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The traveling salesperson problem (TSP; traditionally
referred to as the traveling salesman problem) can be in-
formally described as follows. For a given set of points
and costs between each pair of points, find a cheapest
tour that visits each point exactly once. In the Euclidean
version of the traveling salesperson problem (E-TSP),
the points are positioned in the Euclidean plane and the
costs are the distances implied by the Euclidean geome-
try. The study presented by MacGregor and Ormerod
(1996) is one of the first psychological studies that ex-
plicitly and primarily focuses on human performance on
E-TSP (but see also Polivanova, 1974). Their study has
motivated further psychological research on the topic
and has initiated a debate about what strategy people use
in solving visually presented E-TSP instances1 (Graham,
Joshi, & Pizlo, 2000; MacGregor, Ormerod, & Chroni-
cle, 1999, 2000; Ormerod & Chronicle, 1999; Vickers,
Butavicius, Lee, & Medvedev, 2001; see also Lee & Vick-
ers, 2000, for a commentary on MacGregor & Ormerod,
1996, and see MacGregor & Ormerod, 2000, for a reply).

MacGregor and Ormerod (1996) proposed the convex-
hull hypothesis, which states that people use the convex
hull as part of their strategy to construct E-TSP tours.
The convex hull of a set of points in the plane is the
smallest convex polygon that encloses all the points in
the set (the points on the convex hull are also called
boundary points and the remaining points are then called

interior points; see Figure 1). The convex-hull hypothe-
sis is based on the assumptions that (1) people can iden-
tify the convex hull of a point set in the plane via an au-
tomatic perceptual process, and (2) people are sensitive
to the principle that optimal tours connect points on the
convex hull in order of adjacency (see also MacGregor
et al., 1999, 2000; Ormerod & Chronicle, 1999).

The purpose of this commentary is to point out the ab-
sence of evidence for the convex-hull hypothesis in the
literature on human performance on E-TSP. We further
suggest an alternative hypothesis, the crossing-avoidance
hypothesis.

A CROSSING-FREE TOUR THAT RESPECTS
THE CONVEX HULL IS NO SURPRISE

MacGregor and Ormerod (1996) found that tours pro-
posed by human participants tend to connect convex-hull
points in order, and claimed that this finding provides evi-
dence for the convex-hull hypothesis (see also Graham
et al., 2000; MacGregor et al., 1999, 2000; Ormerod &
Chronicle, 1999). We show that, because tours produced
by participants seldom contain crossings, this conclusion
is not warranted.

We start by stating two observations.

Observation 1a. A tour that does not follow the con-
vex hull contains at least one crossing.

For an illustration of a proof refer to Figure 1. Note that
Observation 1a is equivalent to Observation 1b.

Observation 1b. A tour that does not contain any
crossings follows the convex hull.

Observation 2. There exist tours with at least one
crossing that follow the convex hull.

Consistent with Observations 1 and 2, MacGregor and
Ormerod (1996, pp. 531–532) wrote: “Failure to connect
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boundary points in order of adjacency automatically cre-
ates a solution with crossed arcs. However, crossed arcs
can also occur when boundary points are connected in
order.” Inconsistent with Observation 1, they further re-
ported that “almost invariably, subjects connected bound-
ary points in order of adjacency and, equally invariably
produced no crossed arcs” (p. 536). This last sentence
seems to state two independent findings. In a similar vein,
MacGregor et al. (2000, p. 1184) enumerated the main
findings of MacGregor and Ormerod (1996), with one
point being that “people produce paths that connect
boundary points in sequential order of adjacency (449 of
455 solutions adhered to this principle),” and another,
again seemingly independent point being that “few solu-
tions have lines that cross (11 of the 455 solutions).” Note,
however, that the fact that 444 of the proposed tours con-
tain no crossing logically implies that these 444 tours visit
the boundary points in order of adjacency (Observation 1).
Therefore the finding that the majority of the subjects
connected boundary points in order of adjacency is no sur-
prise, but a logical consequence of the fact that the ma-
jority of tours have no crossings. In other words, these two
findings are not independent empirical findings.

