
Tractable Cognition: 

Complexity Theory in Cognitive Psychology 
 

by 
 

Iris van Rooij 

M.A., Katholieke Universiteit Nijmegen, 1998 

 
A Dissertation Submitted in Partial Fulfillment of the  

Requirements for the Degree of  

 
DOCTOR OF PHILOSOPHY 

 
in the Department of Psychology 

 
We accept this dissertation as conforming 

to the required standard 

 
 

Dr. H. Kadlec, Supervisor (Department of Psychology) 

 

Dr. U. Stege, Supervisor (Department of Computer Science) 

 
Dr. M. E. J. Masson, Departmental Member (Department of Psychology) 

 

Dr. H. A. Müller, Outside Member (Department of Computer Science) 

 

Dr. M. R. Fellows, External Examiner (School of Electrical Engineering and Computer  
Science, University of Newcastle) 

 
© Iris van Rooij, 2003 
University of Victoria 

 

All rights reserved. This dissertation may not be reproduced in whole or in part, by 

photocopying or other means, without the permission of the author. 



 ii

Supervisors: Dr. Helena Kadlec, Dr. Ulrike Stege 

 

Abstract 

 
This research investigates the import and utility of computational complexity theory in 

cognitive psychology. A common conception in cognitive psychology is that a cognitive 

system is to be understood in terms of the function that it computes. The recognition that 

cognitive systems—being physical systems—are limited in space and time has led to the 

Tractable Cognition thesis: only tractably computable functions describe cognitive 

systems. This dissertation considers two possible formalizations of the Tractable 

Cognition thesis. The first, called the P-Cognition thesis, defines tractability as 

polynomial-time computability and is the dominant view in cognitive science today. The 

second, called the FPT-Cognition thesis, is proposed by the author and defines tractability 

as fixed-parameter tractability for some “small” input parameters. The FPT-Cognition 

thesis is shown to provide a useful relaxation of the P-Cognition thesis. To illustrate how 

the FPT-Cognition thesis can be put into practice, a set of simple but powerful tools for 

complexity analyses is introduced. These tools are then used to analyze the complexity of 

existing cognitive theories in the domains of coherence reasoning, subset choice, binary-

cue prediction and visual matching. Using psychologically motivated examples, a 

sufficiently diverse set of functions, and simple proof techniques, this manuscript aims to 

make the theory of classical and parameterized complexity tangible for cognitive 

psychologists. With the tools of complexity theory in hand a cognitive psychologist can 

study the a priori feasibility of cognitive theories and discover interesting and potentially 

useful cognitive parameters. Possible criticisms of the Tractable Cognition thesis are 

discussed and existing misconceptions are clarified. 
 

Examiners: 

 

Dr. H. Kadlec, Supervisor (Department of Psychology) 

 

Dr. U. Stege, Supervisor (Department of Computer Science) 

 



 iii

Dr. M. E. J. Masson, Departmental Member (Department of Psychology) 

 

Dr. H. A. Müller, Outside Member (Department of Computer Science) 

 

Dr. M. R. Fellows, External Examiner (School of Electrical Engineering and Computer  
Science, University of Newcastle) 
 
 
 
 

 
 



 iv

Table of Contents 

Abstract ...............................................................................................................................ii 

Table of Contents ............................................................................................................... iv 

List of Tables....................................................................................................................viii 

List of Figures .................................................................................................................... ix 

Acknowledgements ............................................................................................................xi 

Preface................................................................................................................................. 1 

Note to the Reader ........................................................................................................... 2 

Overview.......................................................................................................................... 3 

Chapter 1. Psychological Theories as Mathematical Functions .................................... 4 

1.1. What is a Cognitive Task? ..................................................................................... 4 

1.2. Task-Oriented Psychology..................................................................................... 5 

1.3. Levels of Psychological Explanation..................................................................... 7 

1.4. Motivation and Research Question........................................................................ 9 

Chapter 2. Problems, Algorithms, Computability and Tractability............................. 10 

2.1. Classes of Problems ............................................................................................. 10 

2.1.1. Search, Decision and Optimization problems ............................................... 10 

2.1.2. Illustrations in Cognitive Theory .................................................................. 12 

2.2. Formalizing Computation .................................................................................... 14 

2.2.1. The Intuitive Notion of a Computation ......................................................... 14 

2.2.2. The Turing Machine Formalism ................................................................... 15 

2.2.3. Extensions of the Turing Machine Concept.................................................. 17 

2.3. The Church-Turing Thesis................................................................................... 18 

2.3.1. Criticisms ...................................................................................................... 20 

2.4. Computational Complexity.................................................................................. 21 

2.4.1. Time-complexity and Big-Oh........................................................................ 21 

2.4.2. Illustrating Algorithmic Complexity............................................................. 23 

2.4.3. Problem Complexity ..................................................................................... 27 

2.4.4. The Invariance Thesis ................................................................................... 28 

2.5. The Tractable Cognition Thesis........................................................................... 29 

Chapter 3. P-Cognition versus FPT-Cognition............................................................ 31 



 v

3.1. Classical Complexity and Classical Tractability ................................................. 31 

3.2. The Theory of NP-completeness ......................................................................... 33 

3.2.1. The classes P and NP .................................................................................... 33 

3.2.2. Illustrating polynomial-time reduction.......................................................... 35 

3.3. The P-Cognition thesis......................................................................................... 39 

3.3.1. P-Cognition in Psychological Practice.......................................................... 40 

3.3.2. A Comment on Psychological Practice......................................................... 41 

3.4. Parameterized Complexity and Fixed-Parameter Tractability............................. 42 

3.4.1. The classes FPT and W[1] ............................................................................ 42 

3.4.2. Illustrating Fixed-parameter Tractability ...................................................... 45 

3.5. The FPT-Cognition thesis .................................................................................... 46 

3.5.1. FPT-Cognition in Psychological Practice ..................................................... 48 

Chapter 4. Techniques in Parameterized Complexity ................................................. 50 

4.1. Reduction Rules ................................................................................................... 50 

4.2. Reduction to Problem Kernel............................................................................... 56 

4.3. Bounded Search Tree........................................................................................... 58 

4.4. Alternative Parameterizations.............................................................................. 64 

4.4.1. Implicit Parameters ....................................................................................... 64 

4.4.2. Relational Parameterization .......................................................................... 65 

4.4.3. Multiple-parameter Parameterizations .......................................................... 69 

4.5. Crucial Sources of Complexity............................................................................ 73 

4.6. Parametric reduction ............................................................................................ 74 

4.7. The Parametric Toolkit and Beyond .................................................................... 78 

Chapter 5. Coherence .................................................................................................. 79 

5.1. Coherence as Constraint Satisfaction................................................................... 79 

5.2. Coherence as Cognitive Theory........................................................................... 81 

5.3. Coherence is NP-hard .......................................................................................... 83 

5.4. Reflections on the NP-hardness of Coherence..................................................... 85 

5.4.1. Special Cases of Coherence .......................................................................... 85 

5.4.2. Generalizations of Coherence ....................................................................... 90 

5.4.3. Variations on Coherence ............................................................................... 91 



 vi

5.5. c-Coherence is in FPT.......................................................................................... 94 

5.5.1. Double-Constraint Coherence ....................................................................... 94 

5.5.2. Reduction Rules ............................................................................................ 95 

5.5.3. A Problem Kernel........................................................................................ 102 

5.6. A Constructive fpt-Algorithm for c-Coherence................................................. 103 

5.6.1. A Problem Kernel for Connected Networks ............................................... 104 

5.6.2. A General Problem Kernel.......................................................................... 104 

5.7. |C−|-Coherence is in FPT.................................................................................... 106 

5.7.1. Annotated Coherence .................................................................................. 107 

5.7.2. Branching into Pos-Annotated Coherence .................................................. 108 

5.7.3. Pos-Annotated Coherence is in P ................................................................ 109 

5.7.4. An fpt-algorithm for |C−|-Annotated Coherence ......................................... 113 

5.8. Conclusion ......................................................................................................... 114 

Chapter 6. Subset Choice........................................................................................... 116 

6.1. Subset Choice as Hypergraph Problem.............................................................. 116 

6.1.1. Notation and Terminology .......................................................................... 117 

6.2. Subset Choice as Cognitive Theory................................................................... 119 

6.3. Subset Choice is NP-hard .................................................................................. 122 

6.4. Subset Choice on Unit-weighted Conflict Graphs............................................. 128 

6.4.1. p-UCG Subset Choice is W[1]-hard............................................................ 128 

6.4.2. Subset Rejection and Parameter q ............................................................... 129 

6.4.3. q-UCG Subset Choice is in FPT ................................................................. 130 

6.4.4. Improved Results for q-UCG Subset Choice .............................................. 135 

6.5. Generalizing q-UCG Subset Choice .................................................................. 136 

6.5.1. q-ECG Subset Choice is in FPT.................................................................. 137 

6.5.2. q-VCG Subset Choice is W[1]-hard............................................................ 137 

6.5.3. {q, ΩV}-CG Subset Choice is in FPT ......................................................... 139 

6.5.4. {q, ΩV, ε}-CH Subset Choice is in FPT...................................................... 143 

6.6. Crucial Sources of Complexity.......................................................................... 146 

6.7. Surplus Subset Choice ....................................................................................... 149 

6.8. Subset Choice when Size Matters...................................................................... 151 



 vii

6.9. Conclusion ......................................................................................................... 153 

Chapter 7. Cue Ordering and Visual Matching ......................................................... 155 

7.1. Min-Incomp-Lex................................................................................................ 155 

7.1.1. Motivation: Binary-Cue Prediction............................................................. 155 

7.1.2. Notation, Terminology and Problem Definition ......................................... 158 

7.1.3. Classical and Parameterized Complexity.................................................... 161 

7.2. Bottom-up Visual Matching .............................................................................. 167 

7.2.1. Motivation: Visual Search........................................................................... 167 

7.2.2. Notation, Terminology and Problem Definition ......................................... 170 

7.2.3. Classical and Parameterized Complexity.................................................... 171 

7.3. Conclusion ......................................................................................................... 174 

Chapter 8. Synthesis and Potential Objections.......................................................... 176 

8.1. Synthesis ............................................................................................................ 176 

8.2. Potential Objections ........................................................................................... 177 

8.2.1. The Empiricist Argument............................................................................ 178 

8.2.2. The Cognition-is-not-Computation Argument............................................ 178 

8.2.3. The Super-Human Argument ...................................................................... 180 

8.2.4. The Heuristics Argument ............................................................................ 181 

8.2.5. The Average-case Argument....................................................................... 182 

8.2.6. The Parallelism Argument .......................................................................... 182 

8.2.7. The Non-Determinism Argument ............................................................... 184 

8.2.8. The Small-Inputs Argument........................................................................ 185 

8.2.9. The Nothing-New Argument ...................................................................... 185 

8.2.10. The P-is-not-strict-enough Argument ......................................................... 186 

Chapter 9. Summary and Conclusions ...................................................................... 188 

9.1. Metatheoretical Contributions ........................................................................... 188 

9.2. Theory Specific Contributions........................................................................... 189 

9.3. Musings on the Future ....................................................................................... 193 

References ....................................................................................................................... 195 

Appendix A: Notation and Terminology for Graphs ...................................................... 204 

Appendix B: A Compendium of Problems ..................................................................... 209 



 viii

List of Tables 

 

Table 2.1. Classical tractability and intractability............................................................. 32 

Table 2.2. Fixed-parameter tractability and intractability................................................. 46 

Table 6.1. Overview of special value-structures. ............................................................ 118 

Table 6.2. Overview of input parameters for Subset Choice. ......................................... 119 

Table 9.1. Overview of complexity results ..................................................................... 190 

 



 ix

List of Figures 

 

Figure 2.1. Illustration of a Turing machine. .................................................................... 16 

Figure 2.2. Illustration of the Church-Turing Thesis. ....................................................... 19 

Figure 2.3. Illustration of the Exhaustive Vertex Cover algorithm................................... 26 

Figure 2.4. Illustration of the Tractable Cognition thesis. ................................................ 30 

Figure 3.1. The view of NP on the assumption that P ≠ NP. ............................................ 35 

Figure 3.2. Illustration of the reduction in Lemma 3.1. .................................................... 37 

Figure 3.3. Illustration of the P-Cognition Thesis............................................................. 39 

Figure 3.4. The view of W[1] on the assumption that FPT ≠ W[1]. ................................. 43 

Figure 3.5. Illustration of the relationship between classes W[1], FPT, P and NP........... 44 

Figure 3.6. Illustration of the FPT-Cognition thesis. ........................................................ 47 

Figure 4.1. Illustration of reduction rules (VC 1) – (VC 5) for Vertex Cover. ................. 51 

Figure 4.2. Illustration of rule (VC 6) and the intuition behind its proof.......................... 57 

Figure 4.3. Illustration of branching rules (VC 7) and (VC 8).......................................... 60 

Figure 4.4. Illustration of branching rule (IS 1). ............................................................... 72 

Figure 4.5. Illustration of the reduction in Lemma 4.2. .................................................... 75 

Figure 5.1. Example of a Coherence poblem.................................................................... 83 

Figure 5.2. Illustration of the reduction rules for Double-Constraint Coherence. ............ 97 

Figure 5.3. Illustration of reduction rules (AC 2) and (AC 3). ....................................... 111 

Figure 6.1. Example of a Subset Choice problem........................................................... 121 

Figure 6.2. Illustration of the reduction in Lemma 6.3. .................................................. 126 

Figure 6.3. Illustration of branching rule (UCG 1) for UCG Subset Choice. ................. 133 

Figure 6.4. Illustration of the reduction in Lemma 6.5. .................................................. 138 

Figure 6.5. Illustration of branching rule (CG 1). ........................................................... 143 

Figure 7.1. Illustration of a binary-cue prediction task. .................................................. 156 

Figure 7.2. Illustration of a visual search task................................................................. 167 

Figure 7.3. Illustration of a visual matching task............................................................ 168 

Figure 7.4. Illustration of Top-down or Bottom-up Visual Matching ............................ 169 

Figure 8.1. Polynomial time versus fpt-time................................................................... 186 

Figure A1. An illustration of a graph. ............................................................................. 204 



 x

Figure A2. An illustration of a connected graph............................................................. 207 

Figure A3. An illustration of a forest. ............................................................................. 207 

Figure A4. An illustration of a tree. ................................................................................ 208 

 

 



 xi

Acknowledgements 
 

Four years ago I decided to leave the Netherlands and come to Canada to complete my 

education and to embark upon an interdisciplinary research project at the intersection of 

cognitive psychology and theoretical computer science. This decision was unexpected, to 

say the least—not only because I was never much of a traveler, but also because at the 

time I knew little or nothing about theoretical computer science. It turns out that it was 

one of the best decisions I ever made. With joy I look back upon my experiences here at 

the University of Victoria and I am grateful for every day I got to spend in the beautiful 

city of Victoria. My stay here has resulted in, among other things, the dissertation that 

lies before you. I could not have realized this work without the intellectual, practical, and 

emotional support of many others.  

 First and foremost I would like to thank my two Ph.D. supervisors Helena Kadlec 

and Ulrike Stege. I am grateful to Helena for her continued support of my unorthodox 

ideas about and methods for cognitive psychological research. Being my most critical 

audience, Helena has contributed to this research in invaluable ways. I have enjoyed our 

discussions through the years and I believe that this dissertation is the better for it. Ulrike 

has taught me most (if not all) I now know about theoretical computer science. I owe to 

her training an appreciation for rigor in mathematical analysis and a new understanding 

of the role of mathematics in science. Ulrike’s enthusiasm for interdisciplinary research 

continues to be a source of inspiration for me.  

I am indebted to Mike Fellows for introducing me to the fascinating field of 

computational complexity and for being the one who made it possible for me to come to 

Victoria in the first place. Thank you, Mike, for your vision and confidence in my 

potential as a student and as a researcher.  

I thank Mike Masson and Hausi Müller for their service as committee members 

and their constructive comments on my work. 

My intellectual development over the years has been shaped by and profited from 

interactions with many other researchers. In particular, I thank: Pim Haselager and Raoul 

Bongers (my M.A. supervisors at the University of Nijmegen), Jelle van Dijk, Piet Smit, 

Gert-Jan Bleeker and Andre de Groot (members of Pim’s EEC group), Michelle Arnold 



 xii

and Cindy Bukach (my fellow students and dear friends), Allan Scott, Parissa Agah, and 

Fei Zhang (members of Ulrike’s research group), Steve Lindsay, Mike Masson, Dan Bub, 

David Mandel, Mandeep Dhami and the other members of the Cognitive group at the 

University of Victoria.  

I also thank Steve Lindsay for coordinating the weekly Cognitive Seminar at the 

University of Victoria: It has (further) opened my eyes to the beauty and variety of 

cognitive research. On several occasions I have had the opportunity to present my own 

research in this seminar and I have found the consistent enthusiasm and interest with 

which my work has been received truly rewarding.  

I thank my brother and ultimate role model, Tibor, for bringing me to Victoria. I 

thank him and his wife Andrea for making a foreign country feel like home. This 

dissertation is dedicated to their children: my nephew Ronan and my niece Somerset.  

I am grateful to my parents, Peter and Emöke, for their unwavering confidence in 

me. I am sure they are proud and, above all, happy that I am returning to the Netherlands.  

So too will be my all-time comrade Judith. I owe to her, and our friend Nique, a 

sense of history that I lacked for too long. The distance between us during the last four 

years has disrupted the regularity of our philosophical discussions, but importantly, not 

our friendship.  

Last, but certainly not least, I thank my wife Denise for her endless love and 

support. There are no words to express my gratitude for the last 7 years with her and the 

many more years to come.  

 

 

 

 

  

 



 xiii

 

 

 

 

To Ronan and Somerset, whom I miss very much 
 
 



Preface 
 

Cognitive systems are often thought of as information-processing or computational 

systems, i.e., cognitive processes serve to transform inputs into outputs. On this view, the 

psychologist’s job is to single out the (mathematical) function that captures the input-

output behavior of the system under study. The question driving the present study is: 

What kinds of functions can (not) be computed by cognitive systems? This question is of 

great importance for all computational approaches to cognition, because its answer will 

ultimately determine which psychological theories are realistic from a computational 

perspective and, more importantly, which are not. 

In order to answer the question raised, a precise definition of computation is 

required. In 1936, Alan Turing provided a now widely accepted formalization of the 

notion of computation. Turing believed that, with his formalization, he had discovered 

the theoretical boundaries on the ability of humans to compute functions. Following 

Turing, the early cognitive scientists considered computability the only real theoretical 

constraint on cognitive theories.  

Later an appreciation arose in computer science for the difference between 

‘computable in principle’ and ‘computable in practice,’ leading to the development of 

computational complexity theory in the 1970s. Complexity theorists have argued that 

functions that are computable, in Turing’s sense, may not be tractably computable; 

meaning that no realistic physical machine can be expected to compute those functions in 

a reasonable amount of time.  

In recent years, cognitive scientists have started to use computational complexity 

theory in analyzing psychological theories and many of them (explicitly or implicitly) 

view computational tractability as a real constraint on human computation. It is this latter 

development that motivates this work. This work sets out to critically analyze the notion 

of computational tractability and its role in cognitive theory.  

The general purpose of this research is threefold. The first purpose is to motivate 

a theoretical discussion on computational tractability in cognitive theory and to make this 

discussion accessible for the interested cognitive psychologist. The second purpose is to 



 2

expose and clarify the dominant view of tractability in present-day cognitive science1 

based on classical complexity theory, and to propose and defend an alternative view of 

tractability based on parameterized complexity theory. The third purpose is to present 

cognitive psychologists with formal tools for analyzing the classical and parameterized 

complexity of their theories and to illustrate the use of these tools in different cognitive 

domains.  

 

Note to the Reader 

This research is inherently interdisciplinary—being situated at the crossroads of 

theoretical computer science and cognitive psychology. Nevertheless I will pitch my 

discussion particularly towards cognitive psychologists and other psychologically 

interested cognitive scientists. This is partly because I, myself, am a cognitive 

psychologist, and thus my interest in computational complexity is primarily motivated by 

psychological considerations; but also because I think that psychologists, as opposed to, 

say, artificial intelligence researchers or philosophers, have been most ignorant of 

computational complexity theory and its application to cognitive theory.  

In an attempt to give the reader a firm grip on computational complexity theory I 

will cover many more details of the mathematical theory of computation than is common 

in the psychological literature. I believe that a proper application of complexity theory in 

psychology, and a full appreciation of its unique contribution, demands more than a 

superficial understanding of this theory. For the mathematician and computer scientist 

reader I note that I will assume an introductory level knowledge of cognitive psychology, 

as well as some familiarity with computational modeling as it is practiced in cognitive 

science (see e.g. Eysenck & Keane, 1994; Stillings, Feinstein, Garfield, Rissland, 

Rosenbaum, Weisler, & Baker-Ward, 1987, for accessible introductions). Some 

awareness of philosophical issues with respect to the computational theory of mind, 

though not necessary to understand the material, may help to appreciate the wider 

                                                 
1 With the term cognitive science I mean the interdisciplinary study of cognition, 
including fields such as cognitive psychology, artificial intelligence, and philosophy of 
mind. 



 3

implications of the ideas pursued here (see e.g. Bechtel, 1988; Chalmers, 1994; Putnam, 

1975, 1994).  

 

Overview 

Chapter 1 situates the present discussion by explaining the role of cognitive function in 

psychological theory. Chapter 2 presents preliminaries of the formal theory of 

computability and complexity, and traces the development from the Church-Turing thesis 

to a first, informal formulation of the Tractable Cognition thesis. Then Chapter 3 

discusses two possible formal instantiations of the Tractable Cognition Thesis. The first 

is called the P-Cognition thesis. This thesis maintains that cognitive functions are (and 

must be) computable in polynomial time. I will show that the P-Cognition thesis is the 

dominant version of the Tractable Cognition thesis in cognitive science today. Further, I 

will argue that the P-Cognition thesis poses too strict constraints on the set of cognitive 

functions, with the risk of excluding potentially veridical cognitive theories from 

psychological investigation. As an alternative I propose and defend the FPT-Cognition 

thesis. Towards this end I introduce a new branch of complexity theory to cognitive 

psychology, called parameterized complexity theory.  

Chapter 4 presents a primer on strategies and techniques for parameterized 

complexity analysis. The following three chapters, Chapters 5, 6, and 7, each discuss 

existing cognitive theories, and subject them to critical complexity analyses using the 

techniques explained in Chapter 4. These chapters are not intended to have a final say on 

“the” complexity of the respective theories, but instead are meant to motivate healthy and 

critical discussion among cognitive scientists on how best to pursue complexity analysis 

of this type of theories. Furthermore, these chapters illustrate how rigorous complexity 

analysis of cognitive theories is possible and informative.   

Chapter 8 sets out to synthesize and evaluate the ideas and arguments expressed 

in the preceding chapters. Toward this end, I identify a set of potential objections and 

present a response to each. The final chapter, Chapter 9, summarizes the main 

contributions of this research—both at the metatheoretical level and at the level of 

specific cognitive theories—and proposes future work on the topic. 

 



 4

Chapter 1.  Psychological Theories as Mathematical Functions  

 

Cognitive psychologists are interested in understanding how humans perform cognitive 

tasks (e.g. reading words, recognizing faces, inferring conclusions from a set of premises, 

predicting future events, remembering past events). This chapter describes how cognitive 

psychologists tend to conceive of such tasks. From this we conclude that, generally, a 

cognitive task can be modeled by a function, and that a cognitive process can be 

understood as the computation of that function. I will discuss the motivation and 

generality of this conceptualization, and conclude with the question that ultimately 

motivates this work: ‘Which functions can be computed by cognitive processes?’  

 

1.1. What is a Cognitive Task? 

Cognitive tasks come in many kinds and flavors. A cognitive task may be viewed as 

prescriptive (e.g. when an experimenter instructs a participant to perform a certain task, 

or when a normative theory defines a certain goal as ‘rational’) or descriptive (e.g. when 

we view human memory as performing the task of storing information about the world, 

or when we view human perception as performing the task of constructing internal 

representations of the external world). Cognitive tasks may be high-level and/or 

knowledge rich (e.g. reasoning, language production and understanding, decision-

making) or low-level and/or knowledge poor (e.g. sensation, locomotion). Cognitive 

tasks may be subtasks (e.g. letter recognition) or supertasks (e.g. sentence reading) of 

other cognitive tasks (e.g. word reading). Finally, a cognitive task may be a task 

performed by a whole organism (e.g. a human), a part of an organism (e.g. a brain, a 

neuronal group), a group of organisms (e.g. a social group, a society), an organism-tool 

complex (e.g. a human-computer combination), or even an altogether artificial device 

(e.g. a computer).  

Typically cognitive psychologists conceive of cognitive tasks as information-

processing or computational tasks.2 Generally, such tasks can be characterized as follows: 

                                                 
2 The terms information-processing and computational system have the connotation that 
cognitive systems are assumed to be representational (e.g. Massaro & Cowan, 1993). 
Even though many (computational and non-computational) approaches to cognition 



 5

Given a state of the world i (the initial or input state), the goal is to transform state i into 

state o (the final or output state). Since, psychologists are interested in cognitive tasks 

qua generic tasks, an input state is usually seen as a particular input state (e.g. a particular 

tone, a particular word, a particular pattern of neuronal firing) belonging to a general 

class of possible input states (e.g. all perceivable tones, all English words, all possible 

patterns of neuronal firing). Further, any non-trivial task has at least two output states. If I 

= {i1, i2, ….} denotes the set of possible input states and O = {o1, o2, ….} denotes the set 

of possible output states for a given task, then we can describe the task by a function Π: I 

→ O that maps input states I to output states O. In other words, a cognitive task is 

modeled by a mathematical function.  

A system that performs a cognitive task we call a cognitive system, the mapping 

Π: I → O we call a cognitive function, and the mechanism by which the transformation 

from an input i ∈  I to output o = Π(i) is realized we call a cognitive process. We say that 

a cognitive system/process ‘computes’ a cognitive function, and we say a cognitive 

process is the ‘computation’ of the respective function. (For now the words ‘compute’ 

and ‘computation’ will be informally used. In Chapter 2 these terms will be formally 

defined). 

 

1.2. Task-Oriented Psychology 

The conceptualization of cognitive systems in terms of the tasks they perform is very 

useful and pervades psychological practice (see e.g. Eysenck & Keane, 1994, or any 

other textbook of cognitive psychology for an impression). This task-oriented approach 

makes sense both historically and methodologically.  

 First of all, theories in experimental psychology tend to be naturally task-oriented, 

because participants are typically studied in the context of specific experimental tasks. 

Furthermore, since the birth of cognitive psychology the information-processing 

                                                                                                                                                 
indeed assume some form of representationalism (whether symbolic, distributed, or 
otherwise; e.g. Haugeland, 1991; but see also Haselager, de Groot, van Rappard, 2003; 
Wells, 1996, 1998), no such assumption is necessary for an application of computability 
and complexity theory to psychological theories, and therefore, no such assumption is 
made here. Whether input and output states (or any intervening states) bear any 
representational content is irrelevant for analyzing the functional form of a task. 



 6

approach to explaining human task performance has been dominant. This approach views 

human cognition as a form of information processing—i.e., as the transformation of 

stimuli into mental representations, of mental representations into other mental 

representations, and of mental representations into responses (e.g. Massaro & Cowan, 

1993). To explain how a participant performs a cognitive task, the cognitive psychologist 

hypothesizes the existence of several cognitive systems and sub-systems, each of them 

responsible for performing a particular information-processing (sub-)task. Then the task, 

as a whole, is seen as the conglomeration of the hypothesized set of sub-tasks.  

