of our work is
twofold: first, we pinpoint precisely the complexity of these relevant problems,
although, from a practitioners point of view, knowing that they are NP-hard
is sufficient. Secondly, our results form one of the very few results of the type
where we show problems relevant from a practical context to be complete for
complexity classes that are as special as FPPPand FPPPPP

.

Acknowledgement. This research was done in the Algorithmic Complexity of
Probabilistic Networks project supported by the Netherlands Organisation for
Scientific Research (NWO).

References

1. Th. Charitos, L.C. van der Gaag, S. Visscher, C.A.M. Schurink, P.J.F. Lucas
(2009). A dynamic Bayesian network for diagnosing ventilator-associated pneu-
monia in ICU patients. Expert Systems with Applications, vol. 26, pp. 1249 - 1258.

2. P.L. Geenen, A.R.W. Elbers, L.C. van der Gaag, W.L.A. Loeffen (2006). Devel-
opment of a probabilistic network for clinical detection of classical swine fever.
Proceedings of the 11th Symposium of the International Society for Veterinary
Epidemiology and Economics, Cairns, Australia, pp. 667 – 669.

3. J. Pearl (1988). Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann,
Palo Alto.

4. S.E. Shimony (1994). Finding MAPs for belief networks is NP-hard. Artificial
Intelligence, vol. 68, pp. 399 – 410.

5. H.L. Bodlaender, F. van den Eijkhof, L.C. van der Gaag (2002). On the complexity
of the MPA problem in probabilistic networks. In: F. van harmelen, editor. Pro-
ceedings of the 15th European Conference on Artificial Intelligence, IOS Press, pp.
675 – 679.

6. J.D. Park, A. Darwiche (2004). Complexity results and approximation settings for
MAP explanations. Journal of Artificial Intelligence Research, vol. 21, pp. 101 –
133.

7. E. Charniak, S.E. Shimony (1994). Cost-based abduction and MAP explanation.
Acta Informatica, vol. 66, pp. 345 – 374.

8. A. Abdelbar, S. Hedetniemi (1998). Approximating MAPs for belief networks is
NP-hard and other theorems. Artificial Intelligence, vol. 102, pp. 21 – 38.

9. F.V. Jensen, T.D. Nielsen (2007). Bayesian Networks and Decision Graphs,
Springer, New York.

10. C.H. Papadimitriou (1984). On the complexity of unique solutions. Journal of the
ACM, vol. 31, pp. 392 – 400.

11. M.W. Krentel (1988). The complexity of optimization problems. Journal of Com-
puter and System Sciences, vol. 36, pp. 490 – 509.

12. S. Toda (1994). Simple characterizations of P(#P) and complete problems. Journal
of Computer and System Sciences, vol. 49, pp. 1 – 17.

13. J.H.P. Kwisthout (2009). The Computational Complexity of Probabilistic Networks.
PhD thesis, Universiteit Utrecht.

14. C.H. Papadimitriou (1994). Computational Complexity. Addison-Wesley, Reading.
15. D. Roth (1996). On the hardness of approximate reasoning. Artificial Intelligence,

vol. 82, pp. 273 – 302.