DO TOURS WITH CROSSINGS FOLLOW
THE CONVEX HULL?

Observation 1 implies that we have to consider tours
with crossings to provide evidence for the hypothesis that

people aim at following the convex hull (Table 1). Table 2
gives an overview of the number and proportion of tours
with crossings2 that follow the convex hull, for Experi-
ments 1 and 2 of MacGregor and Ormerod (1996), Ex-
periments 1, 2, and 3 of MacGregor et al. (1999), the op-
timization group (Group O) in Experiment 1 of Vickers
et al. (2001), and the adult group in the experiment by
Schactman (2002).3 For ease of presentation, the data in
Table 2 are collapsed over instances and participants
within each experiment. We note that the occurrence of
crossings does not seem to be strictly instance specific,
nor does the failure to avoid crossings seem to be strictly
participant specific. Namely, for 3 of the 6 instances in
Experiment 1, for 4 of the 7 instances in Experiment 2 of
MacGregor and Ormerod (1996), for 5 of the 6 instances
of Vickers et al. (2001), and for 8 of the 15 instances of
Schactman (2002), at least one tour with crossings was
observed. The tours with crossings in Experiments 1 and
2 in MacGregor and Ormerod (1996) were produced by
5 and 1 participants, respectively, in Vickers et al. (2001)
by 7 participants, and in Schactman (2002) by 4 partici-
pants.

Table 2 shows that overall about 38% of the tours with
crossings visited the convex-hull points in order of adja-
cency. From Table 2 we can conclude that there is no ev-
idence of a tendency to follow the convex hull.

IS THERE EVIDENCE FOR THE CONVEX-
HULL HYPOTHESIS IN THE LITERATURE?

In the literature seven findings are presented as evidence
for the convex-hull hypothesis (MacGregor & Ormerod,
1996; MacGregor et al., 1999, 2000): (1) People tend to
follow the convex hull, (2) response uncertainty is a
function of the number of interior points, (3) people tend
to produce tours without crossings, (4) people tend to
produce tours with relatively few indentations (an in-
dentation in a tour occurs if at least one interior point is
visited between two boundary points), (5) performance
is better when interior points are located relatively close
to the convex hull than when they are located far away
from the convex hull, (6) tours produced by a convex-
hull heuristic (see MacGregor et al., 2000) are close in
length to tours produced by humans, and (7) this heuris-
tic’s performance is qualitatively similar to human per-
formance. We have argued above that Finding 1 does not

Figure 1. An illustration of what happens when convex-hull
points are not connected in order of adjacency. Given a set of
points P, with boundary points b1, b2, … , b5 and interior points i1 ,
i1 , …, i5 . In this example, a path is created from boundary
point b1 , via interior point i2, to boundary point b3 , without vis-
iting boundary point b2 between b1 and b3 . Note that this path di-
vides the set of points in two subsets P1 (white + gray points) and
P2 (black + gray points), with P1 Ç P2 = {b1 , i2 , b3} (gray points).
Since the tour has to visit all the points in P, to complete the tour
at least one edge must eventually cross the path from b1 to i2 , to
b3 , in order to come from P1 to P2 , or vice versa.

Table 1
The Three Conjunctions of Findings for Tour Crossings
(Yes/No) and Tours Following the Convex Hull (Yes/No) 

That Are Possible

Tour Has Tour Follows Convex-Hull Crossing-Avoidance
Crossings Convex Hull Hypothesis Hypothesis

Yes Yes + 2
Yes No 2 2
No Yes n +

Note—For each conjunction it is indicated whether it constitutes evidence
for (+), evidence against (2), or evidence neither for nor against (n) the
convex-hull hypothesis and/or the crossing-avoidance hypothesis.
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provide evidence for the convex-hull hypothesis. In the
following we argue that this also holds for Findings 2–7.