Consider, for example, the task of detecting a tone among noise. According to 

Signal Detection Theory (SDT; Green & Swets, 1966) this task is performed by two 

cognitive sub-systems: a perceptual system and a decisional system. The perceptual 

system transduces the stimulus (e.g. either a tone among noise or noise alone) into an 

internally represented perceptual impression. This perceptual impression is usually 

modeled by a point in a one-dimensional space (but see e.g. Kadlec & Townsend, 1992, 

for extensions of SDT to multiple dimensions). The decisional system serves to make a 

decision about whether the perceptual impression provides sufficient evidence that the 

tone was present in the stimulus. It does so by defining a criterion (modeled by a critical 

point in perceptual space), and output “yes, tone is present” if the perceptual impression 

exceeds the criterion, and output “no, tone is absent” otherwise. 

The idea that cognitive systems and sub-systems serve particular purposes fits 

with both evolutionary and developmental perspectives of cognition (Anderson, 1990; 

Glenberg, 1997; Inhelder & Piaget, 1958; Margolis, 1987). This conceptualization of 

cognition has also proven useful in the area of cognitive neuropsychology, where double 

dissociation3 methodology is being used to “carve-up” the human brain into modules, 

each module presumably responsible for a particular mental function (Kolb & Whishaw, 

1996). Finally, cognitive psychology’s focus on the functioning of cognitive sub-systems 

follows from its philosophical commitment to functionalism. Functionalism postulates 

that cognitive processes are defined by their functionality (i.e., how cognitive states 

                                                 
3 For recent discussions on the notion of ‘mental modules’ and ‘double dissociation 
methodology’ see e.g. Dunn (2003), Dunn and Kirsner (2003), Kadlec and van Rooij 
(2003), van Orden and Kloos (2003). 



 7

functionally relate to other cognitive states), as opposed to, say, the “stuff” they are made 

of (e.g. Block, 1980; Putnam, 1975; but see also Putnam, 1988; Searle, 1980). It is also 

functionalism that fuels the cognitive psychologist’s belief that s/he can understand 

human cognition in terms of its functional properties, more or less independently from 

the physical properties of human cognitive systems. The next section further discusses 

this view of psychological explanation.   

 

1.3. Levels of Psychological Explanation 

On the very general view presented here, a psychological theory of a cognitive task 

should minimally specify the function (or set of functions) that the system is believed to 

compute when performing the task. Such a functional level description answers the 

“what”-question; i.e., what is the task as construed by the system under study? Once such 

a description is successfully formulated, the psychologist may be interested in addressing 

the “how”-question; i.e., how is the computation of the function (physically) realized? 

This distinction between “what is being computed” (the cognitive function) and “how it 

is computed” (the cognitive process) is also reflected in a well-known framework 

proposed by David Marr (1982).  

Marr (1982) proposed that, ideally, a cognitive theory should describe a cognitive 

system on three different levels. The first level, called the computational level, specifies 

what needs to be computed in order to perform a certain task. The second level, the 

algorithmic level, specifies how the computation described at the first level is performed 

(i.e., a description of the exact representations and algorithms used to compute the goal). 

The third and final level, the implementation level, specifies how the representations and 

algorithms defined at the second level are physically implemented by the “hardware” 

system performing the computation.  

Hence, in Marr’s terminology, the description of a cognitive system in terms of 

the function it computes is a computational level theory.4 Since one and the same 

                                                 
4 Note that many theories in cognitive psychology referred to as  ‘computational’ are in 
fact algorithmic level theories (cf. Humphreys, Wiles, & Dennis, 1994). Because a 
computational level description of a cognitive system does not specify the algorithmic 
procedures employed to compute the system’s function, some people have found the 
name ‘computational level’ misleading or confusing. Alternative names proposed for the 



 8

function can be computed by many different algorithms (e.g. serial or parallel), we can 

describe a cognitive system at the computational level more or less independently of the 

algorithmic level. Similarly, since an algorithm can be implemented in many different 

physical systems (e.g. carbon or silicon), we can describe the algorithmic level more or 

less independently from physical considerations.5 Marr argued for the priority of 

computational level descriptions in psychological theories.6 He believed this was the best 

way to make progress in cognitive theory, because “an algorithm is likely to be 

understood more readily by understanding the nature of the problem being solved than by 

examining the mechanism (and the hardware) in which it is embodied” (Marr, 1982, p. 

27; see also Marr, 1977). Marr’s view is succinctly summarized by Frixione (2001, p. 

381) as follows: 

“The aim of a computational theory is to single out a function that models the 

cognitive phenomenon to be studied. Within the framework of a computational 

approach, such a function must be effectively computable. However, at the level 

of the computational theory, no assumption is made about the nature of the 

algorithms and their implementation” (Frixione, 2001, p. 381).7 

Marr’s ideas have been very influential in cognitive psychology and artificial 

intelligence alike. Although his approach has not been without criticism (e.g. 

McClamrock, 1991), his general framework has found wide application in cognitive 

science and psychology (albeit often in adjusted form), both among symbolists 

                                                                                                                                                 
computational or comparable level include: the semantic level (Pylyshyn, 1984), the level 
of cognitive state transitions (Horgan & Thienson, 1996), the knowledge level (Newell, 
1982), and the rational level (Anderson, 1990). Since all these names have connotations 
that I do not intend, I will avoid usage of these terms.  
5 Few present-day psychological theories include descriptions at the implementation 
level. Exceptions are probably best found in the literature on low-level cognitive 
processes (e.g. sensation and perception). Cognitive psychology neglects the 
implementational level because, in line with functionalism, it regards implementation 
details to a large extent irrelevant to cognitive theory and psychologically uninteresting. 
6 cf. Anderson’s (1990) arguments for the priority of his rational level. 
7 Probably Marr had a bit more in mind when he proposed his computational level. For 
example, on his view a computational level theory also needed to include a rationale for 
why the proposed function is the right function to solve the task at hand. This added 
information, however, does not contradict the interpretation of the computational level by 
Frixione and myself.   



 9

(Pylyshyn, 1984; Newell, 1982) and connectionists (Rumelhart, McClelland, & the PDP 

Research Group, 1986), and interestingly, even among dynamicists (Horgan & Tienson, 

1996).8   

 

1.4. Motivation and Research Question 

The present study pertains to cognitive theories that are formulated at the computational 

level; meaning, they minimally specify a function hypothesized to be computed by the 

system under study. The question on which the discussion will center is: ‘Which 

functions can be computed by cognitive processes?’ The answer to this question is 

invaluable for any computational approach to cognition, as it directly answers the 

question ‘Which functions can serve as computational level theories?’ In this 

investigation we make two assumptions: 

Assumption 1. (computationalism) The cognitive process is believed to be a 

mechanical process in the sense that it can be described by an algorithm.  

Assumption 2. (materialism) The cognitive process is believed to be a physical 

process occurring in space and time; i.e., no cognitive step is instantaneous and 

the physical space in which the process unfolds is limited.  

Like functionalism, these assumptions are part of the philosophical foundations of all 

computational approaches to cognition.9 

                                                 
8 Even theories that are often seen as being formulated at the algorithmic level—such as 
connectionist or neural network models (e.g. Rumelhart, McClelland, & the PDP 
Research Group, 1986)—are not free from computational level considerations. Also for 
neural networks it is of interest to study which functions they can and cannot compute 
(Parberry, 1994). For example, neural network learning is a computational task: A neural 
network is assumed to learn a mapping from inputs to outputs by adjusting its connection 
weights. Here the input of the learning task is given by (I) all network inputs in the 
training set plus the required network output for each such network input, and the output 
is given by (O) a setting of connection weights such that the input-output mapping 
produced by the trained network is satisfactory. This learning task, like any other task in 
the more symbolic tradition, can be analyzed at the computational level (Judd, 1990; 
Parberry, 1994). 
9 This work is written completely from the perspective of computationalism (see e.g. 
Chalmers, 1994). For information on non-computationalist (or anti-computationalist) 
approaches to cognition see e.g. Haselager, Bongers, and van Rooij (forthcoming), Port 
and van Gelder (1995), Thelen and Smith (1994), van Gelder (1995, 1998, 1999), van 
Rooij, Bongers and Haselager (2000, 2002).  



 10

Chapter 2. Problems, Algorithms, Computability and Tractability  
 

While the previous chapter situated the present work in cognitive psychology, this 

chapter situates it in theoretical computer science. Here I present some preliminaries of 

the theory of computation. I start by discussing three different classes of computational 

problems. Then I introduce the Turing machine formalism of computation, and discuss its 

application in cognitive theory in the form of the Church-Turing thesis. Finally, I 

introduce preliminaries of computational complexity theory and close with an open-

ended formulation of the Tractable Cognition thesis.   

 

2.1. Classes of Problems 

In the theory of computation, functions are often also referred to as problems. The only 

difference between the use of the words ‘problem’ and ‘function’ is a matter of 

perspective; the word ‘problem’ has a more prescriptive connotation of an input-output 

mapping that is to be realized (i.e., a problem is to be solved), while the word ‘function’ 

has a more descriptive connotation of an input-output that is being realized (i.e., a 

function is computed). Since the words ‘function’ and ‘problem’ refer to the same type of 

mathematical object (an input-output mapping) we can use the terms interchangeably 

(e.g. a ‘cognitive function’ can be called a ‘cognitive problem,’ depending on the 

perspective taken). Section 2.1.1 formally introduces three classes of problems. To 

support psychological intuition, Section 2.1.2 briefly illustrates examples of these classes 

in cognitive theory. 

2.1.1. Search, Decision and Optimization problems 

We will denote a problem (function) by Π. Each problem Π is specified as follows. 

First we specify the name of the problem, Π. Then we specify: 

Input: Here we describe an instance i in terms of the general class I to which it 

belongs.  

Output: Here we describe the output Π(i) required for any given instance i. 

This type of description is called the problem definition of Π.  



 11

We consider the problem Vertex Cover as an example. Let G = (V, E) be a 

graph.10 Then a set of vertices V’ ⊆  V is called a vertex cover for G if every edge in E is 

incident to a vertex in V’ (i.e., for each edge (u, v) ∈  V, u ∈  V’ or v ∈  V’). The problem 

definition of Vertex Cover is as   follows: 11 

 Vertex Cover (search version) 

Input: A graph G = (V, E) and a positive integer k.  

Output: A vertex cover V’ for G with |V’| ≤  k (i.e., V’ contains at most k vertices), 

if such a vertex set exists, else output “no”.  

Traditionally, a distinction is made between different classes of problems. We 

consider three classes: search problems, decision problems and optimization problems. A 

search problem asks for an object that satisfies some criterion, called a solution to the 

problem. The problem Vertex Cover as defined above is a search problem: It asks for a 

vertex cover of size at most k (if such a vertex cover does not exist the problem outputs 

“no” to indicate this fact). Alternatively, a decision problem just asks whether or not a 

solution exists. Hence, the output for a decision problem is either “yes” or “no.” 

Conventionally the output specification for a decision problem is formulated as a 

question. For example, the decision version of Vertex Cover is defined as follows: 

 Vertex Cover (decision version) 

Input: A graph G = (V, E) and a positive integer k.  

                                                 
10 All graph theoretic terminology and notation used throughout the text is defined in 
Appendix A. The appendix also provides a brief introduction to graph theory for readers 
unfamiliar with this branch of mathematics. 
11 The problem Vertex Cover will be used as a running example. The problem is widely 
studied in computer science and operations research (e.g. Garey & Johnson, 1979), 
including computational biology (Stege, 2000) and cognitive science (Jagota, 1997; 
Stege, van Rooij, Hertel, & Hertel, 2002; van Rooij, Stege, & Kadlec, 2003). It finds 
application, among other things, as a model of scheduling tasks. For example, one can 
view the graph as a representation of a conflict situation, with the vertices representing 
activities that one wishes to undertake and each edge (u, v) indicating that activity u and v 
cannot be performed simultaneously. The problem Vertex Cover then asks for a set V’ of 
at most k activities such that, after removal of the activities in V’ from the set V, all 
remaining activities in V\V’ can be simultaneously performed (Here V\V’ = {v ∈  V | v ∉  
V’} denotes the set difference between V and V’); or, in other words, Vertex Cover asks 
for a selection of at least |V| − k activities that can be simultaneously performed (cf. Stege 
et al., 2002).  



 12

Question: Does there exist a vertex cover V’ for G with |V’| ≤ k?  

Solving a decision problem (also called deciding a decision problem) consists of correctly 

answering the question by either “yes” or “no.” An input (or instance) i for a decision 

problem Π is called a yes-instance for Π if the answer to the question posed by Π is 

“yes” for i. Otherwise, i is called a no-instance. If an algorithm that solves a decision 

problem also solves its corresponding search problem, we say the algorithm is 

constructive. Unless otherwise stated, all algorithms that we consider are constructive.  

 Finally, some problems are called optimization problems, because they ask for a 

solution that is optimized (either maximized or minimized) on some dimension. Vertex 

Cover naturally allows for a reformulation as an optimization problem, in this case a 

minimization problem: 

 Vertex Cover (optimization version)  

Input: A graph G = (V, E) and a positive integer k.  

Output: A minimum vertex cover V’ for G (i.e., a vertex cover V’ such that |V’| is 

minimized over all possible vertex covers for G).  

Note that an optimization problem is a special type of search problem, and that it always 

has a solution. The optimization version of Vertex Cover is often also called Minimum 

Vertex Cover. 

 As we have seen, one and the same “problem” (e.g. Vertex Cover)12 can be 

formulated as a search problem, as a decision problem, and as an optimization problem. 

Following convention in computer science, we will typically work with decision 

problems. This will not overly restrict computational analysis, because results obtained 

for decision problems often generalize directly to results for their respective search 

versions and, if applicable, optimization versions.  

2.1.2. Illustrations in Cognitive Theory 

It is not hard to find examples of the different types of computational problems in 

cognitive theory. For example, on page 6 in Chapter 1, we already encountered a decision 
                                                 
12 Note that Vertex Cover takes discrete inputs (graphs and integers) and gives discrete 
outputs (a vertex set, and e.g. ‘1’ for “yes” and ‘0’ for “no”). In the literature, problems 
like this are also called combinatorial problems. This work is concerned with 
combinatorial problems only. 



 13

problem: viz., the task performed by the decision system in Signal Detection Theory 

(Green & Swets, 1966). For an example of a search problem we consider Prototype 

Theory (e.g. Rosh, 1973). This cognitive theory assumes that an object (e.g. an animal), 

called an exemplar, is classified as belonging to a certain category (e.g. the category 

dogs) if it is sufficiently similar to the prototype of that category. Both the exemplar and 

prototype are defined by sets of features, and the similarity between an exemplar e and a 

prototype p is measured by some function s(e, p). The following search problem captures 

this computational level description: 

Prototype Categorization 

Input: A set of categories C. For each category ci ∈  C an associated prototype pi. 

An exemplar e and a threshold λ. 

Output: A category ci ∈  C such that s(e, pi) ≥ λ, if such a category exist, else 

output “no.” 

Here the output “no,” can be read as meaning that the exemplar is seen as unclassifiable. 

Lastly, as an example of an optimization problem we consider Utility Theory 

(Luce & Raiffa, 1957; 1990). This (normative) cognitive theory assumes that, when 

presented with a set of alternatives with uncertain outcomes, people (should) choose the 

alternative with maximum expected utility. The following optimization problem captures 

this computational level description. 

Maximum Expected Utility  

Input: A set of alternatives A and a set of outcomes O. For each a ∈  A and each o 

∈  O, P(o|a) denotes the probability that o occurs if a is chosen. Further, each 

outcome o has an associated utility, u(o).13  

Output: An alternative a ∈  A with maximum expected utility (i.e., an alternative a 

such that ∑
∈ Oo

aoPou )|()(  is maximized over all possible a).   

 

                                                 
13 Because we limit inputs to discrete objects it is assumed that the values P(o|a) and u(a) 
are rational numbers. 



 14

2.2. Formalizing Computation  

Up to now we have been using the terms ‘computation’ and ‘algorithm’ informally. To 

have a solid theory of computability we need a formal definition of these terms. This 

section introduces the Turing machine formalization of computation. For more 

information on computability and Turing machines the reader is referred to Herken 

(1988), Hopcroft, Motwani, and Ullman (2001) and Lewis and Papadimitriou (1998). 

Also, Li and Vitányi (1997) give a brief but accessible introduction to the Turing 

machine formalization. Further, psychologists and cognitive scientists may find 

treatments by Frixione (2001), Putnam (1975; 1994), and Wells (1998) particularly 

illustrative. Readers familiar with computability theory may skip this section without loss 

of continuity.  

2.2.1. The Intuitive Notion of a Computation 

Informally, when we say a system computes a function or solves a problem, Π: I → O, 

we mean to say that the system reliably transforms every i ∈  I into Π(i) ∈  O in a way that 

can be described by an algorithm.14 An algorithm is a step-by-step finite procedure that 

can be performed, by a human or machine, without the need for any insight, just by 

following the steps as specified by the algorithm. The notion of an algorithm, so 

described, is an intuitive notion. Mathematicians and computer scientists have pursued 

several formalizations (e.g. Church, 1936; Kleene, 1936; Post, 1936). Probably the best-

known formalization, in particular among cognitive scientists and psychologists, is the 

one by Alan Turing (1936). One of the strengths of Turing’s formalization is its intuitive 

appeal and its simplicity.  

Turing motivated his formalization by considering a paradigmatic example of 

computation: The situation in which a human sets out to compute a number using pen and 

paper (see Turing, 1936, pp. 249-252). Turing argued that a human computer can be in at 

most a finite number of different “states of mind,” because if “we admitted an infinity of 

states of mind, some of them will be ‘arbitrarily close’ and will be confused” (p. 250). 

Similarly, Turing argued a human computer can read and write only a finite number of 

                                                 
14 In the literature an algorithm is also sometimes referred to as mechanical procedure, 
effective procedure, or computation procedure. 



 15

different symbols, because if “we were to allow an infinity of symbols, then there would 

be symbols different to an arbitrarily small extent” (p. 249). On the other hand, Turing 

allowed for a potentially infinite paper resource. He assumed that the paper is divided 

into squares (like an arithmetic note book) and that symbols are written in these squares. 

With respect to the reading of symbols Turing wrote: “We may suppose that there is a 

bound B on the number of symbols or squares that the computer can observe at one 

moment. If [s/he] wishes to observe more [s/he] must use successive operations” (p. 250). 

This restriction was motivated by the observation that for long lists of symbols we cannot 

tell them apart in “one look.” Compare, for example, the numbers 96785959943 and 

96785959943. Are they the same or different?  

According to Turing, the behavior of a human computer at any moment in time is 

completely determined by his/her state of mind and the symbol(s) s/he is observing. The 

computer’s behavior can be understood as a sequence of operations, with each operation 

“so elementary that it is not easy to imagine [it] further divided” (p. 250). Turing 

distinguished the following two elementary operations: 

(a) A possible change of a symbol on an observed square. 

(b) A possible change in observed square. 

Each operation is followed by a possible change in state of mind. With this 

characterization of computation Turing could define a machine to do the work of a 

human computer. Figure 2.1 illustrates this machine. 

2.2.2. The Turing Machine Formalism 

A Turing machine M is a machine that at any moment in time is in one of a finite number 

of machine states (analogue to “states of mind”). The set of possible machine states is 

denoted by Q = {q0, q1, q2, …, qn}. One machine state q0 is designated the initial state; 

this is the state that M is in at the beginning of the computation. There is also a non-

empty set H ⊆  Q of halting states; whenever the machine goes into a state qi ∈  H then the 

machine halts and the computation is terminated.  

The machine has a read/write head that gives it access to an external memory, 

represented by a one-dimensional tape (analogue to the paper). The tape is divided in 

discrete regions called tape squares. Each tape square may contain one or more symbols. 



 16

The machine can move the read/write head from one square to a different square, always 

moving the read/write head to the right or left at most one square at a time. The 

read/write head is always positioned on one (and at most one) square, which it is said to 

scan. If a square is scanned then the machine can read a symbol from and/or write a 

symbol to that square. At most one symbol can be read and/or written at a time.  

The set of possible symbols is denoted by S, and is called the alphabet of M. S is a 

finite set. Often it is assumed that S = {0, 1, B}, where B is called the blank. Time is 

discrete for M and time instants are ordered 0, 1, 2, …. At time 0 the machine is in its 

initial state qo, the read/write head is in a starting square, and all squares contain Bs 

except for a finite sequence of adjacent squares, each containing either 1 or 0. The 

sequence of 1s and 0s on the tape at time 0 is a called the input.  

The Turing machine can perform two types of basic operations: 

(a’) it can write an element from S in the square it scans; and  

(b’) it can shift the head one square left (L) or right (R).  

After performing an operation of either type (a’) or (b’) the machine takes on a state in Q. 

At any one time, which operation is performed and which state is entered is completely 

determined by the present state of the machine and the symbol presently scanned. In 

other words, the behavior of a Turing Machine can be understood as being governed by a 

function T that maps a subset of Q x S into Q x A, where A = {0, 1, B, L, R} denotes the 

set of possible operations. 

 

q0 q1 qnq2 …

B 110 …B0 B1B B… 0

 
 
Figure 2.1. Illustration of a Turing machine. 
The tape extends left and right into infinity. Each square on the tape contains a symbol in 
the set {1, 0, B}. The machine can read and write symbols with a read/write head, and 
can be in a finite number of different machine states {q0 , q1, q2, …, qn}.   

 



 17

We call T the transition function of M. A transition T(p, s) = (a, q) is interpreted 

as follows: If  p ∈  Q is the current state and s ∈  S is the current scanned symbol, then the 

machine performs operation a ∈  A of type (a’) or (b’), and the machine enters the state q 

∈  Q. For example, T(p, 0) = (1, q) means that if M is in state p and read symbol 0 then M 

is to write symbol 1 and go into state q; T(p, 1) = (L, q) means that if M is in state p and 

read symbol 1 then M is to move its read/write head one square to the left and go into 

state q. Note that Q, S, and A are finite sets. Thus we can also represent the transition 

function T as a finite list of transitions. Such a list is often called the machine table and 

transitions are then called machine instructions. 

Under the governance of T the machine M performs a uniquely determined 

sequence of operations, which may or may not terminate in a finite number of steps. If 

the machine does halt then the sequence of symbols on the tape is called its output. A 

Turing machine is said to compute a function Π if for every possible input i it outputs 

Π(i). A function is called computable (or Turing-computable) if there exists a Turing 

machine that computes it. Turing (1936) proved that there exist (infinitely many) 

problems that are not computable. For example, he showed that the Halting problem is 

not computable. This decision problem is formulated as follows: 

Halting problem 

Input: A Turing machine M and an input i for M.  

Question: Does M halt on i? 

2.2.3. Extensions of the Turing Machine Concept 

The reader may wonder to what extent the particular limitations placed by Turing on his 

machine are crucial for the limitations on computability. Therefore, a few notes should be 

made on the computational power of the Turing machine with certain extensions. It has 

been shown that several seemingly powerful adjustments to Turing’s machine do not 

increase its computational power (see e.g. Lewis & Papadimitriou, 1998, for an 

overview). For example, the set of functions computable by the Turing machine 

described above is the same as the set of functions computable by Turing machines with 

one or more of the following extensions: 

(1) Turing machines with multiple tapes and multiple read/write heads 



 18

(2) Turing machines with any finite alphabets (i.e., not necessarily A = {0, 1, B}) 

(3) Turing machines with random access: These are Turing machines that can 

access any square on the tape in a single step. 

(4) Non-deterministic Turing machines: These are Turing machines that, instead 

of being governed by a transition function, are governed by a transition 

relation, mapping some elements in Q x S to possibly more than one element 

in A x Q. Such a non-deterministic machine is said to “compute” a function Π 

if for every input i there exist one possible sequence of operations that, when 

performed, would lead to output Π(i). 

It should be noted that machines of type (4) are not considered to really compute 

in the sense that Turing meant to capture with his formalism. Namely, in non-

deterministic machines not every step of the computation is uniquely determined and 

thus, a human wishing to follow the set of instructions defined by the machine table 

would not be able to unambiguously determine how to proceed at each step. It will 

become clear in Chapter 3 that even though non-deterministic machines are purely 

theoretical constructs they do serve a special purpose in theories of computational 

intractability.  

The extensions (1) − (3), on the other hand, are considered reasonable extensions 

(see also Section 2.4.2). Hereafter, the term Turing machine will be used to refer to 

Turing machines with and without such extensions.  

 

2.3. The Church-Turing Thesis  

Turing (1936) presented his machine formalization as a way of making the intuitive 

notions of “computation” and “algorithm” precise. He proposed that every function15 for 

which there is an algorithm–which is intuitively computable–is computable by a Turing 

machine. In other words, functions that are not computable by a Turing machine are not 

computable in principle by any machine. In support of his thesis, Turing showed that 

Turing-computability is equivalent to a different formalization independently proposed 

                                                 
15 To be precise, Turing (1936) made the claim specifically for number theoretic 
functions; but the notion of Turing computability is naturally extended to functions 
involving other discrete mathematical objects. 



 19

by Church (1936). The thesis by both Turing and Church that their respective 

formalizations capture the intuitive notion of algorithm is now known as the Church-

Turing thesis. Further, Turing’s and Church’s formalizations have also been shown 

equivalent to all other accepted formalizations of computation, by which the thesis gained 

further support (see e.g. Israel, 2002; Gandy, 1988; Kleene, 1988, for discussions).   

 The Church-Turing thesis has a direct implication for the type of cognitive 

theories described in Chapter 1. Namely, consider the situation in Figure 2.2. This figure 

illustrates that, assuming that the Church-Turing thesis is true, the set of functions 

computable by cognitive systems (the cognitive functions) is a subset of the set of 

functions computable by a Turing machine (the computable functions). On this view, a 

computational level theory that assumes that the cognitive system under study computes 

an uncomputable function can be rejected on theoretical grounds.  

 

 
 

Computable 
functions 

Cognitive 
functions 

All functions 

 
 
Figure 2.2. Illustration of the Church-Turing Thesis. 
On the Church-Turing thesis cognitive functions are a subset of the 
computable functions.  

 

Note that the Church-Turing thesis is not a mathematical conjecture that can be 

proven right or wrong. Instead the Church-Turing thesis is a hypothesis about the state of 

the world. Even though we cannot prove the thesis, it would be in principle possible to 

falsify it; this would happen, for example, if one day a formalization of computation were 

developed that (a) is not equivalent to Turing computability, and that, at the same time, 

(b) would be accepted by (most of) the scientific community. For now the situation is as 

follows: Most mathematicians and computer scientists accept the Church-Turing thesis, 

either as plainly true or as a reasonable working-hypothesis. The same is true for many 



 20

cognitive scientists and cognitive psychologists—at least, for those who are familiar with 

the thesis.  

2.3.1. Criticisms 

Despite its wide acceptance, the Church-Turing thesis, and its application to human 

cognition, is not without its critics. The critics can be roughly divided into two camps: 

Those who believe that cognitive systems can do “more” than Turing machines and those 

who think they can do “less.”   

Researchers in the first camp pursue arguments for the logical possibility of 

machines with so-called super-Turing computing powers (e.g. Copeland, 2002; Steinhart, 

2002).16 Much of this work is rather philosophical in nature, and is concerned more with 

the notion of what is computable in principle by hypothetical machines and less so with 

the notion of what is computable by real, physical machines (though some may agree to 

disagree on this point; see e.g. Cleland, 1993, 1995; but see also Horsten & Roelants, 

1995). The interested reader is referred to the relevant literature for more information 

about the arguments in this camp (see also footnote 16 for references). Here, we will be 

concerned only with the critics in the second camp.  

Researchers in the second camp do not doubt the truth of the Church-Turing 

thesis (i.e., they believe that the situation depicted in Figure 2.2 is veridical), but they 

question its practical use for cognitive theory. Specifically, these researchers argue that 

computability is a not a strict enough constraint on cognitive theories (e.g. Frixione, 

2001; Oaksford & Chater, 1993, 1998; Parberry, 1994). Namely, cognitive systems, 

being physical systems, perform their tasks under time- and space-constraints and thus 

                                                 
16 Sometimes claims about super-Turing computing powers are made in the cognitive 
science literature without any reasonable argument or even a reference (e.g. van Gelder, 
1999), and very often the distinction between computability (as defined in Section 2.2) 
and computational complexity (as discussed in Section 2.4 and Chapter 3) is muddled or 
ignored (e.g. van Gelder, 1998). It is true that results about super-Turing computing can 
be found in the theoretical computer science literature (e.g. Siegelmann & Sontag, 1994). 
However, these results seem to depend crucially on the assumption of infinite precision 
(or infinite speed-up; e.g. Copeland, 2002), and thus the practicality of these results can 
be questioned. Furthermore, even if infinite precision is possible in some physical 
systems, it may still not be possible in human cognitive systems (cf. Chalmers, 1994; 
Eliasmith, 2000, 2001). 



 21

functions computed by cognitive systems need to be computable in a realistic amount of 

time and with the use of a realistic amount of memory (cf. Simon, 1957, 1988, 1990). 

The study of computational resource demands is called computational complexity theory. 

It is to this theory that we turn now.    

 

2.4. Computational Complexity 

This section introduces the basic concepts and terminology of computational complexity 

theory. For more details on computational complexity theory refer to Garey and Johnson 

(1979), Karp (1972), and Papadimitriou and Steiglitz (1988). Cognitive psychologists 

may find treatments by Frixione (2001), Parberry (1997), and Tsotsos (1990) particularly 

illustrative. The reader familiar with computational complexity may skip this section 

without loss of continuity. 

2.4.1. Time-complexity and Big-Oh  

Computational complexity theory, or complexity theory for short, studies the amount of 

computational resources required during computation. In computational complexity 

theory, the complexity of a problem is defined in terms of the demands on computational 

resources as function of the size of the input. The expression of complexity in terms of a 

function of the input size is very useful and natural. Namely, it is not the fact that demand 

on computational resources increases with input size (this will be true for practically all 

problems), but how it increases, that tells us something about the complexity of a 

problem. The most common resources studied by complexity theorists are time (how 

many steps does it take to solve a problem) and space (how much memory does it take to 

solve a problem). Here we will be concerned with time complexity only.  

We first introduce the Big-Oh notation, O(.), that we use to express input size and 

time complexity. The O(.) notation is used to express an asymptotic upperbound. A 

function f(x) is O(g(x)) if there are constants c ≥ 0, xo ≥ 1 such that f(x) ≤ cg(x), for all x ≥ 

xo.17 In other words, the O(.) notation serves to ignore constants and lower order 

polynomials in the description of a functions. For this reason O(g(x)) is also called the 
                                                 
17 The definition of O(.) can be straightforwardly extended to functions with two or more 
variables. For example, a function f(x, y) is O(g(x, y)) if there are constants c ≥ 0 and xo, 
yo ≥ 1 such that f(x, y) ≤ cg(x, y), for all x ≥ xo and y ≥ yo. 



 22

order of magnitude of f(x). For example, 1 + 2 + … + x = x(x + 1)/2 is on the order of x2, 

or O(x2), and x4 + x3 + x2 + x + 1 is O(x4). 

The notions ‘input size’ and ‘time complexity’ are formalized as follows. Let M 

be a Turing machine and let i be an input. Then the input size, denoted by |i|, is the 

number of symbols on the tape of M used to represent i. Consider, for example, an input i 

that is a graph G = (V, E). We can encode the graph in several ways. For example, we can 

encode it as an adjacency matrix, with each row r (and column c) of the matrix 

representing a vertex in V, and each cell (r, c) in the matrix coded ‘1’ if (r, c) ∈  E, and ‘0’ 

otherwise. Alternatively, we can encode G as a list of vertices and edges, as follows: v1, 

v2, …, vn, (v1, v2), (v2, v3), (v1, v3), …, (vn−1, vn). Let |V| = n and |E| = m. Since an n × n 

matrix has n2 cells, the size of the matrix encoding is O(n2). The size of the list encoding 

is n + m. Since m < n2 and n + n2 is O(n2), also n + m is O(n2).18  

We start by considering the time complexity of algorithms, i.e., of Turing 

machines. Later we define the time complexity of problems in terms of algorithms that 

solve them. Let M be a Turing machine. If for any input i, M halts in at most O(t(|i|)) 

steps, then we say M runs in time O(t(|i|)) and that M has time complexity O(t(|i|)). Note 

that, since we require M to halt in time O(t(|i|)) for all possible inputs, O(t(|i|)) should be 

interpreted as an asymptotic bound on M’s worst-case running time.  

For purposes that will become clear later, we distinguish between algorithms with 

polynomial-time complexity and algorithms with exponential-time complexity. A 

polynomial-time algorithm runs in time O(|i|α) for some constant α. On the other hand, 

the running time of an exponential-time algorithm is unbounded by any polynomial and 

is O(α |i|), for some constant α. 

The exact form of O(t(|i|)) will depend, of course, on the particular encoding used 

to represent the input i on M’s tape, the size of M’s alphabet, the number of tapes and 

read/write heads that M has, etc. Although, the O(.) notation allows us to abstract away 

from some of these machine details some arbitrary choices about the machine model need 

to be made. For convenience we assume that we are dealing with Turing machines, with 

any reasonable extensions as discussed in Section 2.2.3, that can perform basic arithmetic 

                                                 
18 Sometimes we express the size of a graph by n, instead of n + m, since m < n2. 



 23

operations (e.g. add two numbers, compare two numbers) in a single time step. In Section 

2.4.4 I will discuss the consequences of this particular choice of machine model.  

2.4.2. Illustrating Algorithmic Complexity  

To illustrate running-time analysis of algorithms we consider two algorithms; one a 

polynomial-time algorithm and the other an exponential-time algorithm. The first 

algorithm is called Greedy Vertex Cover algorithm. Here it is in pseudo-code:  

Algorithm Greedy Vertex Cover  

Input: a graph G = (V, E) 

Output: A vertex cover V’ ⊆  V 

1. V’ := ∅   

2. while E ≠ ∅  do 

3. find a vertex v ∈  V such that degG(v) is maximum 

4. V’ := V’ ∪  {v} 

5. V := V\{v}   

6. E := E\RG({v})  \\Here RG({v}) = {(x, y) ∈  E | v ∈  {x, y}} 

7. end while 

8. return V’ 

This algorithm takes as input a graph G = (V, E) and builds a vertex cover V’ ⊆  V as 

follows. First it finds a vertex v of maximum degree (line 3). Then it includes v in the 

vertex set V’ (line 4) and removes v and all its incident edges from G (lines 5 and 6). The 

algorithm repeats this loop until no edge is left in the graph. When finished, the algorithm 

outputs V’ (line 8). 

 We show this algorithm runs in time O(n2), where n = |V|. First to perform line 3, 

the algorithm has to consider at most n vertices to determine which vertex has maximum 

degree. We may assume that for each vertex its degree is explicitly encoded. Then we can 

determine a vertex degree by simply reading it off in constant time O(1). We conclude 

that line 3 can be performed in time O(n + n) = O(n). Both lines 4 and 5 take constant 

time O(1). To delete each edge adjacent to v, in line 6, we consider at most n − 1 edges 

and this can be done in time O(n). Note that we also need to update the vertex degrees of 

vertices in G that lost an edge in line 6. Since there are at most n − 1 such vertices, 



 24

updating can be done in time O(n).  In sum, a single run through the loop can be done in 

time O(n + 1 + 1  + n + n) = O(3n) = O(n).  How often do we go through the loop? At 

most n times; since there are no more than n vertices in the graph. This allows us to 

conclude a running time of O(n × n) = O(n2). 

 We now consider an exponential-time algorithm, called the Exhaustive Vertex 

Cover algorithm. I give the algorithm below in pseudo-code and explain it using Figure 

2.3.  

Algorithm Exhaustive Vertex Cover  

Input: a graph G = (V, E) and a positive integer k 

Output: A vertex cover V’ ⊆  V, with |V’| ≤ k, if one exists, and ∅  otherwise. 

1. V’ := ∅  

2. pick any vertex v ∈  V such that degG(v) ≥ 1 

// If there does not exist a vertex v ∈  V with degG(v) ≥ 1, then v = null 

3. if v ≠  null then 

4. V’ := Branch(G, V’, k,  v) 

5. return V’ 

The algorithm Branch is recursively called, and is defined as follows: 

Algorithm Branch(G, V’, k,  v): 

Input: A graph G = (V, E), a vertex set V’ ⊆  V (V’ may be empty), a  

positive integer k, a vertex v ∈  V  

Output: A vertex cover V’ ⊆  V, with |V’| ≥ k, if one exists, and ∅  otherwise. 

6. if  k ≤ 0 then 

7. V’ := ∅  

8. return  V’   

// Creating the left branch: 

9. V1’ := V’ ∪  {v} 

10. G1 := (V1, E1) with V1 := V\{v} and E1 := E\RG({v})   

//Reminder: RG({v}) = {(x, y) ∈  E | v ∈  {x, y}}  

11. k1 := k – 1 

12. pick any vertex v1 ∈  V such that degG1(v1) ≥ 1 



 25

13. if  v1 ≠ null then  

14. V1’:= Branch(G1, V1’, k1, v1) 

15. else if k1 < 0 then 

16. V1’ := ∅  

17. if V1’ ≠ ∅  then //answer “yes” is found 

18. return V1’ 

// Creating the right branch 

19. V2’ := V’  

20. G2 := (V2, E2) with V2 := V\{v} and E2 := E\RG({v})   

21. k2 := k  

22. pick any vertex v2 ∈  V such that degG2(v2) ≥ 1 

23. if  v2 ≠ null then  

24. V2’:= Branch(G2, V2’, k2, v2) 

25. else //answer “yes” is found and// return V2’ 

26. return V’ 

The Exhaustive Vertex Cover algorithm can be seen as a procedure for deciding whether 

a graph G has a vertex cover of size at most k. The algorithm performs an exhaustive 

search that can be conceptualized as the building of a search tree T (see Figure 2.3 for 

illustration). To avoid confusion, we refer to the vertices in this search tree as (search 

tree) nodes. The root s of the search tree is labeled by the original input G and k, plus the 

vertex set V’, which is initialized as empty (line 1). In line 2 an arbitrary vertex v with at 

least one incident edge is chosen, and then, if such a vertex indeed exists (as checked by 

line 3), line 4 calls the procedure Branch.  

In lines 9−11 of algorithm Branch, the possibility that v is in the vertex cover is 

considered (called the left branch). That is, line 9 includes v in V’1, line 10 removes v and 

its incident edges from G resulting in G1, and in line 11, k is updated as k1 to note that one 

vertex has been included in the vertex cover so far. All this is represented by the creation 

of a new node s1 in the search tree, which is labeled by (G1, k1, V’1). Then, in line 12, a 

new vertex v1 is picked and the procedure Branch is called again; now taking G1, k1, V’1, 

and v1 as input.  Each time a left branch is created, the vertex set V’ is extended (line 9) 

by the vertex picked in line 12 (or in line 22; depending on whether the parent of the 



 26

present search tree node is on a left branch or on a right branch). Further, G and k are 

updated to reflect the changes in V’. Such left branches are terminated if (1) the graph has 

no edges anymore (as checked in line 12) or (2) k has become smaller than 0, in which 

case |V’| has become larger than k (as checked in line 15). If case (1) applies, but not case 

(2), then, in line 18, it is noted that V’ is a vertex cover of size at most k and the set is 

outputted in line 18, and the algorithm halts. If, on the other hand, a left branch 

terminates without reaching line 18, then a right branch is created in lines 19−21.  

 

 
Figure 2.3. Illustration of the Exhaustive Vertex Cover algorithm. 
The behavior of the algorithm can be thought of as the construction of an exhaustive 
search tree whose nodes are labeled by partial candidate solutions for Vertex Cover. If a 
leaf in this tree is labeled by a vertex cover for G of size k then the algorithm returns the 
answer “yes.” 

 

Each right branch considers the possibility that the picked vertex is not in the 

vertex cover, in lines 19-21. This is represented by the creation of a new node s1…2 in the 

search tree, which is labeled by (G1…2, k1…2, V’1…2), with v1…1 ∉  V’1…2. Right branches 

also terminate if no more edges are left in the graph. However, since k does not change in 

a right branch an analogue to line 15 is not needed here (Note: at the start of the Branch 

(G, k, V’)

(G1, k1, V1’) (G2, k2, V2’)

(G11, k11, V11’) (G12, k12, V12’) (G21, k21, V21’) (G22, k22, V22’)

de
pt

h(
T)

 ≤
n

fan(T) = 2

size(T) is O(2n)



 27

procedure, in line 6, it is always checked if k is not yet exceeded). If a right branch is 

terminated, without a solution found (as checked in line 24), then the algorithm goes back 

to a previous node in the search tree, for which again a right branch is created. After that, 

again left branches are created until no longer possible; and everything repeats itself until 

either (a) a vertex cover of size at most k is found, or (b) no more branching is possible, 

in which case the algorithm outputs the empty set in line 5, and we conclude that no 

vertex cover of size k exists for G.   

Note that this behavior of the algorithm corresponds to creating search tree nodes 

in a particular order. To illustrate, assume that the length of each path from root to leaf in 

T is, say, 4. Then the nodes in T are being created in the following order: s1, s11, s111, s1111, 

s1112, s112, s1121, s1122, s12, s121, s1211, s1212, s122, s1221, s1222, s2, s21, s211, s2111, s2112, s212, s2121, 

s2122, s22, s221, s2211, s2212, s222, s2221, s2222.  

In general, we denote the maximum number of children created per node in a 

search tree by fan(T) and the maximum length of the path from root to any leaf in T by 

depth(T). The total number of nodes in the search tree is denoted by size(T). Note that 

size(T) is bounded by 2fan(T)depth(T)  − 1 which is O(fan(T)depth(T)) .  

In the particular search tree created by the Exhaustive Vertex Cover algorithm, 

and illustrated in Figure 2.3, fan(T) = 2 and depth(T) ≤ n (viz., there are never more than 

n vertices to pick). Thus, size(T) is O(2n), which is exponential size. Even though we 

spend polynomial time (i.e., O(nα) for some constant α) for creating each node in the 

tree, the exponential function dominates the running time (i.e., O(2n nα) is O(2n)), and 

hence Exhaustive Vertex Cover is an exponential-time algorithm that runs in time O(2n). 

2.4.3. Problem Complexity  

In the previous section we defined time complexity for algorithms. Here, we consider the 

time complexity of problems. A problem Π is said to be solvable in time O(t(|i|)), if there 

exists an algorithm that solves Π and that runs in time O(t(|i|)). If the fastest algorithm 

solving Π runs in time in time O(t(|i|)) then we say that Π has time complexity O(t(|i|)). 

Often we do not know what the fastest algorithm for a problem is. In that case, we use the 

running time of the fastest known algorithm for Π as a measure of time complexity of Π.  



 28

To illustrate, we again consider the problem Vertex Cover. In the previous section 

we have seen that the Exhaustive Vertex Cover algorithm solves Vertex Cover, and that 

this algorithm runs in time O(2n). Hence, we can safely conclude that Vertex Cover is 

solvable in time O(2n). However, before we use O(2n) as a measure of the inherent 

complexity of Vertex Cover, we will wish to ensure—or at least have reason to expect—

that there does not exist a faster algorithm that also solves Vertex Cover. Now consider, 

for example, the much faster Greedy Vertex Cover algorithm, which runs in O(n2). Does 

the Greedy Vertex Cover algorithm solve the Vertex Cover problem? The answer is a 

definite “no.”19 Thus, for now we can conclude that Vertex Cover can be solved in time 

O(2n), but we remain unsure about whether this is a tight upperbound. In Chapter 3 we 

will see, however, that whatever the fastest algorithm for Vertex Cover is, it will unlikely 

be a polynomial-time algorithm.  

2.4.4. The Invariance Thesis 

The previous sections introduced a notion of (worst-case) time complexity that attempts 

to abstract away from particular machine details using the O(.) notation. But what does it 

mean to abstract away from machine details? Not only will the running time depend on 

the particulars of the Turing machine used for a computation, but also Turing machines 

are just one class of possible computing machines.  

In this context it is useful to mention the Invariance thesis.20 This thesis states 

that, given a “reasonable encoding” of the input and two “reasonable machines” M1 and 

M2, the complexity of a given problem Π for M1 and M2 will differ by at most a 

polynomial amount (e.g. Garey & Johnson, 1979). Here, with “reasonable encoding” is 

meant an encoding that does not contain unnecessary information and in which numbers 

are represented in b-ary with b > 1 (e.g. binary, or decimal, or any fixed base other than 

1).  Further, with “reasonable machine” is meant any type of Turing machine (with 

                                                 
19 The reader may want to verify this for him/herself. 
20 Frixione (2001) uses the term ‘Invariance thesis’ to express both the Invariance thesis 
itself and, what I will call, the Tractable Cognition thesis. Since I intend to investigate 
two alternative formalizations of tractability in Chapter 3 (viz., classical and fixed-
parameter tractability), whereas Frixione (2001) only considers one option (classical 
tractability), I purposely divorce the Invariance thesis from the Tractable Cognition 
thesis.  



 29

possible extension as described in Section 2.2.3) or any other realistic computing 

machine under a different formalization (including e.g. neural networks, cellular 

automata). Note, however, that a machine capable of performing arbitrarily many 

computations in parallel (cf. non-deterministic Turing machine or Quantum computer21) 

is not considered a “reasonable” machine (Garey & Johnson, 1979). 

 Like the Church-Turing thesis, the Invariance thesis is widely accepted among 

computer scientists and cognitive scientists. The Invariance thesis, if true, implies that we 

can analyze the worst-case complexity of problems, independent of the machine model, 

up to a polynomial amount of precision. In other words, if a problem is of polynomial-

time complexity under one model it will be of polynomial-time complexity under any 

other reasonable model. Similarly, if a problem is of exponential-time complexity under 

one model it will be of exponential-time complexity under any other reasonable model.22  

Although some computer scientists believe that one day it will be possible to 

build Quantum computers (allowing for arbitrarily many parallel computations), this still 

remains to be seen. Furthermore, even if a Quantum computer—or some other 

computational device of comparable power—were physically realizable, it still need not 

be the right model of human computation. Whichever will turn out to be the case, for 

present purposes we will adopt the Invariance thesis.  

 

2.5. The Tractable Cognition Thesis 

So far we have talked of “reasonable encoding” and of “reasonable machines,” but what 

about “reasonable time”? As discussed in Section 2.3.1, critics of the Church-Turing 

thesis argue that computability does not pose strict enough constraints on human 

computation, because human cognitive systems have to compute functions in a 

“reasonable time.” In other words, cognitive functions are tractably computable. The 

notion of tractable computability, like computability was before its formalization as 

Turing-computability, is an intuitive notion. If we could somehow formally define the 

class of functions that are tractably computable, and a class of functions that are not, then 

                                                 
21 See e.g. Deutsch (1985) for a treatment of quantum computation. 
22 In Chapter 3 we will introduce fpt-time algorithms, and we will show that on the 
Invariance thesis also problems of fpt-time complexity will be of fpt-time complexity 
under any reasonable model. 



 30

we could have a Tractable Cognition thesis, which states that cognitive functions are 

among the tractably computable functions. Such a thesis could then serve to provide 

further theoretical constraints on the set of cognitive functions, as illustrated in 

Figure 2.4.  

 
 

Tractable  

Cognitive 
functions 

Intractable

 
 
Figure 2.4. Illustration of the Tractable Cognition thesis. 
The set of all computable functions partitioned into tractable and 
intractable functions. According to the Tractable Cognition thesis 
cognitive functions are a subset of the tractable functions. The dotted line 
indicates that the set of tractable functions remains to be formalized. 

 

We do not know exactly what type of computational devices human cognitive systems 

are. Therefore it would be particularly useful if we could define a Tractable Cognition 

thesis that abstracts away from machine details. That is, like the Church-Turing thesis 

provides a definition of computability independent of the Turing-machine formalization, 

we would like to have a Tractable Cognition thesis that provides a definition of 

tractability independent of the Turing-machine formalization. From the Invariance thesis 

(Section 2.4.4) we know that if we could define the set of tractable and intractable 

problems such that the classification is insensitive to a polynomial amount of complexity 

in computation of the problem, we would have a machine independent formalization of 

the notion of (in)tractability.  

For now we have only formulated the Tractable Cognition thesis as a “mold” for a 

formal version of the thesis (indicated by the dotted line in Figure 2.4). Chapter 3 

investigates two possible formalizations of the Tractable Cognition thesis. The first is 

called the P-Cognition thesis and the second is called the FPT-Cognition thesis. We will 

see that both theses abstract away from machine details to achieve the desired generality.  



 31

Chapter 3. P-Cognition versus FPT-Cognition 

 

This chapter contrasts two possible formalizations of the Tractable Cognition thesis: the 

P-Cognition thesis and the FPT-Cognition thesis. I start by discussing classical 

complexity theory and its motivation to define tractability as polynomial-time 

computability. I discuss how many cognitive scientists have adopted this classical notion 

of tractability, leading them to advance the P-Cognition thesis. Then I introduce the 

theory of parameterized complexity and its accompanying notion of fixed-parameter 

tractability. Using parameterized complexity, I will illustrate that polynomial-time 

computability provides a too strict constraint on cognitive functions. I propose the FPT-

Cognition thesis and discuss how this thesis applies to cognitive theory formation.   

 

3.1. Classical Complexity and Classical Tractability 

Classical complexity theory23 proposes that the distinction between polynomial-time 

algorithms and exponential-time algorithms, as introduced in Chapter 2, is a useful 

(approximate) formalization of the intuitive distinction between tractable and intractable 

algorithms (e.g. Garey & Johnson, 1979; Papadimitriou & Steiglitz 1988). As Garey and 

Johnson (1979, p. 8) put it: 

“Most exponential time algorithms are merely variations on exhaustive search, 

whereas polynomial time algorithms generally are made possible only through the 

gain of some deeper insight into the nature of the problem. There is wide 

agreement that a problem has not been “well-solved” until a polynomial time 

algorithm is known for it. Hence, we shall refer to a problem as intractable, if it is 

so hard that no polynomial time algorithm can possibly solve it.”  

Hence, we have the following classical definition of (in)tractability. A problem Π is said 

to be (classically) tractable if Π can be solved by a polynomial-time algorithm. 24 

                                                 
23 The reader is advised that what I call classical complexity theory is typically referred to 
as (computational) complexity theory in both the computer science and cognitive science 
literature. Because I wish to contrast this theory with a newer form of complexity theory, 
called parameterized complexity theory, I refer to the earlier theory as “classical.” 
24 One may argue that not all polynomial-time algorithms are preferable to all 
exponential-time algorithms (e.g. a running time of O(2n) would in theory be preferred to 



 32

Conversely, a problem Π is said to be (classically) intractable if Π cannot be solved by a 

polynomial-time algorithm (i.e., it requires an algorithm that runs in exponential (or 

worse) time).  

The classical definition of tractability is widely adopted in computer science (e.g. 

Garey & Johnson, 1979; Papadimitriou & Steiglitz, 1988; or any introductory text in 

theoretical computer science). To see that the definition has merit, consider Table 2.1. 

Table 2.1 shows that an exponential function, like O(2|i|) grows every so much faster than 

a polynomial function, like O(|i|2). If we assume that a computing machine can compute, 

say, 100 basic computations per second then, as |i| grows, the exponential running time 

gets unrealistic very fast for any reasonable computing machine (compare Columns 2 and 

3 of Table 2.1).  

 
Table 2.1. Classical tractability and intractability 
Illustration of how a polynomial running time, O(|i|2), and an exponential running time, 
O(2|i|), compare for different |i|; assuming either 100 or 10,000 computational steps per 
second.  
  Assume 100 steps/sec. Assume 10,000 steps/sec. 

|i| O(|i|2) O(2|i|) O(|i|2) O(2|i|) 

2 0.04 sec 0.04 sec 0.02 msec 0.02 msec 

5 0.25 sec 0.32 sec 0.15 msec 0.19 msec 

10 1.00 sec 10.2 sec 0.01 sec 0.10 sec 

15 2.25 sec 5.46 min 0.02 sec 3.28 sec 

20 4.00 sec 2.91 hrs 0.04 sec 1.75 min 

30 9.00 sec 4.1 mths 0.09 sec 1.2 days 

50 25.0 sec 8.4 x 104 yrs 0.25 sec 8.4 centuries 

100 1.67 min 9.4 x 1019 yrs 1.00 sec 9.4 x 1017 yrs 

1000 2.78 hrs 7.9 x 10290 yrs 1.67 min 7.9 x 10288 yrs 

 
                                                                                                                                                 
a running time of, say, O(n100)). It turns out, however, that problems that are computable 
in polynomial time typically allow for algorithms with small constants in the exponent. 
This suggests that polynomial-time computability to some extent captures our intuitive 
notion of computational tractability. Even more important for present purposes, however, 
is the fact that it does not matter that some polynomial-time algorithms are impractical, as 
long as it is safe to say that all exponential-time algorithms are impractical. 



 33

Note that here the assumption of 100 basic operations per second is for illustrative 

purposes only. In the context of cognitive theory, what constitutes a reasonable 

assumption depends, of course, on both the cognitive function under consideration and 

the hardware of the system that is presumed to compute the function. Importantly, 

however, increasing the speed with which a basic computational operation can be 

performed has very limited impact on the time required to compute a function if the 

function is of exponential-time complexity. For example, if we could realize a 100-fold 

speed-up of our computing machine (e.g. by improving its hardware so that it can 

perform each sequential operation 100 times faster; or by having it run 100 computational 

channels in parallel), then an exponential time algorithm running in time O(2|i|) would 

still be impractical for all but trivially small input sizes (compare Columns 4 and 5 of 

Table 2.1).   

 

3.2. The Theory of NP-completeness 

Section 3.3 discusses how the classical notion of tractability has been applied in cognitive 

psychology. Many of these applications use the theory of NP-completeness to infer 

classical (in)tractability of cognitive functions. Therefore I first explain NP-completeness 

(Section 3.2.1) and its accompanying notion of polynomial-time reducibility (Section 

3.2.2). For more information see also Cook (1971), Karp (1972), Garey and Johnson 

(1979), and Papadimitiou and Steiglitz (1988). Readers familiar with the theory of NP-

completeness can skip this section without loss of continuity. 

3.2.1. The classes P and NP 

Let Π be a decision problem. Then Π is said to belong to class P (we write Π ∈  P) if Π 

can be decided by a (deterministic) Turing machine (DTM) in polynomial-time; and Π is 

said to belong to class NP (Π ∈  NP) if all yes-instances for Π can be decided by a non-

deterministic Turing machine (NTM) in (non-deterministic) polynomial time.25 An NTM 

                                                 
25 For completeness I note that a decision problem Π is said to belong to class co-NP (Π 
∈  co-NP) if all no-instances for Π can be decided by a non-deterministic Turing machine 
in (non-deterministic) polynomial-time problem. The class co-NP will not be considered 
further here. 



 34

decides a yes-instance i for Π if there exists at least one possible sequence of transitions, 

as defined by the machine’s transition relation, that returns “yes” for i (cf. Section 2.2.3).  

Many problems that are encountered in practice, and many of the cognitive 

functions that are considered in later chapters, belong to the class NP. Note that also 

Vertex Cover is in the class NP. Namely, in Section 2.4.2, we saw that the Exhaustive 

Vertex Cover algorithm can be used to decide the problem Vertex Cover. Now imagine a 

NTM with a transition relation that, analogous to the Exhaustive Vertex Cover algorithm, 

defines two possible transitions for each vertex v in the input graph G: either (1) v is in 

the vertex cover, or (2) v is not in the vertex cover. Clearly, if a vertex cover of size k 

exists for G then at least one sequence of transitions in this non-deterministic machine 

will return such a vertex cover.  