As MacGregor and Ormerod argued (1996, p. 528), if
the tour is constrained to follow the convex hull, then de-
creasing the number of interior points (while keeping the
total number of points fixed) reduces the degrees of free-
dom for connecting the points. We have shown that the
absence of crossings implies a tour that follows the con-
vex hull. Thus, Finding 2 is also a consequence of Find-
ing 3. Finding 3 does not provide evidence for the convex-
hull hypothesis, simply because following the convex-hull
points in order of adjacency does not prevent crossings
(Observation 2). As pointed out by MacGregor and
Ormerod (1996; see also Lee & Vickers, 2000) and Mac-
Gregor et al. (2000), given the highly constrained nature
of the stimuli used, Findings 4 and 5 may be artifacts.
Because the optimal tours for the instances used by Mac-
Gregor and Ormerod (1996) all had very few indenta-
tions (see, e.g., Figure 1 in Ormerod & Chronicle, 1999),
Finding 4 follows directly from the close to optimal per-
formance by participants on these instances. We further
note that Finding 4 is unlikely to be replicated with ran-
dom instances, since connecting boundary points to each
other is in general clearly a nonoptimal strategy. To
argue that Finding 6 does not provide evidence for the
convex-hull hypothesis, we note that human perfor-
mance in the considered experiments is close to opti-
mal. Any heuristic that models human performance will
have to produce close to optimal tours (and thus close to
human performance). Thus comparing only lengths of
tours produced by humans and heuristics is not infor-
mative about the strategy of humans. We studied the
convex-hull heuristic (cheapest insertion criterion) de-
scribed by MacGregor et al. (2000, pp. 1184–1186) and
disagree that it qualitatively models human behavior
(Finding 7). MacGregor et al. (2000) distinguished be-

tween sketched and connected arcs. The heuristic allows
the construction of a closed path consisting of connected
arcs only, even before all interior points are included in
the tour (see Figure 2 for an illustration). As a conse-
quence, it can happen that the heuristic visits certain
points (and arcs) several times before the tour is com-
pleted. Also, previously connected arcs may need to be
disconnected and replaced by a subpath in order to com-
plete the tour. This behavior of the heuristic is inconsis-
tent with the motivation of MacGregor et al. (2000) to
model the sequential character of tour construction by
humans.

THE CROSSING-AVOIDANCE HYPOTHESIS

We have shown that the low proportion of tours with
crossings begs for an explanation, not the high propor-
tion of tours that respect the convex hull (see Observa-
tion 1). As noted, the convex-hull hypothesis does not
explain the low proportion of tours with crossings (see
Observation 2). Therefore, we propose the crossing-
avoidance hypothesis. This hypothesis states that hu-
mans aim to avoid crossed lines in the plane when trying
to solve E-TSP because they are sensitive to the fact that
tours with crossed lines are nonoptimal.

Here we argue that the observation that crossings are
nonoptimal is more elementary than the observation that
optimal tours follow the convex hull. Consequently, it
seems more plausible to assume that people are at least
sensitive to the fact that optimal tours have no crossings.
We note the following observation.

Observation 3. A tour that contains at least one
crossing is nonoptimal (Flood, 1956).

Notice that Observation 3 follows directly from the
triangle inequality that holds in the Euclidean plane

Table 2
Descriptives for Tours With Crossings From Previous Research

No. Tours
With Crossings No. Tours

No. Tours That Follow With
Total No. With Crossings Convex Hull Nonphysical

Study Instances No. Prop. No. Prop. Crossings

MacGregor & Ormerod (1996)
Experiment 1 ,315 5 0.02 0 0.00 0
Experiment 2 ,140 6 0.04 5 0.83 0

MacGregor et al. (1999)
Experiment 1 ,103 20 0.19 6 0.30 11
Experiment 2 , 34 2 0.06 1 0.50 0
Experiment 3 ,856 65 0.08 23 0.35 4

Vickers et al. (2001)
Experiment 1 (Group O) ,108 9 0.08 3 0.33 2

Schactman (2002)
Adult group ,270 10 0.04 7 0.70 0

Total 1,826 117 0.06 45 0.38 16

Note—The process by which stimuli were generated was not homogeneous across studies. In
Experiments 1 and 2 of MacGregor and Ormerod (1996) and in Experiment 3 of MacGregor
et al. (1999), the process can be characterized as random with strong constraints, in Experi-
ment 2 of MacGregor et al. (1999) as nonrandom, and in Experiment 1 of MacGregor et al.
(1999), Vickers et al. (2001), and Schactman (2002) as random.
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(Figure 3). Simply put, a crossing is nonoptimal because
one can always replace the two crossed arcs by two
shorter ones. From Observations 1 and 3 we can con-
clude:

Corollary 1. An optimal tour follows the convex
hull (Golden, Bodin, Doyle, & Stewart, 1980).