 The class NP is also sometimes referred to as the class of problems for which 

solutions are “easy to check.” This is because, when given a candidate solution for a yes-

instance of a problem Π ∈  NP, one can check in polynomial time whether the candidate 

solution is indeed a solution for Π. For example, when given a vertex set V’ ⊆  V one can 

easily check in polynomial time whether (a) V’ is a vertex cover for G (we delete every 

vertex in V’ from G and see if any edges are left in G; this can be done in O(n2)) and (b) 

its size is at most k (we count the number of vertices in V’; this can be done in time O(n)).  

Since a DTM is a special kind of NTM (viz., one in which the transition relation 

is a function), we have P ⊆  NP. It is widely believed that there exist problems in NP that 

are not in P, and thus that P ≠ NP (see Figure 3.1).  This conjecture is motivated, among 

other things, by the existence of so-called NP-hard problems.  

To explain NP-hardness we define the notion of polynomial-time reducibility: For 

problems Π1 and Π2 we say that Π1 reduces to Π2, if there exists an algorithm that 

transforms any input i1 for Π1 into an input i2 for Π2 such that input i1 is a yes-instance 

for Π1 if and only if input i2 is a yes-instance for Π2. We say the reduction is a 

polynomial-time reduction if the algorithm performing this transformation runs in 

polynomial time. A decision problem Π is NP-hard if every problem in NP can be 

polynomial-time reduced to Π. Thus, NP-hard problems are not in P unless P = NP. 

Problems that are NP-hard and members of NP are called NP-complete.  



 35

 
 

NP-complete P 

NP 

Computable 

 
 
Figure 3.1. The view of NP on the assumption that P ≠ NP.  
NP-complete problems are not in P if and only if P ≠ NP. 

 

The technique of polynomial-time reduction is very useful. Once a problem is known to 

be NP-hard we can prove other problems to be NP-hard by polynomial-time reducing it 

to these other problems. In 1971, Stephen Cook proved the first problem NP-hard. This 

problem is called Satisfiability, abbreviated SAT (see Appendix B for its problem 

definition). Since then many problems have been shown to be NP-hard by (direct or 

indirect) reduction from SAT, and presently hundreds of problems are known to be NP-

hard. Among them is the problem Vertex Cover (Karp, 1972).  

Despite great efforts from many computer scientists, nobody to date has 

succeeded in finding a polynomial-time algorithm that solves an NP-hard problem 

(hence, the belief that P ≠ NP). Therefore the finding that a decision problem Π is NP-

hard is seen as very strong evidence that all algorithms solving Π run at best in 

exponential-time; e.g., in time O(αn), where α is a constant and n is the input size. 

3.2.2. Illustrating polynomial-time reduction 

This section illustrates the technique of polynomial-time reduction: We reduce the 

problem Vertex Cover to a different graph problem, called Dominating Set. A vertex set 

V’ ⊆  V is called a dominating set for G = (V, E) if for every vertex in V either v ∈  V’ or v 

has a neighbor u ∈  V’.  

Dominating Set  

Input: A graph G = (V, E) and a positive integer k.  

Question: Does there exist a dominating set V’ for G with |V’| ≤ k? 



 36

As mentioned above, Vertex Cover is NP-hard. Hence, a polynomial-time reduction from 

Vertex Cover to Dominating Set proves that Dominating Set is NP-hard too. 26 Recall 

that, to establish a reduction from Vertex Cover to Dominating Set, we need to present a 

transformation from any instance i = {G, k} for Vertex Cover to an instance i* = {G*, 

k*} for Dominating Set such that i = {G, k} is a yes-instance for Vertex Cover if and only 

if i* = {G*,  k*} is a yes-instance for Dominating Set.  

For simplicity, in the following we assume that the input graph G is of minimum 

degree 1 (i.e., G does not contain any singletons). The assumption is validated by the fact 

that Vertex Cover is also NP-hard for graphs without singletons.27 We start by making 

two observations.  

 Observation 3.1. Let G = (V, E) be a graph without singletons and let k be a 

positive integer. If G and k form a yes-instance for Vertex Cover then G and k form a 

yes-instance for Dominating Set.  

 Proof: Let G and k form a yes-instance for Vertex Cover. Then there exists a 

vertex set V’ ⊆  V such that V’ is a vertex cover for G and |V’| ≤ k. This means that for 

every edge (u, v) ∈  E, u ∈  V’ or v ∈  V’. But then also for every vertex v ∈  V either v in 

V’ or v has at least one neighbor u ∈  V’. Thus V’ is a dominating set for G with |V’| ≤ k. 

We conclude G and k form a yes-instance for Dominating Set. ■ 

Observation 3.2. Let G = (V, E) be a graph without singletons and let k be a 

positive integer. If G and k form a yes-instance for Dominating Set then G and k need not 

form a yes-instance for Vertex Cover.  

Proof: We prove the claim by example. Let G = (V, E) with V = {u, v, w} and E = 

{(u, v), (v, w), (u, w)} and let k = 1. Then G and k form a yes-instance for Dominating Set 

(e.g., vertex set {u} is a dominating for G of size 1), but G and k do not form a yes-

instance for Vertex Cover (i.e., the smallest vertex cover for G is of size 2, e.g. {u, v}). ■ 

                                                 
26 Of course, it is long known that Dominating Set is NP-hard (e.g. Garey & Johnson, 
1979). The polynomial-time reduction discussed in this section is for illustrative purposes 
only. 
27 Singletons are easily dealt with, both in Vertex Cover (where they can always be 
excluded from the vertex cover) and Dominating Set (where they always need to be 
included in the dominating set). 



 37

From these observations we conclude that a reduction from Vertex Cover to Dominating 

Set of the form G* = G and k* = k will not work; viz., although all vertex covers are 

dominating sets (Observation 1), the reverse is not true (Observation 2). If we could 

somehow define G* such that every dominating set for G* is also a vertex cover for G, 

without losing the relationship between the two problems as stated in Observation 1, then 

we would be able to establish a proper reduction. Lemma 3.1 shows that indeed the 

following transformation works: First we set G* = G and then for every edge (u, v) in G 

we add a new vertex x to G* and connect it to the vertices u and v in G* with the edges 

(x, u) and (x, v). See Figure 3.2 for an illustration.  

 

 
 

 
Figure 3.2. Illustration of the reduction in Lemma 3.1.  
The graph G consists of the white vertices and the solid edges, and graph G* 
consists of G plus the gray vertices and the dotted edges. Note that G has a 
vertex cover of size k if and only if G* has a dominating set of size k. 
 

Lemma 3.1. Let G = (V, E) be a graph without singletons and let k be a positive 

integer. Further, let G* = (V*, E*) with V* = V ∪  A, where A = {xuv  ∉  V : (u, v) ∈  E}, 

and E’ = E ∪  E* , where E* = {(y, z) : y = xuv and z = u or y = xuv and z = v) and let k* = 

k. Then G and k form a yes-instance for Vertex Cover if and only if G* and k* form a 

yes-instance for Dominating Set. 



 38

Proof: (⇒) Let G and k form a yes-instance for Vertex Cover. Then there exists a 

vertex set V’ ⊆  V such that V’ is a vertex cover for G and |V’| ≤  k. This means that for 

every edge (u, v) ∈  E, u ∈  V’ or v ∈  V’. From Observation 1 we know that for every 

vertex v ∈  V, v ∈  V’ or v has at least one neighbor u ∈  V’. Further, because every vertex 

xuv  ∈  A is adjacent to both u ∈  V and v ∈  V,  with (u, v) ∈  E, we also know every vertex 

xuv  ∈  A has at least one neighbor in V’. Thus V’ is a dominating set for G* with |V’| ≤ k = 

k*. We conclude G* and k* form a yes-instance for Dominating Set.  

(⇐ ) Let G* and k* form a yes-instance for Dominating Set. Then there exists a 

vertex set V’ ⊆  V* such that V’ is a dominating set for G* and |V’| ≤  k*. This means that 

for every vertex v ∈  V*, v ∈  V’ or v has a neighbor u ∈  V’. We prove that there exists a 

vertex cover V” ⊆  V for G with |V”| ≤ |V’| ≤ k. We distinguish two cases (1) Let V’ ⊆  V. 

Then we consider V” = V’. Note that for V” to dominate all vertices in A in G*, V” has to 

cover every edge in E (viz. every edge in E has an associated vertex xuv  ∈  A). Hence, V” 

is a vertex cover for G of size at most k* = k. We conclude that (G,  k) is a yes-instance 

for Vertex Cover. (2) Let V’ ⊄  V. Then we transform V’ into a set V” as follows. For each 

vertex xuv ∈  V’, with xuv ∉  V, we remove xuv from V’ and replace it by u or v (or neither, if 

both already happen to be in V’). Note that the resulting set V” is also a dominating set 

for G* and |V”| ≤ |V’|. Further, V” ⊆  V and thus case (1) applies to V’ = V”.  ■ 

Note that the transformation from G and k to G* and k* in Lemma 3.1 can be 

done in polynomial time: To create G* we copy G in time O(n2) and we then add at most 

m vertices and 2m edges to G* in time O(n2). Hence, with Lemma 3.1 we have shown a 

polynomial-time reduction from Vertex Cover to Dominating Set. Since, Vertex Cover is 

known to be NP-hard, we can conclude from Lemma 3.1 that Dominating Set is NP-hard. 

In other words, we have shown that if Dominating Set is in P, then so is Vertex Cover 

(and so are all other problems in NP). Namely, if there exists a polynomial-time 

algorithm M1 that solves Dominating Set, then we can solve Vertex Cover with a 

polynomial-algorithm M2 = RM1 that consists of M1 preceded by a sub-procedure R that 

transform the instance for Vertex Cover into an equivalent instance for Dominating Set. 

 



 39

3.3. The P-Cognition thesis 

Classical complexity theory, including the theory of NP-completeness, has found its way 

into cognitive psychology. Its application spans many cognitive domains, including: 

learning (Judd, 1990; Parberry, 1994; 1997), judgment and prediction (Martignon & 

Schmitt, 1999), categorization (Anderson, 1990), decision-making (Payne, Bettman, & 

Johnson, 1993; Simon, 1988, 1990), knowledge representation (Parberry, 1997), 

reasoning (Cherniak, 1986; Levesque, 1988; Millgram, 2000; Oaksford & Chater, 1993, 

1998; Thagard, 2000; Thagard & Verbeurgt, 1998), linguistic processing (Barton, 

Berwick, & Ristad, 1987; Ristad, 1993, 1995; Wareham, 1996, 1998), visual perception 

(Kube, 1991; Tsotsos, 1988, 1989, 1990, 1991), and visual problem-solving (Graham, 

Joshi, & Pizlo, 2000; MacGregor & Ormerod, 1996; MacGregor, Ormerod, & Chronicle, 

1999, 2000; van Rooij, Schactman, Kadlec, & Stege, 2003; van Rooij, Stege, & 

Schactman, 2003; Vickers, Butavicius, Lee, & Medvedev, 2001).  

 
 

Tractable = P

Cognitive 
functions 

Intractable

 
 
Figure 3.3. Illustration of the P-Cognition Thesis.  
The set of all computable functions partitioned into tractable and intractable 
functions based on the definition of classical (in)tractability. On the P-
Cognition thesis any function outside P can be rejected as computational 
level theory of a cognitive system. 

 

In present-day cognitive psychology classical complexity theory is used, among other 

things, to evaluate the feasibility of computational theories of cognition. One of the first 

researchers to explicate this usage of complexity theory in cognitive psychology is 

Frixione (2001). Frixione made the case for the thesis that cognitive functions are among 

the polynomial-time computable functions, and he called upon cognitive psychologists to 

use this thesis to constrain computational level theories. I will refer to Frixione’s 



 40

proposed formalization of the Tractable Cognition thesis as the P-Cognition thesis (see 

Figure 3.3 for an illustration). In some form or another, the P-Cognition thesis has been 

advanced by many researchers in cognitive psychology (e.g. Anderson, 1990; Cherniak, 

1986, Judd, 1990; Levesque, 1988; Martignon & Schmitt, 1999; Millgram, 2000; 

Oaksford & Chater, 1993, 1998; Parberry, 1994; Simon, 1988, 1990; Thagard, 2000; 

Thagard & Verbeurgt, 1998; Tsotsos, 1988, 1989, 1990, 1991), as well as in artificial 

intelligence (see e.g. Cooper, 1990; Nebel, 1996). The application of the P-Cognition 

thesis in psychological practice will be discussed below as well as in later chapters (see 

Chapters 5 and 7). 

3.3.1. P-Cognition in Psychological Practice 

The P-Cognition thesis is presently employed in at least three qualitatively different 

ways. First, some researchers view the finding that a given cognitive function is not in P 

(assuming P ≠ NP) as a reason to abandon the associated computational level theory 

altogether. For example, in the domain of reasoning, Oaksford and Chater (1993, 1998) 

argued that logicists’ approaches to modeling commonsense reasoning are untenable and 

should be abandoned, because checking whether a set of beliefs is logically consistent is 

NP-hard. Comparable reactions to NP-hardness results can be found in Martignon and 

Schmitt (1999) and Millgram (2000).  

Other researchers view complexity theory as a tool for refining (not all-round 

rejecting) computational level theories such that they satisfy tractability constraints. 

Researcher in this group reason as follows: If a computational level theory Π is 

classically intractable, then the cognitive system cannot be solving Π in its generality; 

hence it must (or might) be solving some variant or special case of Π. For example, 

Levesque (1988), like Oaksford and Chater, recognized the inherent exponential-time 

complexity of general logic problems, but unlike Oaksford and Chater, he concludes that 

we need to adjust logic, not abandon it, in order to obtain psychologically realistic models 

of human reasoning. Similarly, upon finding that visual search, in its general (bottom-up) 

form, is NP-complete, Tsotsos (1988, 1989, 1990, 1991) did not abandon his model of 

vision, but instead adjusted it by assuming that top-down information helps constrain the 

visual search space.  



 41

Lastly, there are researchers that, upon finding that a cognitive function Π is of 

exponential-time complexity, do not reject Π as computational level theory, nor adjust it 

to accommodate tractability constraints. Instead they assume that, at the algorithmic 

level, the function Π is being computed by heuristics or approximation algorithms. This 

approach is taken, for example, by Thagard and Verbeurgt in the domain of abductive 

(coherence) reasoning (1998; Thagard, 2000; but see also Martignon and Schmitt, 1999). 

This last group, in a sense, does not take the computational level theory very seriously; 

i.e., the constraint that tractability places upon algorithmic level theories is recognized, 

but not the constraints that tractability places upon computational level theories. 

3.3.2. A Comment on Psychological Practice 

I briefly comment on the validity of the three approaches sketched above. In my view, the 

only sensible approach is the second one: An intractability result for Π indicates that the 

function Π cannot be practically computed in all its generality, and this knowledge 

should be used to reshape the cognitive theory Π into a cognitive theory Π’ that is of 

more realistic form.  

The first approach is unreasonable simply because no single intractability result 

for a function Π can overthrow the entire framework in which Π was formulated.28 In my 

response to the third approach I distinguish between algorithmic level descriptions that 

are heuristics for the computational level function Π and those that are approximation 

algorithms for Π.29 If we were to accept (mere) heuristics as algorithmic level 

descriptions for the computational level function Π then we can do away with the 

computational level description Π altogether. Namely, then there is no principled 

relationship between the algorithmic level and the computational level description. On 

                                                 
28 Interestingly, Oaksford and Chater (1998) side with the framework of Bayesian 
inference, which is—as they themselves admit (p. 289)—equally plagued by 
computational intractability results. 
29 I use the words ‘heuristic’ and ‘approximation algorithm’ as mutually exclusive. An 
approximation algorithm is a procedure that guarantees a bound on the extent to which 
the computed output deviates from the required output. A heuristic is an approach that 
(intuitively) seems to give approximate solutions to a problem, but does not provably do 
so. This distinction between heuristics and approximation algorithms is important and is 
often overlooked in the cognitive science literature. 



 42

the other hand, if one wishes to take an approximation approach then I would propose the 

following: First define the adequate level of approximation that would be needed for the 

cognitive system to perform the task under study, and then incorporate this as part of the 

computational level theory. This way, the algorithmic level does not approximate the 

computational level; instead the computational level is reformulated as an approximation 

problem.  

 

3.4. Parameterized Complexity and Fixed-Parameter Tractability 

This section presents a brief introduction to the theory of parameterized complexity as 

developed by Downey and Fellows (1999; see also Downey, Fellows, & Stege, 1999a, 

1999b; Fellows, 2002). A detailed discussion of techniques for parameterized complexity 

analysis is postponed until Chapter 4. This section primarily serves to introduce the 

notion of fixed-parameter tractability, to be used in Section 3.5.  

3.4.1. The classes FPT and W[1] 

We have seen that classical complexity theory analyzes the complexity of problems in 

terms of the size of the input, measured by |i|. In contrast, parameterized complexity 

theory allows for a more fine-grained identification of sources of complexity in the input. 

This is done by analyzing complexity in terms of the size of the input, |i|, plus some input 

parameter(s), κ.  

Inputs to decision problems often have several (explicit and implicit) aspects and 

any one of them may be considered an input parameter.  For example, Vertex Cover and 

Dominating Set both have two aspects that are explicitly stated in the input: a graph G 

and a positive integer k. The problems also have several implicit parameters; e.g., the 

maximum (or minimum) degree of vertices in G, the length of the longest path in G, the 

number of cycles in G, the ratio between the number of edges and vertices in G. All of 

these aspects may be considered a problem parameter, and a problem may be 

parameterized on one or more parameters at the same time.  

We denote a parameter set by κ = {k1, k2, ..., km}, where ki, i = 1, 2, …, m, denotes 

an aspect of the input. We denote a problem Π parameterized on κ by κ-Π, and call κ-Π a 



 43

parameterized problem. An instance for κ-Π, with input i and parameter κ, is denoted by 

a tuple (i, κ).  

When a problem is shown to be NP-hard it is important to understand which 

aspects of the input are actually responsible for the non-polynomial time behavior of the 

problem. The theory of parameterized complexity is motivated by the following 

observation. Some NP-hard problems can be solved by algorithms whose running time is 

non-polynomial in some parameter κ but polynomial in the input size |i|. In other words, 

the main part of the input contributes to the overall complexity in a “good” way, while 

only κ contributes to the overall complexity in a “bad” way. In these cases, we say κ 

confines the non-polynomial time complexity in the problem, and the problem is said to 

be fixed-parameter tractable for parameter κ.  

More formally, a parameterized problem κ-Π is said to be fixed-parameter 

tractable if any instance (I, κ) for κ-Π can be decided in time O(f(κ)nα), where f(κ) is a 

function depending only on κ. An algorithm that solves a parameterized problem κ-Π in 

time O(f(κ)nα) is called a fixed-parameter tractable (fpt-) algorithm. Parameterized 

decision problems that are not fixed-parameter tractable are called fixed-parameter 

intractable.  

 
 

W[1]-complete FPT 

W[1] 

Computable 

 
 

Figure 3.4. The view of W[1] on the assumption that FPT ≠ W[1].  
W[1]-complete problems are not in FPT if and only if FPT ≠ W[1]. 

 
Analogous to the classical complexity classes P and NP, parameterized complexity theory 

introduces the parameterized complexity classes FPT and W[1],  with FPT ⊆  W[1].30  

                                                 
30 See e.g. Downey and Fellows (1999) for a definition of the class W[1]. 



 44

Fixed-parameter tractable parameterized problems are said to be in the class FPT. It is 

widely believed that there exist parameterized problems in W[1] that are fixed-parameter 

intractable, and thus that FPT ≠ W[1] (see also Figure 3.4). This conjecture is, among 

other things, motivated by the observation that there exist W[1]-hard problems.  

To explain W[1]-hardness we define the notion of parametric reduction: 31 For 

parameterized problems κ1-Π1 and κ2-Π2 and functions f and g, we say a parametric 

reduction from κ1-Π1 to κ2-Π2 is a reduction that transforms any instance i1 for κ1-Π1 into 

an instance i2 for κ2-Π2 with κ2 = g(κ1). Further, the reduction runs in time f(κ)|i1|α, 

where  α is a constant. A parameterized problem κ-Π is said to be W[1]-hard if any 

parameterized problem κ’-Π’ ∈  W[1] can be transformed to κ-Π via a parametric 

reduction (problems that are W[1]-hard and in W[1] are called W[1]-complete). Since, 

membership of a W[1]-hard problem in FPT would imply that FPT = W[1], the finding 

that a problem is W[1]-hard is seen as very strong evidence that the problem is not in 

FPT. 

 
 

FPT W[1] 

Computable 

PAR(P) PAR(NP) 

 
 

Figure 3.5. Illustration of the relationship between classes W[1], FPT, P and NP. 
Because W[1] and FPT are classes of parameterized problems we cannot 
compare them directly to the classes P and NP. Therefore we define the class of 
all possible parameterizations of problems in P, denoted PAR(P), and the class 
of all possible parameterizations of problems in NP, denoted PAR(NP). Since P 
⊆  NP, we have PAR(P) ⊆  PAR(NP). Further, since every problem in P is in 
FPT for any parameter we have PAR(P) ⊆  FPT ⊆  W[1]. 

 

When relating Figure 3.4 to Figure 3.1, it is important to keep in mind that W[1] 

and FPT are classes of parameterized problems, while NP and P are classes of (non-

                                                 
31 The technique of parametric reduction is illustrated in Chapter 4.  



 45

parameterized) problems. The relationship between W[1] and NP can be understood as 

follows. Let PAR(NP) denote the set of all possible parameterizations of problems in NP, 

and let PAR(P) denote the set of all possible parameterizations of problems in P, then 

PAR(P) ⊆  PAR(NP) and PAR(P) ⊆  FPT ⊆  W[1]. Figure 3.5 illustrates these 

relationships. Note that all problems that are solvable in polynomial time are solvable in 

fpt-time for all possible parameterizations. Since parameterization does not change the 

nature of a problem (it only specifies how its complexity is to be analyzed) we could say 

that “P ⊆  FPT.” 

3.4.2. Illustrating Fixed-parameter Tractability 

To illustrate the qualitative difference between fixed-parameter tractability and fixed-

parameter intractability, we consider the problems Vertex Cover and Dominating Set 

when parameterized by k. Both of these problems can be solved by an exhaustive search 

that simply checks for every vertex set of size k whether or not it is a vertex cover 

(dominating set) for G. For a graph on n vertices there exist 







k
n

 such subsets. Since 

!)!(
!

kkn
n

k
n

−
=








 is O(nk) we can solve Vertex Cover and Dominating Set in time O(nk). 

Notably, it is possible to decide the problem Vertex Cover must faster than this. Namely, 

using a technique from parameterized complexity theory—to be discussed in Chapter 4—

we can show that Vertex Cover is solvable in time O(2kn).32 Thus the parameterized 

problem k-Vertex Cover is in FPT. A similar running time is most likely not possible for 

Dominating Set: viz., the parameterized problem k-Dominating Set has been shown to be 

W[1]-hard (Downey & Fellows, 1999).  

Table 2.2 illustrates how the running times O(2|i|), O(|i|κ) and O(2κ|i|) compare, for 

κ = 10 and κ = 20 and different |i|. Clearly, an fpt-algorithm that runs in time O(2κ|i|) is 

feasible even for large |i| provided only that κ is not too large.  

                                                 

32 In fact, with the use of further techniques and a better analysis, we can show that k-
Vertex Cover is solvable in time O(1.28k + kn) (Chen, Kanj, & Jia, 2001). 



 46

The take home message of this illustration is that the classical characterization of 

exponential-time algorithms as “all bad” is too crude: Not all exponential-time algorithms 

are created equal (cf. Downey & Fellows, 1999; Niedermeier, 2003).  Namely, we have 

seen that the known NP-hard problem Vertex Cover can be solved by an exponential-

time algorithm O(2kn) where the running time is exponential only in k.  Since the size of 

k is but one (relatively small) part of the input to this problem, it seems inappropriate to 

consider Vertex Cover as generally intractable.  

 
Table 2.2. Fixed-parameter tractability and intractability. 
Illustration of how the running time O(2|i|), O(|i|κ) and O(2κ|i|) compare for different 
levels of |i|, when κ = 10 or κ = 20 (assuming 10,000 computational steps per second) 
 
    κ = 10  κ = 20  

|i| O(2|i|) O(|i|κ) O(2κ|i|) O(|i|κ) O(2κ|i|) 

2 0.02 msec 0.10 sec 0.20 sec 1.75 min 3.5 min 

5 0.19 msec 16.3 min 0.51 sec 3 centuries 8.7 min 

10 0.10 sec 11.6 days 1.02 sec 3.2 x 108 yrs 17.5 min 

15 3.28 sec 22 mths 1.54 sec 1.1 x 1012 yrs 26.2 min 

20 1.75 min 32.5 yrs 2.05 sec 3.3 x 1014 yrs 35.0 min 

30 1.2 days 19 centuries 3.07 sec 1.1 x 1018 yrs 52.4 min 

50 35 centuries 3.1 x 105 yrs 5.12 sec 3.0 x 1022 yrs 1.45 hrs 

100 4.0 x 1018 yrs 3.2 x 108 yrs 10.2 sec 3.2 x 1028 yrs 2.9 hrs 

1000 3.4 x 10290 yrs 3.2 x 1018 yrs 1.71 min 3.2 x 1048 yrs 29 hrs 

 

3.5. The FPT-Cognition thesis 

The theory of parameterized complexity remains largely unknown to and unexplored by 

cognitive psychologists (to my knowledge, the first and only connection drawn is by 

Wareham, 1996, 1998).33 Studying the complexity of different parameterizations of a 

problem is of great use for cognitive psychology, however, because it gives us insight 
                                                 
33 Tsotsos (1990) also emphasized that different input parameters may differentially 
contribute to a problem’s complexity, but he did not use parameterized complexity theory 
in his analyses. Further, note that parameterized complexity theory is already being 
applied in the field of artificial intelligence (e.g. Gottlob, Scarcello, & Sideri, 2002).  



 47

into how the complexity of a problem depends on its different input parameters. If a 

problem of exponential-time complexity allows for this exponential-time complexity to 

be confined to parameters that are in practice small, then the problem is in practice not as 

hard as a classical complexity analysis would suggest. This observation leads me to 

formulate the FPT-Cognition thesis: Cognitive functions are among the functions that 

have problem parameters that are “small enough” in practice and that are fixed-parameter 

tractable for (a subset of) those parameters. 

A comment on the qualification “small enough” is in order. First, note that every 

problem in NP is in FPT for at least one parameter; e.g., when κ = |i|. The FPT-Cognition 

thesis is purposely formulated to exclude such trivial cases of fixed-parameter 

tractability. Furthermore, the range of feasibility for κ is different for an fpt-algorithm 

that runs in O(2kn) than for an fpt-algorithm that runs in O(2k!n).  In sum, whether an fpt-

algorithm runs fast enough in practice will depend on (1) the exact function f(κ) in the 

running time, and (2) the range of values that κ may take in practice. The formal theory 

of parameterized complexity can help determine bounds on the function f(κ), but 

empirical observation and psychological theory will be needed to provide reasonable 

estimates of bounds on κ.  

 

Tractable = FPT Intractable

P 

Cognitive functions 

 
 
Figure 3.6. Illustration of the FPT-Cognition thesis. 
The set of all computable functions partitioned into tractable and intractable 
functions based on the definition of parameterized (in)tractability. On the 
FPT-Cognition thesis any computational theory instantiating a function that is 
not in FPT for some small input parameters can be rejected. 