We have shown that the property that an optimal tour
does not contain any crossings is indeed more elemen-
tary than the property that an optimal tour follows the
convex hull because the latter derives from the former.
MacGregor et al. (2000, p. 1184) stated the issue back-
wards when they wrote that “the optimal path connects
adjacent points on the boundary of the convex hull in se-
quence . . . A corollary is that solutions that do not ad-
here to this principle will result in crossed arcs, which is
clearly nonoptimal.” The fact that tours that do not fol-
low the convex hull have crossings is in no sense a corol-
lary of the fact that optimal tours follow the convex hull.
Instead, the fact that optimal tours follow the convex hull
is implied by Observations 1 and 3. Note that MacGregor
et al. (2000) stated explicitly that crossings are clearly
nonoptimal (see also Flood, 1956, p. 64). Also Ormerod
and Chronicle (1999, p. 1236), who performed experi-
ments in which participants had to judge whether a pre-
drawn tour was optimal or not, considered crossings as
indicators of nonoptimality. The nonoptimality of tours
with crossings seems intuitive, because it follows di-
rectly from a very basic and visually transparent prop-
erty of the Euclidean plane; that is, the shortest path be-
tween two points is a straight line. Therefore it is
plausible to assume that people try to avoid crossings
when searching for a shortest path or tour.

The crossing-avoidance hypothesis has another ad-
vantage: It is more generally applicable than the strategy
of following the convex hull. As pointed out by Graham
et al. (2000, p. 1197), a convex-hull strategy is poten-
tially useful only in E-TSP, but not in “other spatial prob-
lems, such as finding a shortest path between start and a

Figure 2. A point set (left), with x- and y-coordinates given for each point (right). The points
are numbered in the order in which the heuristic of MacGregor et al. (2000) visits them. Point 1
is the starting point and the direction of travel is counterclockwise. Before Point 8 is inserted,
it is closer to the convex-hull edge (1,2) than to any other sketched or connected edge. How-
ever, the heuristic will not include Point 8 on the first round, because Point 6 is even closer to
the edge (1,2). As a result, the tour has already been closed before Interior Point 8 is inserted.
To include Point 8, Point 1 has to be revisited, and the edge (1,2) has to be removed and re-
placed by the subpath consisting of edges (1,8) and (8,2) (dashed lines). We note that the ex-
ample uses the smallest number of interior points to demonstrate the problematic behavior
of the heuristic. There are instances with more interior points such that this problem even
occurs independently of the starting point picked (see MacGregor et al., 2000, for the defin-
ition of close as used by their cheapest insertion criterion).

Figure 3. A tour T on some point set P with two edges (u, v) and
(w, z) that cross in a point s Ï P. We can create a tour T ¢ by delet-
ing (u, v) and (w, z) from T and replacing them by (u, z) and (v, w)
(dashed lines). Since d(u, s) + d(s, z) > d(u, z) and d(w, s) + d(s, v) >
d(v, w), we know that T ¢ is shorter than T.
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goal.” Clearly, crossing avoidance is also a good strategy
in the latter situation, as well as for problems like mini-
mum Euclidean spanning tree and minimum Euclidean
Steiner tree (see, e.g., Garey & Johnson, 1979, for prob-
lem definitions).