 
 



 48

See Figure 3.6 for an illustration of the FPT-Cognition thesis. Since “P ⊆  FPT” 

the FPT-Cognition thesis instantiates a relaxation of the P-Cognition thesis. That is, under 

the FPT-Cognition thesis the space of feasible computational theories is larger than the 

set of feasible theories under the P-Cognition thesis.  

Why relax the P-Cognition thesis? If we use computational complexity theory to 

constrain psychological theorizing we do not want to constrain it too much. That is, we 

do not want to risk rejecting veridical theories simply because our formalization of the 

Tractable Cognition thesis is wrong. If the FPT-Cognition thesis is realistic (and I believe 

it is) then, if we adopt the P-Cognition thesis, we risk exactly this.  

3.5.1. FPT-Cognition in Psychological Practice 

I close this chapter with a discussion of how the FPT-Cognition thesis might be usefully 

employed in psychological practice. In this context, it is important to understand that the 

analytic tools provided by parameterized complexity theory are not meant to replace the 

tools provided by classical complexity theory; instead the parameterized tools should be 

seen as extending the classical tools.  

With the FPT-Cognition thesis I do not mean to argue that NP-hardness results 

are of no significance to psychological science. The FPT-Cognition thesis, like the P-

Cognition thesis, recognizes that an NP-hard function Π cannot be practically computed 

in all its generality. If the system is computing Π at all, then it must be computing some 

“restricted” version of it, denoted Π’. The crux is, however, what is meant by 

“restricted.” The P-Cognition thesis states Π’ must be polynomial-time computable, 

whereas the FPT-cognition thesis states that Π’ must have problem parameters that are in 

practice “small” and that Π’ must be fixed-parameter tractable for (a subset of) those 

parameters. 

On the one hand, the FPT-Cognition thesis loses in formality by allowing an 

undefined notion of “small” parameter in its definition. On the other hand, this allowance 

is exactly what brings the FPT-Cognition thesis much closer to psychological reality. 

Many natural cognitive functions have input parameters that are of qualitatively different 

sizes. Ignoring these qualitative differences, and treating the input always as one big 

“chunk,” would make complexity analysis in psychological practice completely vacuous.  



 49

The FPT-Cognition thesis, then, should not be seen as a simple litmus test for 

distinguishing feasible from unfeasible computational level theories. On the contrary, the 

FPT-Cognition thesis, as I put it forward, is meant to stimulate active exploration of 

natural problem parameters in cognitive tasks. It is only when we know how the 

complexity of a function depends on its problem parameters that we can have a solid 

understanding of a function’s complexity in practice.  



 50

Chapter 4. Techniques in Parameterized Complexity 

 

This chapter presents a primer on parameterized complexity analysis. The purpose of this 

chapter—as well as the three following chapters—is to make the techniques for classical 

and parameterized complexity analysis accessible to cognitive psychologists interested in 

analyzing the complexity of their cognitive theories. This chapter gives an overview of 

basic techniques developed in the field of parameterized complexity. To facilitate 

understanding I illustrate each technique with one or more examples. For my examples I 

use Vertex Cover and related graph problems.34 The techniques presented in this chapter, 

together with the technique of polynomial-time reduction (Section 3.2), are then used in 

Chapters 5, 6 and 7 to illustrate complexity analysis for existing cognitive theories. 

 

4.1. Reduction Rules  

If Π is an NP-hard problem, then we know that we cannot solve Π in polynomial-time 

(unless P = NP). Nevertheless, sometimes we can solve parts of an instance i for Π in 

polynomial time by applying so-called reduction rules. A reduction rule takes as input an 

instance i for Π and transforms it into an instance i’ for Π such that i is a yes-instance for 

Π if and only if i’ is a yes-instance for Π. In other words, a reduction rule instantiates a 

reduction as discussed in Section 3.1, but in this particular case it is a reduction where i 

and i’ are instances for one and the same problem. Generally, the goal of a reduction rule 

is to reduce instance i to an instance i’ such that i’ smaller and/or easier to work with than 

i.  Since the reduction maintains the equivalence between i and i’ for Π (i.e., the answer 

is either “yes” for both i and i’ or “no” for both i and i’), we can safely work with i’ 

instead of i, even if our goal is to solve i. Namely, the reduction ensures that as soon as 

we solve i’ for Π we have also solved i for Π.  

                                                 
34 I do not claim originality of all examples in this chapter. Many of the examples using 
Vertex Cover are adopted from Balasubramanian, Fellows, and Raman (1998) and the 
monograph by Downey and Fellows (1999). Many examples using profit problems derive 
from my own work together with Ulrike Stege. My contribution here is to bring all these 
examples together in a coherent way, with the aim of making parameterized complexity 
techniques easily understandable for a non-expert.   



 51

Figure 4.1. Illustration of reduction 
rules (VC 1) – (VC 5) for Vertex 
Cover. 
Arrows indicate the application of a 
reduction rule. The instance before 
reduction rule application is denoted 
(G, k) and the instance after 
reduction rule application is denoted 
(G*, k*). Note that, in each case, 
(G*, k*) is defined such that it is a 
yes-instance for Vertex Cover if and 
only if (G, k) is a yes-instance for 
Vertex Cover. Application of (VC 1) 
causes singletons to be deleted from 
G. Application of (VC 2) causes 
pendant vertices to be deleted from 
G. Note that we set k* = k − 1, 
because rule (VC 2) assumes that the 
neighbor of the pendant vertex is in 
the vertex cover. Application of (VC 
3) causes vertices with degree larger 
than k to be deleted from G. Again 
we set k* = k − 1 because rule (VC 
3) assumes that the deleted vertex is 
in the vertex cover. Note that, in this 
example, (G*, k*) is a graph with 
pendant vertices; thus we can apply 
(VC 1) to (G*, k*).  If the number of 
edges in G is smaller than k, then 
application of (VC 4) returns the 
answer “yes,” because then we can 
cover each edge by including one of 
its endpoints in the vertex cover. If 
the number of independent edges in 
G exceeds k, then application of (VC 
5) returns the answer “no,” because 
for each independent edge we will 
need to include at least one vertex in 
the vertex cover. In the bottom 
figure, the dotted lines form a largest 
set of independent edges for G. 

 

 

 

 

(VC 1)

(G, k) (G*, k*), k* = k

(VC 2)

(G, k) (G*, k*), k* = k – 1

(VC 3)

(G, k), k = 3 (G*, k*), k* = k – 1

(VC 4)

(G, k), k ≥ 8

“yes”

(VC 5)

(G, k), k ≤ 2

“no”



 52

To illustrate the use of reduction rules, we again consider the problem Vertex Cover. 

Figure 4.1 illustrates the first five reduction rules.  

To derive the first reduction rule, we observe that if an input graph G contains a 

singleton v (i.e., degG(v) = 0), then we can delete v from G. Namely, v has no incident 

edges and thus v need not be considered for inclusion in the vertex cover for G. Hence we 

can apply the following reduction rule to G when solving Vertex Cover. 

(VC 1) Singleton Rule: Let graph G = (V, E) and positive integer k form an 

instance for Vertex Cover. If there exists a vertex v ∈  V with degG(v) = 0, then let G* = 

(V*, E), with V* = V \{v}, and positive integer k form the new instance for Vertex Cover. 

To prove that (VC 1) is a valid reduction rule as defined above, we need to show 

that (G, k) is a yes-instance for Vertex Cover if and only if (G*, k*) is a yes-instance for 

Vertex Cover. That is, the transformation described by the rule must be such that, if the 

answer for the new instance (G*, k*) is “yes” then we can conclude that the old instance  

(G, k) is “yes,” and if the answer for the new instance (G*, k*) is “no” then we can 

conclude that the old instance (G, k) is “no.” 

Proof of (VC 1):  We show that (G, k) is a yes-instance for Vertex Cover if and 

only if (G*, k*) is a yes-instance for Vertex Cover. Let v ∈  V be a vertex in G without 

incident edges. (⇒) Let (G, k) be a yes-instance for Vertex Cover. Then G has a vertex 

cover V’ ⊆  V of size at most k. We distinguish two cases: (1) Let v ∉  V’. Then V’ is a 

vertex cover for G* of size k* = k. (2) Let v ∈  V’. Then, since v is a singleton, V’ \{v} is 

also a vertex cover for G of size at most k −1, and thus V’ \{v} is also a vertex cover for 

G* of size at most k* − 1 = k − 1. Hence, in both case (1) and (2) we conclude that (G*, 

k*) is a yes-instance for Vertex Cover. (⇐ ) Let (G*, k*) be a yes-instance for Vertex 

Cover. Then G* has a vertex cover V’ ⊆  V of size k*. Since G contains the same edges as 

G*, V’ is also a vertex cover for G. We conclude that (G, k) is a yes-instance for Vertex 

Cover. ■ 

In the proof of (VC 1) above, we proved each direction (⇒) and (⇐ ) separately. 

Sometimes we may choose to prove both directions at once. For example, an alternative 

proof of (VC 1) could go as follows. 



 53

 Alternative Proof of (VC 1):  Let V’ ⊆  V be a minimum vertex cover for G and 

let v ∈  V be a singleton. We make three observations. (1) We know v ∉  V’ (namely, if we 

assume v ∈  V’, then we can have a smaller vertex cover V’\{v} for G, contradicting that 

|V’| is minimum). (2) Since G* = (V\{v}, E), we know V’ is a minimum vertex cover for 

G*. (3) In general, we know for any instance (G’, k’) that (G’, k’) is a yes-instance if and 

only if a minimum vertex cover for G’ has size at most k’. From (1), (2) and (3) we 

conclude that (G, k) is a yes-instance if and only if (G*, k*) is a yes-instance. ■ 

We derive a second reduction rule. We observe that any instance (G, k) for Vertex 

Cover can be reduced such that G has no pendant vertices (i.e., vertices of exactly degree 

1). Namely, a pendant vertex u, with neighbor v, can cover only edge (u, v), whereas its 

neighbor v covers the same edge plus possibly more. Hence we can always include v 

instead of u in the vertex cover for G. 

(VC 2) Pendant Rule: Let graph G = (V, E) and positive integer k form an 

instance for Vertex Cover. If there exists a vertex u ∈  V with degG(u) = 1, then let G* = 

(V*, E*), with V* = V\{u, v}, E* = E\RG({u, v}), and positive integer k* = k − 1 form the 

new instance for Vertex Cover. 

Proof: We need to show that (G, k) is a yes-instance for Vertex Cover if and only 

if (G*, k*) is a yes-instance for Vertex Cover. (⇒) Let (G, k) be a yes-instance for Vertex 

Cover. Then G has a vertex cover V’ ⊆  V of size k. First, we show that w.l.o.g.  v ∈  V’. 

The proof is by contradiction. Assume that v ∉  V’. Then its neighbor u must be in V’, 

otherwise edge (u, v) is not covered and V’ would not be a vertex cover for G. But then 

we can transform V’ into V” = (V’ ∪  {v}) − {u} and conclude that V” is a vertex cover 

for G of size k. Second, since  w.l.o.g. v ∈  V’ and E* = E\RG({u, v}), we know that 

V’\{v} is a vertex cover of size k − 1 for G*. We conclude that (G*, k*) is a yes-instance 

for Vertex Cover. (⇐ ) Let (G*, k*) be a yes-instance for Vertex Cover. Then G* has a 

vertex cover V’ ⊆  V of size k*. Since v covers every edge in RG({u, v}), and E = E* ∪  

RG({u, v}), we know that V’ ∪  {v} is a vertex cover for G of size k* + 1. We conclude 

that (G, k) is a yes-instance for Vertex Cover. ■ 



 54

If we apply reduction rules (VC 1) and (VC 2) to an instance (G, k) until no 

longer possible, then we will have removed all degree-0 and degree-1 vertices from the 

input graph.  

We next show that we can also remove vertices of high degree. More specifically, 

if G contains a vertex v of degree at least k +1, then any vertex cover for G of size at most 

k will have to include v. Namely, to cover the edges incident to v we need to include 

either v in the vertex cover or all of its neighbors. Since v has more than k neighbors, V’ 

is a vertex cover for G of size at most k only if v ∈  V’.  

(VC 3) Degree-(k +1) Rule: Let graph G = (V, E) and positive integer k form an 

instance for Vertex Cover. If there exists a vertex v ∈  V with degG(v) > k, then let G* = 

(V*, E*), with V* = V \{v}, E* = E\RG({v}), and positive integer k* = k − 1 form the new 

instance for Vertex Cover. 

Proof: We need to show that (G, k) is a yes-instance for Vertex Cover if and only 

if (G*, k*) is a yes-instance for Vertex Cover. (⇒) Let (G, k) be a yes-instance for Vertex 

Cover. Then G has a vertex cover V’ ⊆  V of size k. We show that v ∈  V’. The proof is by 

contradiction. Assume that v ∉  V’. Then all neighbors of v are in V’. Since |NG(v)| = 

degG(v) > k we can conclude |V’| > k, contradicting the fact that V’ is of size at most k. 

Since, v ∈  V’ and E* = E\RG({v}), we know that V’\{v} is a vertex cover of size k − 1 for 

G*. We conclude that (G*, k*) is a yes-instance for Vertex Cover. (⇐ ) Let (G*, k*) be a 

yes-instance for Vertex Cover. Then G* has a vertex cover V’ ⊆  V of size k*. Since v 

covers every edge in RG({v}), and E = E* ∪  RG({v}), we know that V’ ∪  {v} is a vertex 

cover for G of size k* + 1. We conclude that (G, k) is a yes-instance for Vertex Cover. ■ 

For certain problems it is possible to formulate a reduction rule that tests whether 

the instance i has a property that allows us to directly decide i for Π. For example, if a 

graph G has less than k edges then we know right away that G has a vertex cover of size 

at most k. Namely, for each edge we can just include any one of its incident vertices in 

the vertex cover. 

(VC 4) Less Than k Edges Rule: Let graph G = (V, E) and positive integer k 

form an instance for Vertex Cover. If |E| ≤ k then output “yes.”  



 55

Proof: Let G = (V, E) be a graph with |E| ≤ k. Then we can cover every edge (u, v) 

∈  E with the following procedure: For each (u, v) ∈  E include v into the vertex cover V’ 

⊆  V. Since we have at most k edges, this procedure will lead us to include at most k 

vertices in the vertex cover. Hence, (G, k) is a yes-instance for Vertex Cover. ■ 

The rule (VC 4) allows us to recognize some yes-instances for Vertex Cover. 

There also exist rules that allow us to recognize some no-instances for Vertex Cover. For 

example, let G and k form an instance for Vertex Cover, and let E’ ⊆  E be a set of 

independent edges in G (i.e., no two edges in E’ has a vertex in common). If |E’| > k then 

we know that G and k form a no-instance for Vertex Cover. Namely, to cover an edge (u, 

v) at least one of u and v must be in the vertex cover. Since the edges in E’ are 

independent, a vertex that covers an edge in E’ does not cover any other edge in E’. 

Hence, we need at least |E’| > k vertices to cover all edges in G. 

(VC 5) More Than k Independent Edges Rule: Let graph G = (V, E) and 

positive integer k form an instance for Vertex Cover. If G contains a set of independent 

edges E’ ⊆  E such that |E’| > k, then output “no.” 

Proof: Let G = (V, E) be a graph, and let E’ ⊆  E be a set of independent edges. 

Further, let |E’| > k and let (u, v) be any edge in E’. For a vertex set V’ ⊆  V to cover (u, v) 

∈  E’, we must have u ∈  V’ or v ∈  V’. Since all edges in E’ are independent we know that 

for any edge (x, y) ∈  E’, with (x, y) ≠ (u, v), that x ≠ u, x ≠ v, y ≠ u, and y ≠ v (otherwise 

the two edges are not independent). Hence we need at least as |E’| > k vertices in V’ to 

cover all edges in E’, and thus we need at least as |E’| > k vertices in V’ to cover all edges 

in E. We conclude that (G, k) is a no-instance for Vertex Cover. ■ 

All these reduction rules run in polynomial-time. The time to execute rules (VC 1) 

and (VC 2) is independent of the size of the input, and thus these rules run in time O(1). 

The rule (VC 3) requires the removal of a vertex and all its incident edges from G; since a 

vertex has at most |V| − 1 incident edges, this rule can be executed in time O(|V|). Rule 

(VC 4) involves counting the number of edges in the input graph, which runs in time 

O(|V|2).   Finally, rule (VC 5) involves counting the number of independent edges in a 

graph. The problem of finding the maximum number of independent edges in a graph is 

equivalent to the problem Maximum Matching (see Appendix B for problem definition). 



 56

It is known that Maximum Matching can be solved in time O(|V|2) (e.g. Gross & Yellen, 

1999), and thus rule (VC 5) also runs in polynomial-time.35  

Whenever we have a set of reduction rules for a given problem we often say that a 

problem is reduced if none of the reduction rules apply. For example, we may say that 

instance (G, k) for Vertex Cover is reduced if and only if (VC 1) − (VC 5) do not apply to 

(G, k).  

 

4.2. Reduction to Problem Kernel 

Sometimes a set of reduction rules can lead to kernelization of the input. In such cases we 

know that, if application of the reduction rules is no longer possible, then the size of the 

input i is bounded by some function depending only on the parameter κ. The kernelized 

input i is then called a problem kernel. More formally, if there exists a function f(κ), 

depending only on κ, such that |i| ≤ f(κ) we say that i is kernelized. We call i the problem 

kernel, and we call |i| ≤ f(κ) the problem kernel size.  A set of reduction rules that leads to 

a problem kernel is called a reduction to problem kernel.  

Once a kernelization result is known for a problem κ-Π, we conclude that κ-Π ∈  

FPT.36 Namely, we know that there exists some function g(|i|), such that O(g(|i|)) captures 

the running time for Π. But then, given the problem kernel |i| ≤ f(κ), we know that we can 

solve κ-Π in time O(g(f(κ)) + h(|i|, κ)), where function h(|i|, κ) denotes the time required 

for the reduction. If h(|i|, κ) is polynomial- or fpt-time we can rewrite O(g(f(κ)) + h(|i|, κ)) 

as O(g’(κ) + h’(|i|)), which is fpt-time.   

To illustrate this technique, we add to the set of reduction rules (VC 1)−(VC 5) 

the kernelization rule (VC 6). It is important that before applying rule (VC 6) we first 

reduce the input (specifically, we have to make sure that the rules (VC 1) and (VC 3) do 

not apply). Then, using the fact that reduced graphs have no degree-0 and no degree-(k 

                                                 
35 All reductions considered here happen to be polynomial-time reduction rules. I remark 
that it is also possible to use reduction rules that run in fpt-time when building fpt-
algorithms. In the discussion of bounded search tree, in Section 4.3, we will allow for 
either polynomial-time or fpt-time reduction rules. A reduction that runs in fpt-time will 
be illustrated in Section 4.6. 
36 In fact, an even stronger relationship holds: A problem is in FPT if and only if it is 
polynomial-time kernelizable (Downey et al., 1999a).  



 57

+1) vertices, rule (VC 6) concludes that a reduced instance (G, k) such that G has more 

than k(k + 1) vertices is a no-instance for Vertex Cover. See Figure 4.2 for an illustration 

of (VC 6). 

 

(VC 6)

(G, k) 

4

k

3

1

2

4

k

3

1

2

4

k

3

1

2…

1 2 k

“no”

v

 
 
Figure 4.2. Illustration of rule (VC 6) and the intuition behind its proof.  
The figure depicts an instance (G, k) for Vertex Cover. The graph G consists of k 
components: the first k −1 components are stars and the kth component is a star on which 
a pendant vertex v is appended. Further, the root of each component is of degree k. Note 
that the most economical way of covering every edge in G is by including the root of 
each star, plus v or its neighbor, in the vertex cover. This means that the smallest vertex 
cover for G is of size k + 1 and thus the answer is “no” for (G, k). To illustrate the 
intuition behind the proof of (VC 6) we make some further observations: Note that G has 
exactly k(k + 1) + 1 vertices. Consider the graph G’ that is the same as G except that 
vertex v has been deleted. Note that G’ has k(k + 1) vertices, and the smallest vertex 
cover for G’ is of size k. If you try to change G’, by changing only the edge set, and 
without creating singletons (because then we can apply (VC 1)) and without creating 
vertices of degree larger than k (because then we can apply (VC 3)), you will see that it is 
not possible to create a graph on the same set of vertices that has a vertex cover of size k 
−1. From this we conclude that any graph larger than G’ for which (VC 1) and (VC 3) do 
not apply, like G, does not have a vertex cover of size k.  
 

(VC 6) More Than k(k + 1) Vertices Rule:37 Let graph G = (V, E) and positive 

integer k form a reduced instance for Vertex Cover (i.e., rules (VC 1) − (VC 5) do not 

apply to (G, k)). If G has more than k(k + 1) vertices, then output “no.” 

Proof: Let G be a reduced graph with more than k(k + 1) vertices. Further, 

because G is reduced we know it does not contain vertices with degree larger than k, nor 

                                                 
37 This kernelization rule also appears in Downey and Fellows (1999), and is due to Sam 
Buss. 



 58

any degree-0 vertices. We show that we need more than k vertices in the vertex cover to 

cover all the edges.  

The proof is by contradiction. Let V’ ⊆  V be vertex cover for G of size k. Because 

G is reduced its vertex degree is bounded by k, and thus the maximum number of edges 

covered by any one vertex v ∈  V’ is k. Now consider the combined neighborhood of 

vertices in V’, denoted NG(V’). Since each vertex v ∈  V’ can cover at most k edges, and 

V’ contains at most k vertices, we know that |NG(V’)| ≤ k2 and thus |V’ ∪  NG(V’)|  ≤  k2 + 

k = k(k + 1). But G has more than k(k + 1) vertices. This means there must exist at least 

one vertex u in G such that u ∉  V’ ∪  NG(V’). Since G is reduced we know that this vertex 

has at least one incident edge (viz., (VC 1) does not apply), and since u ∉  V’ ∪  NG(V’) 

we know that this edge is not covered by V’. We conclude that V’ is not a vertex cover for 

G. ■ 

 We say that an instance (G, k) for k-Vertex Cover is kernelized if it is reduced and 

(VC 6) does not apply. We now observe that in a kernelized instance (G, k) for k-Vertex 

Cover, with G = (V, E), the size of V is bounded by a function of k. To be exact, we have 

a problem kernel |V| = n < k(k + 1). Recall that we can solve Vertex Cover in time O(2n), 

simply by trying out all 2n possible subsets of vertices (e.g., using the Exhaustive Vertex 

Cover algorithm described on page 24). This means that we can solve a reduced instance 

of Vertex Cover in time O(2k(k + 1)). Adding the time required to reduce and kernelize an 

instance we conclude that we can solve any instance for Vertex Cover in time O(2k(k + 1) + 

n2). This establishes that k-Vertex Cover is in FPT.  

 

4.3. Bounded Search Tree 

Reduction to problem kernel is one technique for showing that a problem is in FPT. 

Another technique is the bounded search tree technique. The goal of this technique is to 

construct a search tree T, such that for every instance i for κ-Π the following three 

conditions are met: (1) the search tree returns a solution for κ-Π (i.e., one of its leaves is 

labeled by a yes-instance) if and only if i is a yes-instance for κ-Π, (2) the search tree is 

bounded in size by some function f(κ), and (3) each node in the search tree can be created 

in fpt-time.  



 59

Here, requirement (1) is to ensure the correctness of the algorithm; i.e., we want 

the algorithm to solve the problem Π. Requirements (2) and (3) are to ensure that the 

search terminates in fpt-time O(f(κ)|i|α).  To see that requirements (2) and (3) together 

ensure an fpt running time consider the following: Let the size of the search tree T be 

O(f1(κ)) and let the time to create a node in T be time O(f2(κ) |i|α), then the total running 

time of the search algorithm is given by O(f1(κ) f2(κ) |i|α)) = O(f(κ) |i|α), which is fpt-time 

with respect to parameter κ. I discuss and illustrate points (1), (2) and (3) in turn. 

To meet requirement (1), we create the search tree by recursively calling one or 

more branching rules. Like a reduction rule, a branching rule takes as input an instance i 

for a problem Π, but unlike a reduction rule, a branching rule outputs multiple instances 

i1, i2, …,  ib for Π. To ensure that the search tree returns a solution for κ-Π if and only if 

(I, κ) is a yes-instance for κ-Π, the instances i1, i2, …,  ib are constructed such that i is a 

yes-instance for Π if and only if i1 or i2 or… or  ib is a yes-instance for Π. To illustrate we 

reconsider the Exhaustive Vertex Cover algorithm discussed in Section 2.4.2 (page 24).  

The Exhaustive Vertex Cover algorithm can be seen as building the search tree T 

in Figure 2.3 (page 26). The root of T is labeled by the original input instance (G, k).38 

For each node s in T the procedure Branch in the Exhaustive Vertex Cover algorithm 

causes the creation of two children, s1 and s2, of s. Here s1 and s2 are labeled by (G1, k1) 

and (G2, k2) such that (G, k) is a yes-instance for Vertex Cover if and only if (G1, k1) or 

(G2, k2) is a yes-instance for Vertex Cover. The procedure Branch accomplishes this by 

applying the rule “If V’ is a vertex cover for a graph G, and v is a vertex in G, then either 

v is in V’ or v is not in V’.”  This branching rule is formally defined by (VC 7) below (see 

Figure 4.3 for an illustration). 

 

                                                 
38 In Figure 2.3 on page 26, at each node of the search tree we additionally kept track of 
the set V’ that was to be build into a vertex cover. From now on I will no longer explicate 
that V’ is being build during the construction of the search tree. For all algorithms 
discussed in the text—unless otherwise noted—the reader may just assume that the 
algorithm builds a constructive solution for every yes-instance of the problem that it 
solves.  



 60

Figure 4.3. Illustration of branching 
rules (VC 7) and (VC 8).  
 The instance before branching rule 
application is denoted (G, k) and the 
two instances obtained after 
branching rule application are 
denoted (G1, k1) and (G2, k2).  Note 
that both branching rules define the 
new instances (G1, k1) and (G2, k2) 
such that (G1, k1) or (G2, k2) is a 
yes-instance for Vertex Cover if 
and only if (G, k) is a yes-instance 
for Vertex Cover. This way each 
rule ensures that the branching 
algorithm returns the answer “yes” 
(or “no”) if and only if the answer 
for the original input to the 
algorithm is “yes” (“no”). The rule 
(VC 7) considers for a vertex v in 
G, the possibility that v is in the 
vertex cover and the possibility that 
v is not in the vertex cover. If we 
assume that v is in the vertex cover, 
then we can delete v and its incident 
edges from G, leading to G1, and 
we set k1 = k − 1. If we assume that 
v is not in the vertex cover, then we 
also delete v and its incident edges 
from G, leading to G2, but we set k2 
= k. Note that, in this example, (VC 
2) can be applied to both (G1, k1) 
and (G2, k2). The rule (VC 8), like 
(VC 7), considers for a vertex v in 
G, the possibility that v is in the 
vertex cover and the possibility that 
v is not in the vertex cover. The rule 

(VC 8), unlike (VC 7), uses the fact that, if v is not in the vertex cover, then all of its 
neighbors are in the vertex cover (otherwise the edges incident to v would not be 
covered). If we assume v is in the vertex cover, then we delete v and its incident edges 
from G, leading to G1, and we set k1 = k − 1. If we assume v is not in the vertex cover, 
then the neighbors of v are in the vertex cover. Then we delete v and its incident edges 
from G, and additionally we delete its neighbors and their incident edges, leading to G2. 
Further, we set k2 = k − |NG(v)|. In this example, v has 4 neighbors and thus |NG(v)| = 4. 
Also note that, in this example, (VC 2) can be applied to (G1, k1), and both (VC 1) and 
(VC 2) can be applied to (G2, k2). 