We briefly comment on a possible problem for inter-
pretation of the low proportion of tours with crossings
that we found when inspecting the raw data from previ-
ous experiments. We noticed that some participants pro-
duced tours with crossings that were not crossings in a
physical sense. That is, a straight line between the two
points in question would have produced a crossing, but
the participant had chosen to make a detour (i.e., a curved
line) so that no physical crossing occurred. The last col-
umn in Table 2 lists the frequency of occurrences of such
“nonphysical crossings” for each study. The observation
of such nonphysical crossings suggests that some partici-
pants may misconstrue their task as being the task of find-
ing a tour without lines that cross in the plane.4 Such task
misconstruals are common dangers in psychological ex-
periments, and the formulation of E-TSP certainly allows
for misinterpretation on the participant’s side. For exam-
ple, a participant may (unconsciously) infer that he/she is
not supposed to make crossings from the fact that the ex-
perimenter did not explicitly say that crossings were al-
lowed. Also, it is possible that for some people the word
tour may have the connotation of being a closed path
without any crossings. This is not to say that if people
would understand their task properly that they would not
still tend to avoid crossings (we believe they would). It just
draws attention to the importance of making sure that the
task is properly understood, to prevent unwarranted attri-
bution of insightfulness on the part of participants.

CONCLUSION

The convex-hull hypothesis proposes that people aim
at following the convex hull when attempting to solve
E-TSP instances. One of the main findings presumed to
provide support for this hypothesis is that most tours pro-
duced by people follow the convex hull (MacGregor &
Ormerod, 1996; MacGregor et al., 1999, 2000). We have
shown that this finding does not necessarily provide any
evidence for the idea that people aim at following the
convex hull; studies have not taken into account the fact
that most tours produced by people are crossing free.
Namely, a tour that is crossing free by definition follows
the convex hull. The only way to show that tours pro-
duced by people follow the convex hull because of a rea-
son other than being crossing free is to inspect specifi-
cally tours with crossings. We have shown in Table 2 that
there is no evidence that such tours tend to follow the
convex hull. We also discussed the problematic nature of
the other findings that MacGregor and Ormerod (1996)
and MacGregor et al. (1999, 2000) claimed are (indirect)
support for the convex-hull hypothesis. Contrary to what
these authors suggest, we conclude that at the present
time there is no evidence for the convex-hull hypothesis.

Finally, we argued that the low proportion of observed
tours with crossings invites our crossing-avoidance hy-
pothesis. This hypothesis proposes that people aim at
avoiding crossings when attempting to solve E-TSP in-
stances. Unlike the convex-hull hypothesis, the crossing-
avoidance hypothesis explains the observation that most
of the tours produced by people are crossing free. We
further argued that this hypothesis is, a priori, at least as
plausible as the convex-hull hypothesis.

Of course, the convex-hull hypothesis and crossing-
avoidance hypothesis are not mutually exclusive. Some
preliminary evidence for both the convex-hull hypothe-
sis and the crossing-avoidance hypothesis may be found
in verbal reports by participants in the studies by Poli-
vanova (1974) and Vickers et al. (2001). To further test
these hypotheses, online monitoring of human strategies
as well as verbal protocols may prove more useful.
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NOTES

1. The word instance is used to refer to a particular instantiation of
the E-TSP problem (i.e., a particular set of points for which one is to
find a shortest tour), whereas the word problem is used to refer to the
generic problem, E-TSP (i.e., given a set of points find a shortest tour).

2. Also revisiting a point, traversing an edge more than once, or a
nonphysical crossing was scored as a crossing.
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3. In Schactman (2002) 18 adults were presented with 15 random
point sets, with 5, 10, or 15 points. Point sets were presented on paper
and participants were instructed to draw the shortest possible tour
through the set of points. Performance of the adult group was compa-
rable to that observed in previous studies. That is, mean deviation from
optimal (defined as, [observed tour length2optimal tour length] / op-
timal tour length) was generally low and increased with problem size

(M = 0.016, M = 0.020, and M = 0.027, for the 5-, 10-, and 15-point in-
stances, respectively).

4. Interestingly, the lowest proportion of tours with crossings (only 1
out of 1,260 tours) was found by Graham et al. (2000) in an experiment
in which it was impossible for participants to draw curved lines (i.e.,
Graham et al. used a computer interface that allowed people to connect
points only by straight lines).
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