 

v

(G, k) 

(G1, k1), k1 = k – 1 (G2, k2), k2 = k
(VC 7)

v

(G, k) 

(G1, k1), k1 = k – 1 (G2, k2), k2 = k – 4 
(VC 8)



 61

(VC 7) The Vertex-In-or-Out Branching Rule: Let node s in the search tree be 

labeled by instance (G, k), G = (V, E), for Vertex Cover and let v ∈  V. Then we create 

two children of s in the search tree, called s1 and s2, and label s1 by (G1, k1) and label s2 by 

(G2, k2). Here G1 = (V1, E1) with V1 = V \{v}, E1 = E\RG({v}), k1 = k − 1 and G2 = (V2, E2) 

with V2 = V \{v}, E2 = E\RG({v}), k2 = k. 

Proof: We need to show that (G, k) is a yes-instance for Vertex Cover if and only 

if (G1, k1) or (G2, k2) is a yes-instance for Vertex Cover. (⇒) Let (G, k) be a yes-instance 

for Vertex Cover. Then there exists a vertex cover V’ ⊆  V for G with |V’| ≤  k. We 

distinguish two cases: (1) Let v ∈  V’. Since E1 = E\RG({v}) we know that V’\{v} is a 

vertex cover for G1 of size k − 1. We conclude (G1, k1) is a yes-instance for Vertex Cover. 

(2) Let v ∉  V’. Then V’ is a vertex cover for G2 of size k.  We conclude (G2, k2) is a yes-

instance for Vertex Cover. (⇐ ) Let (G1, k1) or (G2, k2) be a yes-instance for Vertex 

Cover. We distinguish two cases: (1) Let (G1, k1) be a yes-instance for Vertex Cover. 

Then there exists a vertex cover V1’ for G1, such that |V1’| ≤ k1. Since v covers every edge 

in RG({v}), and E = E1 ∪  RG({v}), we know that V’ = V1’ ∪  {v} is a vertex cover for G of 

size at most k1 + 1. We conclude (G, k) is a yes-instance for Vertex Cover. (2) Let (G2, 

k2) be a yes-instance, and (G1, k1) be a no-instance, for Vertex Cover. Then there exists a 

vertex cover V2’ for G2, such that |V2’| ≤ k2. Then V2’ is a vertex cover for G of size k2 

(otherwise, (G1, k1) would be a yes-instance for G). We conclude (G, k) is a yes-instance 

for Vertex Cover. ■ 

The rule (VC 7) ensures that a leaf of T in Figure 2.3 (page 26) is labeled by a 

yes-instance for Vertex Cover if and only if the instance that labels the root of T is a yes-

instance for Vertex Cover. This is how we ensure that the Exhaustive Vertex Cover 

algorithm always returns “yes” if the original input is a yes-instance, and “no” if the 

original input is a no-instance. 

Is the search tree size created by (VC 7) bounded by a function of the parameter 

k? No, it is not. Even though fan(T) is bounded by the function g(k) = 2, the depth of the 

search tree is not bounded any function h(k). Namely, the depth of the path from the root 

of T to the rightmost leaf can be as long as n. For this reason the search tree obtained by 

the application of rule (VC 7) does not meet requirement (2). 



 62

In general, for a parameter κ, requirement (2) can be met if there exist functions 

g(κ) and h(κ), such that fan(T) ≤ g(κ) and depth(T) ≤ h(κ). Namely, as we have seen in 

Section 2.4.2, for any search tree T, size(T) ≤ 2fan(T)depth(T)  − 1, which is O(fan(T)depth(T) ). 

And thus, if we have fan(T) ≤ g(κ)  and depth(T) ≤ h(κ), then we conclude that size(T) is 

O(g(κ)h(κ)  ). To illustrate, I now present a new branching rule, (VC 8), to replace (VC 7). 

I will show that (VC 8) can be used to construct a search tree that meets requirement (2) 

for parameter k. Rule (VC 8) uses the observation that, to cover all edges incident to a 

vertex v in a graph G, if v itself is not in the vertex cover then all of its neighbors must be 

in the vertex cover. Further, the rule (VC 8) is applied only to vertices of minimum 

degree 1 to ensure that k gets reduced by at least 1 for each branch (see Figure 4.3). 

(VC 8) The Vertex-or-All-Its-Neighbors Branching Rule:  Let node s in the 

search tree be labeled by instance (G, k), G = (V, E), for Vertex Cover and let v ∈  V with 

degG(v) ≥ 1.  Then we create two children of s in the search tree, called s1 and s2. We 

label s1 by (G1, k1), with G1 = (V1, E1), V1 = V \{v}, E1 = E\RG({v}), k1 = k − 1, and we 

label s2 by (G2, k2), with G2 = (V2, E2) with V2 = V \NG(v), E2 = E\RG(NG(v)), k2 = k − 

|NG(v)|. 

Proof:  We need to show (G, k) is a yes-instance for Vertex Cover if and only if 

and only if (G1, k1) or (G2, k2) is a yes-instance for Vertex Cover. (⇒) Let (G, k) be a yes-

instance for Vertex Cover. Then there exists a vertex cover V’ ⊆  V for G with |V’| ≤ k. 

We distinguish two cases: (1) Let v ∈  V’. Since E1 = E\RG({v}) we know that V’\{v} is a 

vertex cover for G1 of size k − 1. We conclude (G1, k1) is a yes-instance for Vertex Cover. 

(2) Let v ∉  V’. Then NG(v) ⊆  V’ and thus V’\NG(v) is a vertex cover for G2 of size k − 

|NG(v)| (Note: Since degG(v), |NG(v)|  ≤  k − 1).  We conclude (G2, k2) is a yes-instance for 

Vertex Cover. (⇐ ) Let (G1, k1) or (G2, k2) be a yes-instance for Vertex Cover. We 

distinguish two cases: (1) Let (G1, k1) be a yes-instance for Vertex Cover. Then there 

exists a vertex cover V1’ for G1, such that |V1’| ≤ k1. Since v covers every edge in RG({v}), 

and E = E1 ∪  RG({v}), we know that V’ = V1’ ∪  {v} is a vertex cover for G of size at 

most k1 + 1. We conclude (G, k) is a yes-instance for Vertex Cover. (2) Let (G2, k2) be a 

yes-instance for Vertex Cover. Then there exists a vertex cover V2’ for G2, such that |V2’| 

≤ k2. Since NG(v) covers every edge in RG(NG(v)), and E = E2 ∪  RG(NG(v)), we know that 



 63

V’ = V1’ ∪  NG(v) is a vertex cover for G of size at most k1 + |NG(v)|. We conclude (G, k) 

is a yes-instance for Vertex Cover. ■ 

We can use the branching rule (VC 8) to create a bounded search tree algorithm 

for k-Vertex Cover as follows: The algorithm takes as input an instance (G, k) and 

recursively applies (VC 8) to (G, k) until either an instance (G’, k’) is encountered with k’ 

≤ 0 (in which case the algorithm returns the answer “yes”) or (VC 8) cannot be applied 

anymore (this happens if the graph is empty or contains singletons only). If the algorithm 

halts without returning the answer “yes” then we conclude that (G, k) is a no-instance for 

Vertex Cover (viz., we have shown in the proof above that the search tree will return the 

answer “yes” if and only if (G, k) is a yes-instance for Vertex Cover). This meets 

requirement (1) for a bounded search tree. 

Now, to see that the resulting search tree also meets requirement (2), first observe 

that each application of the rule (VC 8) at node s leads to the creation of at most two 

children s1 and s2. Hence, fan(T) ≤ g(k) = 2. Further, because we only apply (VC 8) to a 

vertex v if degG(v) ≥ 1, we have |NG(v)| ≥ 1, and thus we know that for each child si, i = 1, 

2, ki < k. Since we terminate our search as soon as we encounter a node s’ labeled by (G’, 

k’) with k’ = 0, we conclude that depth(T) ≤ h(k) = k. Hence the size of the search tree is 

bounded as follows: size(T) ≤ f(k) = 2fan(T)depth(T)  − 1 = 2g(k)h(k)  − 1 = 2k+1 − 1, which is 

O(2k).39  

To ensure that a search tree algorithm runs in fpt-time for parameter κ, we not 

only need to bound the size of the search tree T by a function of κ, but we also need to 

make sure that each node in T can be created in fpt-time. This is requirement (3). To 

illustrate we again consider the search tree created by branching rule (VC 8): To apply 

the rule we need to find a vertex v in G of minimum degree 1. We can do so in time 

O(|V|) (Note: Instead of searching for such a vertex, we can first apply (VC 1) until no 

longer possible, in time O(|V|), and then pick any arbitrary vertex in G to branch on, in 

time O(1)).  Further, at each node we spend at most time O(|V|2) to delete one or more 

vertices and their incident edges, and to update k. We conclude that the branching 

                                                 
39 Note that we can shrink the size of the search tree by requiring that the instance is 
reduced using (VC 2) before applying (VC 8). Then we ensure that |NG(v)| ≥ 2, leading to 
a tree size that is O(1.618k).  



 64

algorithm for Vertex Cover that uses (VC 8)—possibly in combination with (VC 1)—is 

an fpt-algorithm for k-Vertex Cover and runs in time O(2k |V|2).  

 

4.4. Alternative Parameterizations 

In the illustrations so far, we have only considered the parameter k. In Vertex Cover the 

integer k denotes the bound on the size of the vertex cover in k-Vertex Cover; in 

Dominating Set the integer k denotes the bound on the size of the dominating set. 

Because this parameter is explicitly stated as a part of the input we call it an explicit 

parameter. The parameter k is sometimes also referred to as the natural parameter for 

Vertex Cover and Dominating Set, and k-Vertex Cover and k-Dominating Set are then 

called the natural parameterizations of Vertex Cover and Dominating Set (see e.g. 

Downey & Fellows, 1999; Niedermeier, 2002; Stege & van Rooij, 2003). Note, however, 

that many different parameterizations are possible for these problems. In this section I 

discuss such alternative parameterizations.  

4.4.1. Implicit Parameters 

A problem Π may have many implicit parameters. An implicit parameter for a problem 

Π is an aspect of an instance i for Π that is not explicitly stated as part of the problem’s 

input. Consider, for example, Vertex Cover and Dominating Set. Both take as input a 

graph G = (V, E). Graphs have many implicit parameters: e.g., the maximum vertex 

degree in G (∆), the minimum vertex degree in G (δ), the maximum number of 

independent edges in G, the number of cycles in G, the size of the smallest vertex cover 

for G, and so on. Note that a graph G = (V, E) also has the number of vertices |V| = n and 

the number of edges |E| = m as implicit parameters. 40 For each of these parameters we 

may ask whether a graph problem is in FPT for that parameter. For example, we may ask: 

Is ∆-Vertex Cover in FPT? The following lemma shows that the answer is most likely 

“no.”  

Lemma 4.1.  ∆-Vertex Cover ∉  FPT (unless P = NP) 

                                                 
40 I will use Arabic letters to denote explicit parameters and Greek letters to denote 
implicit parameters, unless convention prescribes otherwise (e.g., n and m are the 
conventional letters that refer to |V| and |E|). 



 65

Proof: It is known that Vertex Cover is NP-hard even for graphs with no vertex 

degree exceeding 4 (Garey & Johnson, 1979). Using this fact, we prove the claim by 

contradiction. Assume that ∆-Vertex Cover ∈  FPT and P ≠ NP. Then there exists an fpt-

algorithm solving ∆-Vertex Cover in time O(f(∆)nα). Therefore for ∆ = 4 we can solve 

Vertex Cover in time O(f(4)nα) = O(nα), meaning that Vertex Cover on graphs of 

maximum degree 4 is in P. But then P = NP. ■ 

Since also Dominating Set is know to be NP-hard for graphs of maximum vertex 

degree 4, with the same argument, we can conclude that ∆-Dominating Set ∉  FPT (unless 

P = NP). Analogously, since for all graphs δ ≥ 0, we can also argue that δ-Vertex Cover 

∉  FPT and δ-Vertex Cover ∉  FPT (unless P = NP).  

Note that the parameterized problems n-Vertex Cover, n-Dominating Set, m-

Vertex Cover and m-Dominating Set, are all trivially in FPT. Namely, we can solve 

Vertex Cover and Dominating Set by an exhaustive search on all possible 2n subsets on n 

vertices in time O(2n), which is fpt-time for parameter n. Hence, n-Vertex Cover ∈  FPT 

and n-Dominating Set ∈  FPT. Further, since n < m, we have O(2n) < O(2m), which is also 

fpt-time for m-Vertex Cover and m-Dominating Set.  

4.4.2. Relational Parameterization41 

The implicit parameters for Vertex Cover and Dominating Set discussed in Section 4.4.1 

are all properties of the graph G, and are independent of the integer k. There also exist 

implicit parameters for Vertex Cover and Dominating Set that involve a relationship 

between an implicit parameter and the explicit parameter k. We call such parameters 

relational parameters. Here, I discuss two types of relational parameterizations that 

appear in the literature. The first is called dual parameterization and the second profit 

parameterization.  

                                                 
41 I introduce the notion of ‘relational parameterization.’ To my knowledge, the notion 
has not yet been so defined in the parameterized complexity literature. My definition is 
motivated by the observation that dual parameterizations, (some) profit 
parameterizations, and parameterizations discussed in Chapter 5 (page 115) and Chapter 
6 (page 129), all have in common that the defined parameter is a function of both the 
input graph and the positive integer. It seems natural, and useful, to group these types of 
parameterization under one heading.  



 66

Dual Parameterization: The parameter in a dual parameterization is a function 

of k and n. I first define the dual of a problem Π with input graph G = (V, E) and positive 

integer k. If Π asks “Does G have property X that has property Y that depends on k?” then 

the dual Π’ asks “Does G have property X that has property Y that depends on k’ = |V| − 

k?” (cf. Khot & Raman, 2000; Downey & Fellows, 1999; Niedermeier, 2002; Stege & 

van Rooij, 2003). The natural parameterization of Π’, denoted k’-Π’, is called the dual 

parameterization of Π, and k’-Π’ is then called the parametric dual of k-Π.  

For example, Vertex Cover asks “Does G have a vertex cover that contains at 

most k vertices?.” The dual of Vertex Cover asks “Does G have a vertex cover that 

contains at most k’ = |V| − k vertices?” The dual of Vertex Cover is better known under 

the name Independent Set. A set of vertices V’ ⊆  V is called an independent set for a 

graph G = (V, E) if there does not exists any edge (u, v) ∈  E with both u, v ∈  V’.  

 Independent Set 

Input: A graph G = (V, E) and a positive integer k.  

Question: Does there exist an independent set V’ for G with |V’| ≥ k? 

To prevent confusion let kV denote the positive integer in the input of Vertex Cover, and 

let kI denote the positive integer in the input of Independent Set. Now observe that a 

graph G has a vertex cover of size at most kV if and only if G has an independent set of 

size at least kI = |V| − kV. This means that the natural parameterization of Independent Set, 

denoted kI-Independent Set, is equivalent to the dual parameterization of Vertex Cover, 

denoted (|V| − kV)-Vertex Cover or kI-Vertex Cover. 

 We also consider the dual of Dominating Set, called Non-Blocker. A vertex set V’ 

is called a non-blocking set if for every vertex v ∈  V’ there exists at least one neighbor u 

of v, such that u ∉  V’.  

Non-Blocker 

Input: A graph G = (V, E) and a positive integer k.  

Question: Does there exist a non-blocking set V’ for G with |V’| ≥ k? 

Let kD denote the positive integer in the input of Dominating Set, and let kN denote the 

positive integer in the input of Non-Blocker. Observe that a graph G has a dominating set 

of size at most kD if and only if G has a non-blocking set of size at least kN = |V| − kD. 



 67

Hence, the natural parameterization of Non-Blocker, denoted kN-Non-Blocker, is 

equivalent to the dual parameterization of Dominating Set, denoted (|V| − kN)-Dominating 

Set or kD-Dominating Set. 

 Note that a parameterized problem κ-Π and its parametric dual κ’-Π’ need not be 

in the same complexity class. For example, k-Vertex Cover is in FPT, but its parametric 

dual (|V| − k)-Vertex Cover (i.e., k-Independent Set) is W[1]-hard (Downey & Fellows, 

1999). Also, k-Dominating Set is W[1]-hard, but its parametric dual (|V| − k)-Dominating 

Set (i.e., k-Non-Blocker) is in FPT.42 

 Profit Parameterization: Above we have seen that the natural parameterization 

of the dual of a graph problem Π instantiates a dual parameterization of Π. I will now 

explain how the natural parameterization of a profit relaxation of a graph problem Π 

instantiates a profit parameterization of Π. Below I will sketch the intuition behind profit 

relaxation using examples. For a more formal treatment of profit relaxation the reader is 

referred to Stege and van Rooij (2003).   

Assume we wish to relax the problem Vertex Cover as follows: We no longer 

require the set V’ to cover every edge in G; instead we consider the extent to which V’ is 

“close” to being a vertex cover as gain (say, the more edges V’ covers the better). 

Further, we consider the size of the set V’ as loss (in other words, we want to use few 

vertices to cover many edges). The “profit” associated with a vertex set V’ is then given 

by the function profit = gain − loss. With this relaxation of Vertex Cover we obtain a 

problem called Profit Cover (Stege, van Rooij, Hertel & Hertel, 2002). 

Profit Cover 

Input: A graph G = (V, E) and a positive integer p.  

Question: Does there exist a vertex set V’ ⊆  V such that profitPC,G(V’) ≥ p? Here 

profitPC,G(V’) = |RG(V’)| − |V’|. 

Note that Profit Cover is not just a relaxation of Vertex Cover—it has a special property. 

Its natural parameterization, p-Profit Cover, is a parameterization for Vertex Cover. 

Namely, a graph G has a vertex cover of size at most k if and only if there exists a vertex 

                                                 
42 This is an unpublished result due to Fellows and MacCartin in 1999 (see also Prieto & 
Sloper, forthcoming; Stege & van Rooij, 2003).  



 68

set V’ with profitPC,G(V’) ≥ p = |E| − k (see Stege et al., 2002, for a proof). In other words, 

p-Profit Cover is a relational parameterization for Vertex Cover, with the parameter being 

the function p = |E| − k.  

Similarly, if we define the number of vertices dominated by vertex set V’ as gain, 

and the size of V’ as loss we obtain a problem called Inclusive Profit Domination (Stege 

& van Rooij, 2001). 

Inclusive Profit Domination 

Input: A graph G = (V, E) and a positive integer p.  

Question: Does there exist a vertex set V’ ⊆  V such that profitIPD,G(V’) ≥ p? Here 

profitIPD,G(V’) = |NG[V’]| − |V’| = |NG(V’)|, with NG[V’] and NG(V’) denoting the 

closed and open neighborhoods of V’ respectively.  

A graph G has a dominating set of size at most k if and only if there exists a vertex set V’ 

with profitIPDG(V’) ≥ p = |V| − k. Thus, p-Inclusive Profit Domination is a relational 

parameterization for Dominating Set, with the parameter being the function p = |V| − k.  

Note that profit relaxation does not always lead to an alternative parameterization 

of a problem. For example, a graph G has a non-blocking set of size at most k if and only 

if there exists a vertex set V’ with profitIPD,G(V’) ≥ p =  k, and thus p-Inclusive Profit 

Domination is also a profit relaxation of Non-Blocker. In this case, however, the profit 

parameterization is the same as the natural parameterization k-Non-Blocker, since p = k.  

 A similar situation arises when we derive a profit relaxation of Independent Set as 

follows: Let us define the number of vertices in a set V’ as gain, and the number edges 

with both endpoints in V’ as loss. Then we obtain a problem called Profit Independence 

(Stege & van Rooij, 2001).   

Profit Independence 

Input: A graph G = (V, E) and a positive integer p.  

Question: Does there exist a vertex set V’ ⊆  V such that profitPI,G(V’) ≥ p? Here 

profitPI,G(V’) = |V’| − |EG(V’)|. 

A graph G has an independent set of size at most k if and only if there exists a vertex set 

V’ with profitPI,G(V’) ≥ p =  k (for a proof see Lemma 4.3 in Section 4.6). Hence, the 



 69

natural parameterization of Profit Independence is the same as the natural 

parameterization of Independent Set. 

4.4.3. Multiple-parameter Parameterizations 

We have considered explicit parameters, implicit parameters and relational parameters—

but what about parameterizing a problem by more than one parameter at once? This type 

of parameterization we call multiple-parameter parameterization. In the case of multiple-

parameter parameterization the parameter κ is a set consisting of at least two parameters 

(e.g. Downey & Fellows, 1999, Neidermeier, 2002).  

Let κ = {k1, k2, …. kx}, with x ≥ 1. We call κ a parameter set.43 We denote a 

problem Π parameterized by parameter set κ in one of two ways: either as κ-Π with κ = 

{k1, k2, …. kx}, or as {k1, k2, …. kx}-Π. In the case that κ contains only one element, κ = 

{k}, we simply write k-Π instead of {k}-Π (as we have done so far).  

 Let Π be a problem and let k1 and k2 be two possible parameters for Π. It is 

important to realize that we can have {k1, k2}-Π ∈  FPT even if k1-Π ∉  FPT and k2-Π ∉  

FPT. Consider, for example, the problem Independent Set. As remarked above, k-

Independent Set is W[1]-hard; and thus not in FPT (unless FPT = W[1]). Further, recall 

that we proved ∆-Vertex Cover ∉  FPT (unless P = NP) using the fact that Vertex Cover 

is NP-hard even for ∆ = 4 (Lemma 4.1, page 64).  Since also Independent Set is NP-hard 

for ∆ = 4, we can conclude with the same argument that ∆-Independent Set ∉  FPT 

(unless P = NP). We will now show that {k, ∆}-Independent Set is in FPT.  

The argument is organized as follows: First, we define a branching rule (IS 1) for 

Independent Set. Second, we show that the rule (IS 1) constructs a search tree whose size 

is bounded by a function f(k, ∆) = (∆+1)k. Third, we show that each node in the search 

tree can be created in polynomial-time. Finally, we conclude a running time for {k, ∆}-

Independent Set that is O((∆+1)k |V|2), which is fpt-time for parameter set κ = {k, ∆}. 

The branching rule (IS 1) uses the following observation: If V’ is a largest 

independent set for graph G, and vertex v in G is not in V’ then a neighbor vi of v must be 

                                                 
43 Note that the definition of a parameter set incorporates the case where κ contains 
exactly one element as a special case. 



 70

in V’ (otherwise, V” = V’ ∪  {v} would be an independent set that is larger than V’, 

contradicting the fact that |V’| is maximum). See Figure 4.4 for an illustration of (IS 1).  

(IS 1) The Vertex-or-one-of-its-Neighbors Branching Rule: Let node s in the 

search tree be labeled by instance (G, k), G = (V, E), for Independent Set, and let v0 ∈  V. 

Then we create a child s0 of s and label it by (G0, k0), with G0 = (V0, E0), V0 = V 

\NG[{v0}], E0 = E\RG({v0}), and k0 = k − 1. Further, for each neighbor vi of v, i = 1, 2, …, 

degG(v), we create a child si of s and label it by (Gi, ki), Gi = (Vi, Ei), Vi = V \ NG[{vi}], Ei 

= E\RG({v}), and ki = k − 1.  

To prove that (IS 1) is a valid branching rule as defined in Section 4.3, we need to show 

that (G, k) is a yes-instance for Independent Set if and only if (G0, k0) or (G1, k1) or (G2, 

k2) or … or (Gdeg(v), kdeg(v)) is a yes-instance for Independent Set. 

Proof of (IS 1):  (⇒) Let (G, k) be a yes-instance. Then there exists an 

independent V’ ⊆  V for G, with |V’| ≥ k. Since for each j ∈  {0, 1, 2, …, degG(v)} at most 

one vertex in V’ is also in NG[{vj}] (i.e., |NG[{vj}] ∩ V’| = 1; otherwise V’ would not be 

an independent set) and Vj = V \NG[{vj}], we conclude that each Gj has an independent set 

of size at least k −1. (⇐ ) Assume that at least one instance (Gj, kj), with j ∈  {0, 1, 2, …, 

degG(v)}, is a yes-instance for Independent Set. Then there exists an independent Vj’ ⊆  V 

for Gj, with |Vj’| ≥ kj. Since NG[{vj}] ⊄  Vj, and thus NG[{vj}] ⊄  Vj’, we conclude that Vj’ 

∪  {vj} is an independent set for G of size kj + 1. and NG[{vj}]. ■ 

We can use the branching rule (IS 1) to create a bounded search tree algorithm for 

{k, ∆)-Independent Set as follows. The algorithm takes as input an instance (G, k) and 

recursively applies (IS 1) to (G, k) until either an instance (G’, k’) is encountered with k’ 

≤ 0 (in which case the algorithm returns the answer “yes”) or (IS 1) cannot be applied 

anymore (this happens if V’= ∅ ). If the algorithm halts without returning the answer 

“yes” then we conclude that (G, k) is a no-instance for Independent Set (viz., we have 

shown in the proof above that the search tree will return the answer “yes” if and only if 

(G, k) is a yes-instance for Independent Set). This meets requirement (1) for a bounded 

search tree. 

 



 71

v

w
u

yx

(G
, k

) (C
G

 1
)

(G
0, 

k 0
), 

k 0
= 

k
−

1
(G

1, 
k 1

), 
k 1

= 
k

−
1

(G
2, 

k 2
), 

k 2
= 

k
−

1
(G

3, 
k 3

), 
k 3

= 
k

−
1

(G
4, 

k 4
), 

k 4
= 

k
−

1

yx

yx

w
u

w
u

v

w
u

yx

(G
, k

) (C
G

 1
)

(G
0, 

k 0
), 

k 0
= 

k
−

1
(G

1, 
k 1

), 
k 1

= 
k

−
1

(G
2, 

k 2
), 

k 2
= 

k
−

1
(G

3, 
k 3

), 
k 3

= 
k

−
1

(G
4, 

k 4
), 

k 4
= 

k
−

1

yx

yx

w
u

w
u

  
 

Fi
gu

re
 4

.4
. I

llu
st

ra
tio

n 
of

 b
ra

nc
hi

ng
 ru

le
 (I

S 
1)

. S
ee

 n
ex

t p
ag

e 
fo

r d
es

cr
ip

tio
n.

 



 72

Figure 4.4. Illustration of branching rule (IS 1).  
The instance before the application of the branching rule is denoted (G, k) and the 
instances obtained after the application of the branching rule on vertex v in G, are 
denoted (Gi, ki) with i = 0, 1, 2, …, degG(v). The rule (IS 1) assumes for every vertex v in 
G, that either v is in the independent set or it is not; further, if v is not in the independent 
set, then at least one of its neighbors, u, w, x, or y can be included in the independent set 
(otherwise v could be included in the independent set and we would have a larger 
independent set). Once a vertex is included in the independent set, we can delete it and all 
its neighbors from G. For each instance (Gi, ki), i = 0, 1, 2, …, degG(v), we define  ki = k − 
1, to reflect the fact that a vertex has already been included in the independent set. As 
soon as we encounter an instance (Gi, ki) with ki = 0 we return the answer “yes” (i.e., we 
conclude that the original input has an independent set of size at least k) and if we cannot 
apply (IS 1) anymore, then we have exhausted the search tree and we return the answer 
“no” (i.e., we conclude that the original input does not have an independent set of size at 
least k). Note that in this example, degG(v) = 4, and thus application of rule (IS 1) leads to 
the creation of five new instances,  (G0, k0), (G1, k1), (G2, k2), (G3, k3), and (G4, k4). 
Further, note that these new instances are defined such that (G0, k0) or (G1, k1) or (G2, k2) 
or (G3, k3) or (G4, k4) is a yes-instance for Vertex Cover if and only if (G, k) is a yes-
instance for Vertex Cover. This way, rule (IS 1) ensures that the branching algorithm 
returns the answer “yes” (or “no”) if and only if the answer for the original input to the 
algorithm is “yes” (“no”).  

 

To see that the algorithm meets requirement (2) with respect to the parameter set κ = {∆, 

k}, first observe that each application of (IS 1), to a vertex v0, leads to the creation of 1 + 

degG(v0) ≤ 1 + ∆ new branches in the search tree T. Hence we have fan(T) ≤ 1 + ∆. 

Further, whenever (IS 1) creates a node labeled by (G’, q’) for a parent labeled by (G, q) 

then k’ ≤ k − 1, and thus depth(T) ≤ k. We conclude that the size of the search tree is at 

most O((1 + ∆)k).  

Finally, with respect to requirement (3), we show that we can create each node in 

the search tree in time O(|V|2): First, to apply (IS 1) to an instance (G, k), G = (V, E), we 

need to pick an arbitrary vertex v0 ∈  V. This we can do in time O(1). Then, for each new 

search tree node sj that we create we spend at most O(|V|2) time to label it by (Gj, kj). 

Namely, for each vj we spend time at most O(|V|2) to delete all vertices in NG[{vj}] and all 

edges adjacent to vertices in NG[{vj}]. Combined with the size of the search tree we can 

conclude that the algorithm for Independent Set runs in time O((1 + ∆)k  |V|2). 

 



 73

4.5. Crucial Sources of Complexity44 

In Section 4.4.3, I have illustrated how a problem (Independent Set), that is not in FPT 

(unless W[1] = FPT) for either of two parameters (∆ and k), can nevertheless be in FPT 

when both parameters are in the parameter set. Hence, knowing that two 

parameterizations κ-Π and κ’-Π, κ ≠ κ’, are not in FPT, tells us nothing about the 

complexity class of the parameterization (κ ∪  κ’)-Π. On the other hand, if κ-Π or κ’-Π, κ 

≠ κ’, are in FPT then we can conclude that also (κ ∪  κ’)-Π ∈  FPT. In other words, we 

have Observation 4.1. 

Observation 4.1. If a parameterized problem κ-Π ∈  FPT, then for any superset κ’ 

⊇  κ, κ’-Π ∈  FPT.  

To see why Observation 4.1 holds consider the following: The fact that κ-Π ∈  

FPT means that the problem Π can be solved in time O(f(κ)|i|). Now note that O(f(κ)|i|) is 

fpt-time for any parameter set κ’ ⊇  κ. That the function f(.) will be independent of some 

parameters in the set κ’ does not matter; the only requirement for the function f(.) is that 

it does not depend on |i|. With this observation we can conclude from {∆, k}-Independent 

Set ∈  FPT that κ-Independent Set is in FPT for all parameters sets κ, with {∆ , k} ⊆  κ. 

For completeness, I note that Observation 4.2 is a direct consequence of Observation 4.1. 

Observation 4.2. If a parameterized problem κ-Π ∉  FPT, then for any κ’ ⊆  κ, κ’-

Π ∉  FPT.  

Now consider a problem Π that is not in P. Say we know a parameter set κ such 

that κ-Π ∈  FPT. Then we know that the parameters in the set κ are sufficient for 

confining the non-polynomial time complexity inherent in Π. From Observation 4.1, 

however, we know that κ may contain one or more parameters that are ‘redundant,’ in the 

                                                 
44 I introduce the notion of ‘crucial source of complexity’ (see also van Rooij et al., 
2003). To my knowledge, the notion has not yet been so defined in the parameterized 
complexity literature (but see e.g. Wareham, 1998, for a discussion of a related notion 
called ‘intractability map’). My definition is motivated by the fact that some parameter 
sets may contain ‘redundant’ parameters, i.e., parameters that are not necessary for 
confining the exponential complexity, and thus, in a sense, do not contribute to the result 
that the problem is in FPT for that parameter set. It seems to me that in cognitive theory it 
may often be of interest to know whether or not a parameter set contains such redundant 
elements. 



 74

sense that the fpt-classification of κ-Π does not depend on those parameters. In those 

cases we say κ not minimal. More formally, if κ-Π ∈  FPT and there does not exist a 

proper subset κ’ ⊂  κ such that κ’-Π ∈  FPT, then we say κ is a minimal parameter set for 

Π.  

If κ is a minimal parameter set for a classically intractable problem Π we call κ a 

crucial source of (non-polynomial time) complexity in Π, because then Π is “easy” for 

small values of parameters in κ irrespective the size of other input parameters. Note that a 

crucial source of complexity need not be unique. That is, there may exist different 

parameter sets κ and κ’, with κ’ ⊄  κ, such that κ-Π ∈  FPT and κ’-Π ∈  FPT. Also note 

that every problem has κ = {|i|} as a crucial source of complexity. Thus the label ‘crucial 

source of complexity’ should be read as denoting a minimal set of parameters that is 

sufficient, but not necessary, for confining the non-polynomial time behavior in a 

problem.   

To illustrate, we again consider {∆, k}-Independent Set. We have shown in 

Section 4.4.3 that {∆, k}-Independent Set ∈  FPT. Thus, the parameter set κ = {∆, k} is 

sufficient for confining the non-polynomial time complexity in the problem. Is {∆, k} a 

minimal parameter set for Independent Set?  Yes, it is (unless FPT = W[1]). As discussed 

in Section 4.4.3, ∆-Independent Set is not in FPT (unless P = NP) and k-Independent Set 

is not in FPT (unless FPT = W[1]). This establishes that there does not exist any subset κ’ 

⊆  {∆, k), such that κ-Independent Set is in FPT (unless FPT = W[1]). We conclude that 

{∆, k} is a crucial source of complexity for Independent Set. 

 

4.6. Parametric reduction 

This section explains and illustrates the technique of parametric reduction. I restate the 

definition of parametric reduction from Section 3.4.1 (page 44): For parameterized 

problems κ1-Π1 and κ2-Π2 and functions f and g, we say a parametric reduction from κ1-

Π1 to κ2-Π2 is a reduction that transforms any instance i1 for κ1-Π1 into an instance i2 for 

κ2-Π2 with κ2 = g(κ1). Further, the reduction runs in time f(κ)|i1|α, where  α is a constant.  

In Chapter 3 we have already seen a parametric reduction: The polynomial-time 

reduction from Vertex Cover to Dominating Set in Lemma 3.1 (page 37; see also Figure 



 75

3.2) happens to be a parametric reduction from kV-Vertex Cover to kD-Dominating set. 

Namely, the reduction involves a transformation from an instance (GV, kV) for kV -Vertex 

Cover to an instance (GD, kD) for kD-Dominating Set, such that kD = g(kV) = kV. Further, 

the transformation runs in time O(|VV|2), which is polynomial time (and thus also fpt-

time). 

To illustrate a parametric reduction that runs in fpt-time, but not in polynomial-

time, we adapt the reduction in Lemma 3.1 as follows: Instead of appending for each 

edge (u, v) in G one vertex xuv in G*, we append 2k vertices (denoted xuv,i with i = 1, 2, 

…, 2k ) per edge (u,v) in G.  Lemma 4.2 presents this reduction. See  Figure 4. for an 

illustration. 

(G, k)

u

(G*, k*), k* = k

v

(Lemma 4.2)

...

u

x1

v

x2

x2k

 
 
 
Figure 4.5. Illustration of the reduction in Lemma 4.2. 
Every edge (u, v) in G (on the left) is copied to G* (on the right). Further in G* we 
append 2k vertices on u and v, denoted x1, x2, …, x2k. Note that (G, k) is a yes-instance for 
Vertex Cover if and only if (G*, k*), with k*= k, is a yes-instance for Dominating Set. 

 

Note that the transformation in Lemma 4.2 can be done in fpt-time: We can copy 

G = (V, E) to G* = (V*, E*) in time O(|V|2), and we can add the 2k |E| extra vertices and 

their 2k+1|E| incident edges, in time O(2k |E|) which is O(2k |V|2). Thus, the total time 

required for the transformation is O(|V|2 + 2k |V|2) or O(2k |V|2), which is fpt-time for 

parameter k. Further, as in Lemma 3.1, Lemma 4.2 shows that (G, k) is a yes-instance for 

Vertex Cover if and only if (G*, k*), is a yes-instance for Dominating Set with k* = k. 

Hence, the reduction is a parametric reduction.   



 76

Lemma 4.2. Let G = (V, E) be a graph without singletons and let k be a positive 

integer. We create a graph G* = (V*, E*) as follows. For every (u, v) ∈  E, let (u, v) ∈  E*. 

Further, for each (u, v) ∈  E we include in G* 2k new vertices xuv,i ∉  G and attach them to 

u,v ∈  E* using the edges (u, xuv,i) and (v, xuv,i), i = 1, 2, …, 2k . Finally, let k* = k. Then G 

and k form a yes-instance for Vertex Cover if and only if G* and k* form a yes-instance 

for Dominating Set. 

Proof:  (⇒) Let (G, k) be a yes-instance for Vertex Cover. Then, we know that 

for every vertex v ∈  V, v ∈  V’ or v has at least one neighbor u ∈  V’ (Observation 3.1, 

page 36). Further, because every vertex xuv,i ∈  V*\V  is adjacent to both u ∈  V* and v ∈  

V*,  with (u, v) ∈  E, we also know every vertex xuv  ∈  V*\V  has at least one neighbor in 

V’. Thus V’ is a dominating set for G* with |V’| ≤ k = k*. We conclude (G*, k*) is a yes-

instance for Dominating Set. 

(⇐ ) Let (G*, k*) be a yes-instance for Dominating Set, and let V’ ⊆  V* be a 

minimum dominating V’ for G*. (1) We show V’ contains only vertices in V (i.e., V’ ∩ 

V*\V = ∅ ). Namely, for every edge (u, v) ∈  E, to dominate in G* each vertex in {u, v, 

xuv,1, xuv,2, …, xuv,2k} ⊆  V*, we can either include u in V’ or v in V’ or at least 2 vertices 

from {u, v, xuv,1, xuv,2, …, xuv,2k}, since k ≥ 1. Therefore, a minimum dominating set will 

include u or v, and no vertices from {xuv,1, xuv,2, …, xuv,2k}. (2) Since V’ ⊆  V, and for each 

edge (u, v) ∈  E, u ∈  V’ or v ∈  V’, we conclude that V’ is a vertex cover for G with |V’| ≤ k 

= k*. We conclude that (G, k) is a yes-instance for Vertex Cover. ■ 

A word of warning on what can, and what cannot, be concluded from Lemma 4.2: 

Because the reduction in Lemma 4.2 does not run in polynomial-time, it does not imply 

anything for the classical complexity of Dominating Set. Thus, unlike Lemma 3.1, 

Lemma 4.2 is not a proof that Dominating Set is NP-hard. Further, because k-Vertex 

Cover is in FPT, all that Lemma 4.2 shows is that k-Dominating Set is, in the 

parameterized sense, “at least as hard” as k-Vertex Cover. It does not tell us, however, 

whether k-Dominating Set is strictly harder than k-Vertex Cover (Is it W[1]-hard?), or 

that it is equally hard (Is it in FPT?).45 

                                                 
45 Of course, as noted in Section 4.4.2, it is known that k-Dominating Set is W[1]-hard. 
My argument here is that we cannot conclude this fact from Lemma 4.2. 



 77

Although Lemma 4.2 serves its purpose as an example of a parametric reduction, 

we are typically more interested in finding either (1) a parametric reduction from a 

known W[1]-hard problem Π to an unclassified problem Π’, or (2) a parametric reduction 

from an unclassified problem Π’ to a known FPT problem Π. In the first case we can 

conclude that Π’ is W[1]-hard, while in the second case we can conclude that Π’ is in 

FPT. To illustrate the first case I present a parametric reduction from k-Independent Set 

to p-profit Independence. This reduction transforms an instance (G, k) for Independent 

Set into an instance (G, p) for Profit Independence, with p = k.  

Lemma 4.3. Let (G, k) be an instance for Independent Set. Further, let (G, p) be 

an instance for Profit Independence with p = k. Then (G, k) is a yes-instance for 

Independent Set if and only if (G, p) is a yes-instance for Profit Independence. 

Proof: (⇒) Let (G, k), G = (V, E), be a yes-instance for Independent Set. Then 

there exists an independent set V’ ⊆  V for G with |V’| ≥ k. This means that EG(V’) = ∅ , 

and thus profitPI,G(V’) =  |V’| – |EG (V’)| = |V’| ≥ k = p. We conclude that (G, p) is a yes-

instance of Profit Independence. 

 (⇐ ) Let (G, p), G = (V, E), be a yes-instance for Profit Independence. Then there 

exists a subset V’ ⊆  V with profitPI,G(V’) ≥ p. We distinguish two cases: (1) If EG (V’) = ∅  

then V’ is an independent set for G, with |V’| ≥ p = k. We conclude that G and k form a 

yes-instance of Independent Set. (2) If EG(V’) ≠ ∅  then we transform V’ into an 

independent set V” for G using the following algorithm: 

1. V” ← V’ 

2. while EG(V”) ≠ ∅  do 

3. pick an edge (u, v) ∈  EG(V”) 

4. V” ← V”\{v} 

5. end while 

6. return V” 

The algorithm considers each edge in G at most once and thus runs in time O(|V|2). Note 

that every call of line 4 results in the removal of at least one edge from EG(V”). Hence, 

profitPI,G(V”) ≥ profitPI,G(V’) ≥ p. Furthermore, when the algorithm halts then EG(V”) = ∅  



 78

and thus V” is an independent set of size at least p = k for G.  We conclude that G and k 

form a yes-instance for Independent Set. ■ 

Note that the transformation of (G, k) to (G, p), in Lemma 4.3, can be done in 

polynomial-time: time O(1) to set p = k. Further, since p is a function of k only, the 

reduction is a parametric reduction. We know k-Independent Set is W[1]-hard, so we can 

conclude from Lemma 4.3 that p-Profit Independence is W[1]-hard as well.46  

 

4.7. The Parametric Toolkit and Beyond 

In this chapter I have reviewed a set of basic techniques for parameterized complexity 

analyses. The techniques discussed here do not exhaust all known techniques for 

parameterized complexity analysis. The reader interested in learning about other 

techniques is referred to the relevant literature (see e.g. Alber, Fan, Fellows, Fernau, 

Niedermeier, Rosamond & Stege, 2001; Fellows, 2002; Fellows, McCartin, Rosamond, 

& Stege, 2000; Downey & Fellows, 1999; Downey, Fellows & Stege, 1999a, 1999b; 

Gottlob, Scarcello, & Sideri, 2002, Khot & Raman, 2000; Prieto & Sloper, forthcoming; 

Niedermeier, 2002; Niedermeier & Rossmanith, 1999, 2000; Stege et al., 2002; Stege & 

van Rooij, 2003). The relatively informal introduction that I have presented in this 

chapter can also aid understanding of this more formal work.  

The techniques I have presented in this chapter are simple but powerful. In the 

application of complexity theory to cognitive theory, as pursued here, these techniques 

can already bring us a long way. I will illustrate this in the following chapters (Chapters 

5, 6 and 7), by illustrating each technique in the context of existing cognitive theories.  

 
 

                                                 
46 Note that this parametric reduction is also a polynomial-time reduction. Thus, since 
Independent Set is NP-hard, Lemma 4.2 also proves that Profit Independence is NP-hard 
(see also Section 6.3). 



 79

Chapter 5. Coherence 
 

In this chapter we consider the problem Coherence as defined by Thagard (2000) and 

Thagard and Verbeurgt (1998). We start with the problem’s definition and the motivation 

for studying this problem. The main part of this chapter will be devoted to complexity 

analyses of the problem Coherence (and its variants), both from a classical and from a 

parameterized perspective. Note that in interpreting the results we will assume P ≠ NP 

and FPT ≠ W[1]. I close with a brief discussion and suggestions for future research. 

 

5.1. Coherence as Constraint Satisfaction 

This section presents the notation and terminology to formally define the Coherence 

problem. The next section (Section 5.2) describes applications of this problem in 

cognitive theory as proposed by, among others, Thagard and Verbeurgt (1998) and 

Thagard (2000).  

Two sets S1 and S2 are called a partition of a set S if S = S1 ∪  S2 and S1 ∩ S2 = ∅ .  

We denote a partition of a set S into sets S1 and S2 by (S1 ∪  S2)S . In general, if S 

partitions into sets S1, S2 …, Sx, with x ≥ 2 and S1, S2 …, Sx all pairwise disjoint, we write 

(S1 ∪  S2 ∪  … ∪  Sx)S. Let P be a set of elements,47 and let C ⊆  P × P denote a set of 

unordered pairs of elements in P. A pair (p, q) ∈  C we call a constraint between p and q.  

The set C is partitioned into two sets of constraints C+ and C-. We call a constraint (p, q) 

∈  C+ a positive constraint and we say that p and q cohere. We call a constraint (p, q) ∈  

C− a negative constraint and we say that p and q incohere. Each constraint (p, q) ∈  C has 

an associated positive integer weight w(p, q). 

 Note that this information can be thought of as an edge-weighted graph N = (P, 

C), with vertex set P and weighted edge set C (cf. Thagard & Verbeurgt, 1998). To stay 

as close as possible to the terminology of Thagard and Verbeurgt, I will refer to N = (P, 

C) as a network, to the vertices in P as elements and to the edges in C as constraints. 

However, I will use standard graph terminology to refer to properties of, and 
                                                 
47 Thagard and Verbeurgt (1998) use the symbol E to refer to the set of elements. I do not 
use the symbol E here to avoid confusion with the edge set E in a graph G = (V, E). I 
choose to use the symbol P instead because in many applications described by Thagard 
(2000) elements in this set are propositions.  



 80

relationships between, elements, constraints, and networks (cf. Appendix A); e.g., I will 

speak of the degree of an element, a constraint being incident to an element, the 

endpoints of a constraint, two elements being neighbors, the number of components in a 

network, networks that are trees, a network being a subgraph of another network, etc. 

Elements in P can be either accepted or rejected. A denotes the set of accepted 

elements in P and R denotes the set of rejected elements. The sets A and R are mutually 

disjoint (i.e., we cannot accept and reject one and the same element). We say the sets A 

and R form a partition of P if P = A ∪  R, and write (A ∪  R)P. A partition (A ∪  R)P can 

satisfy one or more constraints in C. A positive constraint (p, q) ∈ C+ is satisfied by 

partition (A ∪  R)P if and only if (p ∈  A and q ∈  A) or (p ∈  R and q ∈  R). A negative 

constraint (p, q) ∈  C−, is satisfied by partition (A ∪  R)P if and only if (p ∈  A and q ∈  R) 

or (p ∈  R and q ∈  A).  The set of all (positive and negative) constraints in network N that 

are satisfied by partition (A ∪  R)P is denoted by SN(A, R). Partitions can differ in the 

amount of coherence. Coherence is measured by the function CohN(A, R) = 

∑
∈ ),(S )(

),(w
RAp,q N

qp . Note that the subscript N on the functions SN(., .) and CohN(., .) denotes 

that they are to be evaluated in the context of a specific network N.  

 Having introduced the necessary terminology, we can now state the problem 

Coherence (Thagard, 2000; Thagard & Verbeurgt, 1998): 

Coherence (optimization version) 

Input: A network N = (P, C), with (C+ ∪  C−)C. For each constraint (p, q) ∈  C 

there is an associated positive integer weight w(p, q). 

Output: A partition of P into A and R such that CohN(A, R) is maximized.  

In the remainder of this chapter we will work with the decision version of Coherence.  

Coherence (decision version) 

Input: A network N = (P, C), with (C+ ∪  C−)C. For each constraint (p, q) ∈  C 

there is an associated positive integer weight w(p, q). A positive integer c. 

Question: Does there exist a partition of P into A and R such that CohN(A, R) ≥ c? 

Keep in mind that there is a close relationship between the decision version and 

optimization version. If we know an optimal partition (A ∪  R)P (i.e., a partition (A ∪  R)P 

such that CohN(A, R)  is maximum), then we also know if there exists a partition with 



 81

CohN(A, R) ≥ c, for any c. Conversely, we can determine an optimal partition by solving 

the decision version of Coherence for different c. If the answer “yes” is returned for c, 

while for c + 1 the answer is “no,” then we can conclude that c is maximum. 

 

5.2. Coherence as Cognitive Theory  

According to Thagard (2000; see also Eliasmith & Thagard, 1997; O'Laughlin & 

Thagard, 2000; Thagard, 1989, 1999, 2001; Thagard, Eliasmith, Rusnock, & Shelley, 

2002; Thagard & Kunda, 1998; Thagard & Shelley, 1997; Thagard and Verbeurgt, 1998), 

the Coherence problem (and variants thereof) can be used to model many different 

cognitive tasks in various cognitive domains; including domains such as scientific 

explanation, legal justification, social judgment, and visual perception. I briefly sketch 

applications in each domain below. See Thagard (2000), and the references above, for 

more detailed discussions of these and other areas of applications. 

Scientific Explanation:48 According to Thagard (2000; see also Eliasmith & 

Thagard, 1997; Thagard, 1989, 2000; Thagard and Verbeurgt, 1998), the task of a 

scientist (or group of scientists) to decide upon a set of hypotheses that satisfactorily 

explains a set of empirical data can be modeled as follows. Let the elements in P 

represent propositions describing the empirical observations as well as the different 

possible hypotheses about what brought about the data. The set C models the coherence 

relationships between pairs of propositions; e.g., if hypothesis q explains observation p 

then p and q cohere; if hypothesis q and r each explains observation p, then q and r 

incohere; if hypothesis q and r together explain observation p, then q and r cohere. The 

task of the scientist is to decide on a set of hypotheses that provides the most coherent 

explanation of the data. 

Legal Justification: According to Thagard (2000; see also Eliasmith & Thagard, 

1997; Thagard, 1989, 2000; Thagard and Verbeurgt, 1998), the task of a jury member to 

decide whether a defendant is innocent or guilty can be modeled as follows. Let the 

elements in P represent propositions describing factual evidence brought to trial as well 

as the different hypotheses one may entertain about the case. Let s ∈  P denote the 

                                                 
48 In this context it is of interest to note that Thagard also proposes that his notion of 
coherence explains why computer scientists believe that P ≠ NP (Thagard, 1993).  



 82

proposition ‘defendant is innocent.’ The set C models the conceptual relationships 

between pairs of propositions; e.g., if evidence p is explained by hypothesis q then p and 

q cohere; if hypothesis p and q contradict then p and q incohere. Then, the task of a jury 

member is to decide whether it is more coherent to believe that s ∈  A or that s ∈  R.  

Social Judgment: Given the example above it is not hard to see how also a social 

judgment task can be conceptualized as a coherence problem. Take any form of social 

attribution; e.g., ‘X is honest,’ ‘X believes Y.’ Then the task of deciding whether the 

attribution should (or should not) be made—based upon one’s experiences with a person 

and one’s knowledge about states of the world—can be seen as analogous to the task of 

deciding whether a defendant is innocent or not (see also O'Laughlin & Thagard, 2000; 

Thagard, 1989, 2000; Thagard & Kunda, 1998; Thagard and Verbeurgt, 1998). 

Visual Perception: Because sensory inputs typically give incomplete and/or 

ambiguous information about a visual scene the visual system faces a problem: How to 

interpret sensory information in a reasonable and coherent way? The task of interpreting 

a visual scene can be modeled as follows (Thagard, 1989, 2000; Thagard & Shelley, 

1997; Thagard and Verbeurgt, 1998). Let the elements in P represent the set of sensory 

data and/or possible interpretations of the data. Then set C models the coherence 

relationships between data and interpretation and between different interpretations: e.g., 

if sensory datum p supports interpretation q then p and q cohere; if interpretation p and q 

are inconsistent then p and q incohere. The task of the visual system is to decide on a set 

of interpretations that maximizes coherence. Figure 5.1 gives an example of this model 

using the Necker Cube (cf. Thagard 1989, p. 439).  

In summary, given the wide variety of domains in which Coherence finds 

application, the problem is clearly of importance to cognitive science. The remainder of 

this chapter is devoted to studying the problem’s complexity. To be clear, I will not 

evaluate Coherence, other than with respect to complexity. For other types of evaluations 

and critical discussions on Coherence see, for example, Schoch (2000), Millgram (2000), 

and Wiedemann (1999). 



 83

hgfe

dcba
a

c

h

b

g

fe

d

 
Figure 5.1. Example of a Coherence poblem 
(left) The Necker cube can be interpreted in two qualitatively different ways: Either the 
face with vertices a, b, c and d is in the front (in which case the face with vertices e, f, g 
and h is in the back) or the face with vertices e, f, g and h is in the front (in which case the 
face with vertices a, b, c and d is in the back). The task of disambiguating between the 
two possible interpretations can be modeled as a coherence problem: (right) Every vertex 
p ∈  {a, b, c, d, e, f, g, h} of the Necker cube is modeled by an element p ∈  P. If two 
vertices p and q in P are part of the same interpretation of the Necker cube then p, q ∈  C+ 
(solid lines), else p, q ∈  C− (dotted lines). Now a partition of P of maximum coherence 
into vertices that are “in the front”, A, and vertices that are “in the back,” R, will 
correspond to one of the two possible interpretations of the Necker cube. 
 
5.3. Coherence is NP-hard 

This section recapitulates Thagard and Verbeurgt’s (1998) proof that Coherence is NP-

hard. The reduction is from the graph problem Max-Cut. Max-Cut takes as input an edge 

weighted graph G = (V, E). In its optimization version, the goal is to partition the vertex 

set V into sets A and R such that the sum of the weights on edges that have an endpoint in 

A and an endpoint in R is maximum. The decision version of this problem is as follows: 

Max-Cut (decision version) 

Input: An edge weighted graph G = (V, E). For each edge (u, v) ∈  E there is an 

associated positive integer weight w(u, v). A positive integer k.   

Question: Does there exist a partition of V into sets A and R such that WG(A, R) = 

∑
∈ ),(Cut )(

),(w
RAu,v G

vu  ≥ k? Here CutG(R, A)= {(u, v) ∈  E : u ∈  A and v ∈  R}. 

Max-Cut is known to be NP-complete (Garey & Johnson, 1979). The following lemma 

presents a reduction from Max-Cut to Coherence. 



 84

Lemma 5.1. (Thagard & Verbeurgt, 1998) 49 Let graph G = (V, E) and positive 

integer k form an instance for Max-Cut. We define an instance, consisting of N and c, for 

Coherence as follows: Let N = (P, C) be a network such that P = V, C = E and C = C− 

(i.e., all constraints in C are defined to be negative constraints). Further for all (p, q) ∈  C 

set the weight wN(p, q) = wG(p, q). Finally, let c = k. Then (G, k) is a yes-instance for 

Max-Cut if and only if (N, c) is a yes-instance for Coherence. 

Proof:  Since C = C−, we know that (p, q) ∈  CutG(A, R) if and only if (p, q) ∈  

SN(A, R). Further, the edge weights in G and N are identical, and thus CohN(A, R) = 

WG(A, R) for any partition (A ∪  R)P. We conclude that (G, k) is a yes-instance for Max-

Cut conclude if and only if (N, c) is a yes-instance for Coherence. ■ 

The transformation from the instance (G, k) for Max-Cut into a corresponding 

instance (N, c) for Coherence described in Lemma 5.1 can be done in polynomial time. 

Namely, we can copy every element in V and E to P and C = C− respectively, in time 

O(n2), we set c = k in O(1), and we assign each constraint in C its weight in time O(n2). 

We conclude, the reduction in Lemma 5.1 is a polynomial-time reduction, and thus: 

Corollary 5.1. (Thagard & Verbeurgt, 1998)  Coherence is NP-hard.  

Note that the instance for Coherence, created in lemma 5.1, contains only negative 

constraints. This means that Lemma 5.1 also describes a reduction from Max-Cut to 

Coherence on networks with negative constraints only. Hence we also have: 

Corollary 5.2. (Thagard & Verbeurgt, 1998) Coherence on a network N = (P, C), 

with C = C−, is NP-hard. 

Further, it is known that Max-Cut problem remains NP-hard even if all constraints 

have weight ‘1’ (Garey & Johnson, 1979). Hence, from the reduction in Lemma 5.1, we 

also conclude:  

Corollary 5.3. Coherence on a network N = (P, C), with C = C− and w(p, q) = 1 

for all (p, q) ∈  C, is NP-hard. 

                                                 
49 It should be noted that Thagard and Verbeurgt (1998) give the same reduction as I do 
here with the exception that they set c = 2k, instead of c = k. I could not verify the 
correctness of their reduction (unless Thagard and Verbeurgt count all (negative) 
constraint weights twice in the computation of coherence; which does not seem to fit the 
problem’s definition). In any case, Lemma 5.1 gives the correct reduction from Max-Cut 
to the Coherence problem, as defined in Section 5.1.  



 85

5.4. Reflections on the NP-hardness of Coherence 

We have seen that the problem Coherence, as defined in Section 5.1, is NP-hard. Note 

that this NP-hardness result only holds for the general problem Coherence (with or 

without positive constraints). It does not imply that all problems modeled by Coherence 

are NP-hard. This difference between ‘a general problem being NP-hard’ and ‘a problem 

being generally NP-hard’ is often confused. Consider, for example, the following 

synopsis by Thagard (2000, p. 15):50 

“Coherence problems are inherently computational intractable, in the sense that, 

(…) [assuming P ≠ NP], there are no efficient (polynomial-time) procedures for 

solving them.”  

Here Thagard uses the words “coherence problems” to refer to a general class of 

problems that can be modeled by Coherence. Hence, the statement suggests that 

coherence problems are of exponential-time complexity across-the-board. Clearly the 

finding that Coherence is NP-hard does not warrant this conclusion: NP-hardness is not 

automatically inherited by every special case, or variant, of an NP-hard problem.  

 This section discusses in more detail when an NP-hardness result automatically 

generalizes to another problem (if the other problem involves a generalization of the 

original problem) and when it does not (if the other problem is a special case or a variant 

of the original problem). Motivated by the applications described in Section 5.2, I 

consider some special cases of Coherence (Section 5.4.1), some generalized versions of 

Coherence (Section 5.4.2) and some variants of Coherence (Section 5.4.3). 

5.4.1. Special Cases of Coherence 

Thagard and Verbeurgt (1998) remark that the special case of Coherence, in which the 

network contains only positive constraints (no negative constraints), is not NP-hard. 

                                                 
50 Similarly, Oaksford and Chater (1998) write: “Consistency checking constitutes a 
general class of problems in complexity theory called satisfiability problems” (p. 76). 
Further, because Cook (1971) has shown that the satisfiability problem SAT is NP-
complete (see also Section 3.2), Oaksford and Chater (1998) conclude that “consistency 
checking, like all satisfiability problems, is NP-complete” (p. 77). This statement, like 
Thagard’s quoted in the text, is misleading. Clearly, there exist satisfiability problems 
that are in P (e.g. 2-SAT; Garey & Johnson, 1979; see also Appendix B).  



 86

Namely, in that case, we always satisfy all constraints if we set A = P and R = ∅  (or, 

equivalently, if we set A = ∅  and R = P). Hence we have the following result:  

Observation 5.1. (Thagard & Verbeurgt, 1998). Coherence on a network N = (P, 

C), with C = C+, is in P. 

Proof: Let N = (P, C) be a network such that C = C+. Then we can solve 

Coherence as follows: Set A = P, and R = ∅  (or, alternatively, set R = P, and A = ∅ ). 

Since, C = C+, we have SN(A, R) = C and thus CohN(A, R) is maximum (Note: This solves 

the optimization version of Coherence; to solve the decision version of coherence, we add 

the step that compares CohN (A, R) to c). This procedure runs in time O(|P|). ■ 

 Arguably, many interesting coherence problems that arise in practice contain at 

least some negative constraints, and thus Observation 5.1 seems to be a trivial special 

case of Coherence. Note, however, that there also exist special cases of Coherence in 

which the network may contain (possible even many) negative constraints that are also in 

P. To illustrate consider again Figure 5.1.  

The network depicted in Figure 5.1 has the special property that all its constraints 

can be satisfied simultaneously. In general, let us call a network N = (P, C) consistent if it 

is possible to satisfy all constraints in N; in other words, N is consistent if there exists a 

partition of P into A and R such that SN(A, R) = C.  We note the following theorem. 

Theorem 5.1. Coherence on consistent networks is in P.  

Proof: (Non-constructive) Let a consistent network N = (P, C) and positive 

integer c form an instance for Coherence. By the definition of ‘consistent,’ if c ≤ 

∑ ∈ C)(
),(w

p,q
qp  the answer is “yes.” On the other hand, if c > ∑ ∈ C)(

),(w
p,q

qp  then the 

answer is “no.” ■ 

The non-constructive proof of Theorem 5.1 is not very helpful, since typically we 

would like to know how to partition P in order to obtain a partition of coherence c, for all 

c ≤ ∑ ∈ C)(
),(w

p,q
qp . In the following I present a constructive argument.  

The argument is organized as follows. First, we describe a polynomial-time 

algorithm called Consistent Coherence algorithm that takes as input a connected network 

and outputs a partition. Second, we show that the Consistent Coherence algorithm always 



 87

computes an optimal partition on consistent connected networks (Lemma 5.2). Finally, 

we conclude a constructive proof of Theorem 5.1.  

Consistent Coherence algorithm 51  

Input: A connected network N = (P, C).  

Output: A partition (A ∪  R)P
. 

[Description of algorithm:] The Consistent Coherence algorithm performs a 

breath-first search (BFS) on the input network N . The BFS search considers each 

element in N in a particular order as follows: It starts by (0) considering an 

arbitrary element p ∈  N; then (1) it considers each neighbor of p; then (2) for each 

neighbor q of p, it considers the neighbors of q that have not yet been considered; 

then (3) for each neighbor r of each neighbor q of p, it considers the neighbors of 

r have not yet been considered; and so on,  … (4) …, (5) …, (j) …, until in (k) all 

elements in P are considered.52  

Note that this BFS search can be thought of as a traversal of the network 

that builds a spanning tree T of N of depth k. Further, we can see T as a search tree 

with each node of T being labeled by an element in P. Since each element in P 

and each constraint in C need not be considered more than a constant number of 

times, the traversal can be done in time O(|P| + |C|), or O(|P|2).  

The Consistent Coherence algorithm assigns elements to A or R in the 

order in which they are considered by the BFS procedure. It does so as follows. 

Let s denote the element whose neighbors are presently being considered by the 

BFS procedure. The algorithm checks whether s is assigned to A or to R; then for 

each neighbor t of s the algorithm checks the type of the constraint (s, t) and 

assigns t to A or R so as to satisfy constraint (i.e., if s ∈  A and (s, t) ∈  C+, then t is 

assigned to A; if s ∈  A and (s, t) ∈  C−, then t is assigned to R; if s ∈  R and (s, t) ∈  

                                                 
51 I do not give a description of the algorithm in pseudo code because I think the 
procedure is easier to understand when described as I have done here. Furthermore, 
pseudo code for Breath First Search (BFS) can be found in many standard computer 
science textbooks (see e.g. Goodrich & Tamassia, 2002) 
52 Consider, for example, the graph in Figure A2 in the Appendix A. A BFS search 
starting at, say, vertex a, would first (0) consider vertex a, then (1) consider vertices b, c, 
d and e, then (2) vertices f, h, and i; then (3) vertices g and j; then (4) k, and finally (5) 
vertex l.  



 88

C+, then t is assigned to R; and if s ∈  R and (s, t) ∈  C−, then t is assigned to A). 

Since this assignment procedure runs in O(1) per assigned element t, we conclude 

a total running time of O(|P|2) for the Consistent Coherence algorithm. [End of 

Description] 

The following lemma establishes that, if the input N is a consistent network, then 

Consistent Coherence algorithm outputs a maximum coherence partition for N. In other 

words, we show that the Consistent Coherence algorithm solves the optimization version 

of Coherence for consistent connected networks.  

Lemma 5.2. Given a consistent connected network N = (P, C) as input, the 

Consistent Coherence algorithm outputs a partition of P into sets A and R such that 

CohN(A, R) is maximum.  

Proof:  Let N = (P, C) be a consistent connected network, and let partition (A ∪  

R)P be the partition obtained by running Consistent Coherence algorithm on N. Further, 

let T = (P, CT) denote the spanning tree of N that was traced by the run of the Consistent 

Coherence algorithm on N. We show that SN(A, R) = C. 

First, we observe that all constraints in CT ⊆  C are satisfied; this is ensured by the 

assignment procedure run during the BFS search. It remains to be shown that also all 

other constraints are satisfied. We prove this by contradiction. Let p be the first element 

in P considered by the algorithm—i.e., p is the root of T. Further, let (q, r) ∈  C\CT be a 

constraint in C\CT that is not satisfied. Consider the cycle X ⊆  N with X = < (p, qk), (qk, 

qk−1), …, (q3, q2), (q2, q1), (q1, q), (q, r), (r, r1), (r1, r2), (r2, r3), …,  (rj−1, rj), (rj, p)> such 

that all edges in the cycle, other than (q, r), are in CT. We now prove that it is not possible 

to satisfy all constraints in X.  Imagine traversing the edges in X in order, starting at r and 

ending at q, and while we visit the elements r, r1, r2, r3, …, rj−1, rj, p, qk, qk−1, …, q3, q2, 

q1, q, we assign them to A or R as follows: We start by assigning r to either A or R (it 

does not matter for the argument which is the case). Every time we visit an element si, 

with preceding element si−1, such that (si−1, si) ∈  C+ we do one of the following: (1) if si−1 

∈  A then we assign si to A, (2) if si−1 ∈  R then we assign si to R. Every time we visit an 

element si such that (si−1, si) ∈  C− we do one of the following: (3) if si−1 ∈  A then we 

assign si to R, (4) if si−1 ∈  R then we assign si to A. Note that rules (1) − (4) are necessary 



 89

to ensure that each traversed edge in {(r, r1), (r1, r2), (r2, r3), …,  (rj−1, rj), (rj, p) (p, qk) 

(qk, qk−1), …, (q3, q2), (q2, q1), (q1, q)} is satisfied by the assignment. The last edge (q, r) 

is satisfied if only if it was satisfied by the original partition made by the Consistent 

Coherence algorithm. We conclude that the cycle X is not consistent. Since X ⊆  N, we 

also conclude that N is not consistent, contradicting the fact that N is consistent. ■ 

We can now derive a constructive proof of Theorem 5.1.  

Proof of Theorem 5.1: (Constructive) Let N = (P, C) be a consistent network, and 

let Ni = (Pi, Ci), with i = 1, 2, …, x, be the components of N. Then we solve Coherence 

for N, by running the Consistent Coherence algorithm on each component Ni. This returns 

for each component Ni an optimal partition (Ai ∪  Ri)Pi. We define A = A1 ∪  A2 ∪  … ∪  Ax 

and R = R1 ∪  R2 ∪  … ∪  Rx, and conclude that CohN(A, R) is maximum. 

For each component the procedure runs in time O(|Pi|2), and thus the whole 

procedure runs in time O(|P1|2 + |P2|2 + … + |Px|2). Since |P1| + |P2| + … + |Px| = |P|, we 

conclude a total running time of O(|P|2). ■ 

Interestingly, Theorem 5.1 implies that, on Thagard and Verbeurgt’s definition of 

Coherence, coherence reasoning is difficult only if one’s belief system is inconsistent. As 

long as one maintains a consistent belief base, coherence reasoning is tractable.  

I close this subsection with a couple of related observations:  

Lemma 5.3. Coherence on an instance (N, c) with c = ∑ ∈ Cp,q
qp

)(
),(w is in P.53 

Proof: Let (N, c), with c = ∑ ∈ Cp,q
qp

)(
),(w , be an instance for Coherence. We 

run Consistent Coherence algorithm on N as described in the constructive proof of 

Theorem 5.1. Let the resulting partition be (A ∪  R)P. If CohN(A, R) = ∑ ∈ Cp,q
qp

)(
),(w  

then (N, c) is a yes-instance, otherwise it is a no-instance. ■ 

From Lemma 5.3 we also conclude that we can decide in polynomial-time 

whether or not a network N is consistent. 

Corollary 5.4. Checking whether or not a network is consistent is in P. 

Lemma 5.4. If network N = (P, C) is a tree, then N is consistent.  

                                                 
53 Lemma 5.3 also follows from a straightforward reduction from Coherence on 
consistent networks to the polynomial-time problem 2-SAT (see Appendix B for problem 
definition).  



 90

Proof: (Sketch). If we run Consistent Coherence algorithm on a tree N = (P, C), 

the algorithm will always trace, and thus satisfy, every constraint in C. ■ 

Since a tree on |P| vertices has exactly |P| − 1 edges (Gross & Yellen, 1999), we 

also conclude the following corollary. 

Corollary 5.5. A network N = (P, C) that is a tree has coherence c = |P|−1. 

Lemma 5.4 and Corollary 5.5 will also prove useful in Section 5.6. 

5.4.2. Generalizations of Coherence 

Recall that in the application of Coherence to scientific reasoning, a distinction was made 

between elements representing data (D) and elements representing scientific hypotheses 

(H) (cf. the applications to legal justification and social judgment). In this context, 

Thagard (2000) adopts the data priority principle. This principle states that elements in D 

are “favored” to be in the set A. Thagard (2000) proposes that this principle can work in 

at least two different ways: Either loosely, by assigning weights to elements in D and for 

each d ∈  D counting its weight towards the total coherence of a partition only if d ∈  A; or 

strictly, by requiring that all d ∈  D be assigned to A.  The first version is called 

Discriminating Coherence and the second is called Foundational Coherence.  

 Discriminating Coherence (decision version)  

Input: A network N = (P, C), with (H ∪  D)P and (C+ ∪  C−)C. For each d ∈  D there 

is an associated positive integer weight wD(d), and for each (p, q) ∈  C there is an 

associated positive integer weight wC(p, q). A positive integer c. 

Question: Does there exist a partition of P into A and R such that DCohN(A, R) ≥ 

c? Here DCohN(A, R) = ∑
∈ ),(S)( N

),(w
RAp,q
C qp + ∑

∩∈ )(

)(w
ADd

D d . 

Foundational Coherence (decision version) 

Input: A network N = (P, C), with (H ∪  D)P and (C+ ∪  C−)C. For each (p, q) ∈  C 

there is an associated positive integer weight w(p, q). A positive integer c. 

Question: Does there exist a partition of P into A and R such that D ⊆  A and 

CohN(A, R) ≥ c?  

Does the fact that Coherence is NP-hard automatically imply that Discriminating 

Coherence and Foundational Coherence are NP-hard? Yes! Each of these problems 



 91

encompassed Coherence as a special case. Namely, Coherence is equivalent to 

Discriminating Coherence on inputs with D = ∅ . Also, Coherence is equivalent to 

Foundational Coherence on inputs with D = ∅ . In other words, Discriminating Coherence 

and Foundational Coherence are generalizations of Coherence, and thus they are “at least 

as hard” as Coherence. We conclude: 

Corollary 5.6. Discriminating Coherence is NP-hard 

Corollary 5.7. Foundational Coherence is NP-hard 

The fact that Discriminating Coherence and Foundational Coherence are 

generalizations of Coherence means that the results discussed in Section 5.4.1 do not 

necessarily apply to these more general problems (though in some cases they might). It 

also means that fpt-results, in Sections 5.5 − 5.7, obtained for Coherence do not 

necessarily generalize to comparable parameterizations for Discriminating Coherence and 

Foundational Coherence (though, again, in some cases they might). 

5.4.3. Variations on Coherence 

Thagard (2000) not only considers special cases and generalizations of Coherence, but 

also variations on the problem (see also Thagard, 1989; Thagard and Verbeurgt, 1998). 

Such variations, although seemingly related to Coherence, may have very different 

properties, and hence very different complexity, than the Coherence problem itself.  

To illustrate I consider the application of Coherence in the domain of legal 

justification. Here a jury member wishes to decide whether the belief that the defendant is 

innocent coheres at least as much with the evidence as does the belief that the defendant 

is guilty.54 These competing beliefs can be modeled as follows (cf. Thagard, 1998, 2000; 

Thagard and Verbeurgt, 1998): There is a special element in the network, denoted s, 

representing the hypothesis that the defendant is innocent. We interpret s ∈  A as the 

                                                 
54 Note that we are giving the defendant the benefit of the doubt if both propositions 
cohere equally with the evidence. One might argue that in jury trials the verdict “guilty” 
is justified only if the defendant is found guilty beyond reasonable doubt. Of course, this 
aspect of jury decision-making can be incorporated into the model presented here by 
defining a critical amount λ that represents “reasonable doubt.” Then the jury member’s 
task is to decide whether the belief ‘the defendant is innocent’ is at most λ less coherent 
than the belief ‘the defendant is guilty.’ Note that the model we work with in this section 
is a special case of this problem with λ = 0.  



 92

belief “the defendant is innocent” and s ∈  R as the belief “the defendant is guilty.” If we 

again adopt the data priority principle, either in a strict or loose sense, we obtain the 

following two problems: 

Single-Element Discriminating Coherence (decision version) 

Input: A network N = (P, C), with (H ∪  D)P and (C+ ∪  C−)C. For each d ∈  D there 

is an associated positive integer weight wD(d), and for each (p, q) ∈  C there is an 

associated positive integer weight wC(p, q). A special element s ∈  H and a 

positive integer c. 

Question: Does there exist a partition of P into A and R such that DCohN(A, R) is 

maximum and s ∈  A?  

Single-Element Foundational Coherence (decision version) 

Input: A network N = (P, C), with (H ∪  D)P and (C+ ∪  C−)C. For each (p, q) ∈  C 

there is an associated positive integer weight w(p, q). A special element s ∈  H and 

a positive integer c. 

Question: Does there exist a partition of P into A and R such that CohN(A, R) is 

maximum and D ∪  s ⊆  A? 

Note that both problems are decision problems. 

Does the fact that Coherence is NP-hard automatically imply that Single-Element 

Discriminating Coherence and Single-Element Foundational Coherence are NP-hard? 

No! Coherence is not a special case of any of these problems.  

 Let us consider Single-Element Discriminating Coherence first. Despite the 

apparent similarity between Single-Element Discriminating Coherence and 

Discriminating Coherence (page 90), the two problems are of quite different flavor. In 

Discriminating Coherence the goal is to find a partition of at least coherence c, while in 

Single-Element Discriminating Coherence we want to know if there exists an optimal 

partition for N such that s ∈  A. Hence, in Single-Element Discriminating Coherence we 

are not interested in finding a partition, nor in how much coherence it might have; all we 

care about is whether or not we should accept s.  

 The difference between Discriminating Coherence and Single-Element 

Discriminating Coherence also becomes apparent when we consider the special case of 



 93

Single-Element Discriminating Coherence with D = ∅ . Recall that if we set D = ∅ , then 

Coherence and Discriminating Coherence are equivalent, and thus Discriminating 

Coherence is NP-hard even if D = ∅ . On the other hand, if we set D = ∅ , then solving 

Single-Element Discriminating Coherence becomes trivial. In that case, the answer is 

always “yes,” because there always exist at least two maximum coherence partitions, one 

with s ∈  A and one with s ∈  R, and thus the answer is always “yes.” We conclude this 

from the fact that the function CohN(., .) is symmetric, as shown in Observation 5.2.  

Observation 5.2. Let N = (P, C) be a network. Then for any partition (A ∪  R)P, 

and its complement (A’ ∪  R’)P, with A’ = R and R’ = A, CohN(A, R) = CohN(A’, R’). 

Proof: The claim follows directly from the definition of the coherence function 

CohN(A, R). Namely, a constraint is satisfied (and counts towards coherence) if both 

endpoints are in the same set of the partition (regardless of whether they are both in R or 

both in A), and a negative constraint is satisfied if both endpoints are in opposite sets of 

the partition (it does not matter which of the two is in A and which is in R). Thus, a 

partition (A ∪  R)P, and its complement (A’ ∪  R’)P satisfy exactly the same set of 

constraints. ■ 

Corollary 5.8. Single-Element Discriminating Coherence with D = ∅  is in P. 

Note that all observations made so far for Single-Element Discriminating Coherence also 

apply for Single-Element Foundational Coherence. That is, like Single-Element 

Discriminating Coherence, Single-Element Foundational Coherence is not a special case 

of Coherence. Further, for D = ∅ , Single-Element Discriminating Coherence and Single-

Element Foundational Coherence are the same problem. Hence we also have: 

 Corollary 5.9. Single-Element Foundational Coherence with D = ∅  is in P. 

Are Single-Element Discriminating Coherence and Single-Element Foundational 

Coherence computationally easier to compute than Coherence? At present time, I do not 

know the answer to this question. And this is the point of my illustration. Thagard cannot 

conclude that problems such as Single-Element Discriminating Coherence and Single-

Element Foundation Coherence are NP-Hard simply because Coherence is NP-hard. Of 

course these problems may very well be NP-hard, but knowing so requires a proof.  

 



 94

5.5. c-Coherence is in FPT 

In this section we consider the parameterized complexity of Coherence when 

parameterized by integer c. We show that c-Coherence is in FPT. The argument is build 

up as follows. Section 5.5.1 introduces a generalization of the problem Coherence that 

allows for more than one constraint between two elements in P. This generalization, 

called Double-Constraint Coherence, is then used to formulate a set of reduction rules in 

Section 5.5.2. After the application of the reduction rules we know that the input network 

is of minimum degree 3. In Section 5.5.3, we show that for each element in P we can 

satisfy at least half of its incident constraints, and conclude that every network on n or 

more elements has at least c coherence. This allows us to conclude a kernel of |P| ≤ c and 

thus a running time O(2c + |P|).  

I remark that the fpt-algorithm presented in this section is not constructive—i.e., it 

solves the decision version but not the search version of Coherence.  A constructive, but 

slower fpt-algorithm for c-Coherence will be discussed in Section 5.6. 

5.5.1. Double-Constraint Coherence 

In Coherence, for each pair p, q ∈  P there is at most one constraint (p, q) ∈  C, with either 

(p, q) ∈  C+ or (p, q) ∈  C−. In the following generalization of Coherence, called Double-

Constraint Coherence, for each pair p, q ∈  P there may be two constraints; a positive 

constraint (p, q)+ ∈  C+ and a negative constraint (p, q)− ∈  C−. 

Double-Constraint Coherence  

Input: A double-constraint network N = (P, C+ ∪  C−). For each (p, q)+ ∈  C+ there 

is an associated positive integer weight w(p, q)+, and for each (p, q)− ∈  C−  there is 

an associated positive integer weight w(p, q)−. A positive integer c. 

Question: Does there exist a partition (A ∪  R)P such that CohN(A, R) ≥ c?  

Note that Coherence is a special case of Double-Constraint Coherence. Hence, an fpt-

result for c-Double-Constraint Coherence also applies to c-Coherence.  

 In the following, if for two elements p, q ∈  P there exists exactly one constraint 

(p, q) ∈  C+ ∪  C− then we may write (p, q) instead of (p, q)+ or (p, q)−. As for networks, 

the degree of an element p in a double-constraint network N, degN(p), is the number of 

constraints incident to p, and the neighborhood of an element p in a double-constraint 



 95

network N, NN(p), is the set of neighbors of p in N. Note that in a double-constraint 

network degN(p) may be larger than |NN(p)|. Further, for two vertices p and q in a double-

constraint network we say p and q are independent if (p, q)+ ∉  C+ and (p, q) − ∉  C−. 

5.5.2. Reduction Rules 

We present a set of reduction rules for Double-Constraint Coherence. We only apply a 

rule if none of the preceding rules applies. Rules (DC 2) – (DC 9) are illustrated in  

Figure 5.2.  

We start by removing small components from the input with rule (DC 1) as 

follows: For each component Ni = (Pi, Ci
+ ∪  Ci

−), with |Pi| ≤ 3, we compute a partition of 

Pi with maximum coherence using an exhaustive search: i.e., we compute all 2|Pi| possible 

partitions of Pi, compute their coherence, and pick the one with maximum coherence.  

Since rule (DC 1) is only applied if |Pi| ≤ 3, this rule runs in time O(2|Pi|) = O(23) = O(8) = 

O(1), which is constant time. 

(DC 1) Small Component Rule: Let the double-constraint network N = (P, C+ ∪  

C−) and positive integer c form an instance for Double-Constraint Coherence. If N has a 

component Ni = (Pi, Ci
+ ∪  Ci

−) with |Pi| ≤ 3, then we determine a partition (Ai ∪  Ri)P such 

that CohN(Ai, Ri) is maximum. Then let N* = N \Ni and let c* = c − CohN(Ai, Ri). 

Proof: Since Ni is a component of N it is not connected to any element outside Pi, 

and thus we can determine a maximum coherence partition of Pi independent of the 

maximum coherence partition of P\Pi. ■ 

Rules (DC 2) and (DC 3) eliminate elements that are connected to at most one 

other element.  

(DC 2) Pendant Rule: Let double-constraint network N = (P, C+ ∪  C−) and 

positive integer c form an instance for Double-Constraint Coherence. If there exists an 

element p ∈  P such that degN(p) = 1, with NN(p) = {q}, then let N* = (P*, C+* ∪  C−*), 

with P* = P\{p}, and C+* ∪  C−* = (C+ ∪  C−)\{(p, q)}, and c* = c − w(p, q). Finally, let 

(N*, c*) be the new instance for Double-Constraint Coherence. 

Proof: We show (N, c) is a yes-instance for Double-Constraint Coherence if and 

only if (N*, c*) is a yes-instance for Double-Constraint Coherence, by showing that 

constraint (p, q) is satisfied by an optimal partition. The proof is by contradiction. 



 96

Assume that (A ∪  R)P is partition such that CohN(A, R) is maximum and  (p, q) ∉  SN(A, 

R). We distinguish two cases: (1) Let p ∈  A. We set A’ = A\{p} and R’ = R ∪  {p}. Since 

(p, q) is the only constraint incident to p, we conclude that SN(A’, R’) = SN(A, R) ∪  {(p, 

q)}. But that means that CohN(A’, R’) > CohN(A, R), contradicting that CohN(A, R) is 

maximum. (2) Let p ∈  R. We set A’ = A ∪  {p} and R’ = R \{p}. Since (p, q) is the only 

constraint incident to p, we conclude that SN(A’, R’) = SN(A, R) ∪  {(p, q)}. But that 

means that CohN(A’, R’) > CohN(A, R), contradicting that CohN(A, R) is maximum. ■ 

(DC 3) Degree-2 Single Neighbor Rule: Let the double-constraint network N = 

(P, C+ ∪  C−) and positive integer c form an instance for Double-Constraint Coherence. 

Let element p ∈  P, with degN(p) = 2, have one neighbor q, such that (p, q)+ ∈  C+ and (p, 

q)− ∈  C−. Then let N* = (P*, C+* ∪  C−*), with P* = P\{p}, and C+* ∪  C−* = (C+ ∪  C−)\ 

{(p, q)+, (p, q)−} and c* = c − MAX(w(p, q)+, w(p, q)−). Finally, let (N*, c*) be the new 

instance for Double-Constraint Coherence. 

Proof: Let (A ∪  R)P be a partition such that CohN(A, R) is maximum. Then we 

know that either (p, q)+ ∈  SN(A, R) or (p, q)− ∈  SN(A, R). Since the partition has 

maximum coherence we can assume that the satisfied constraint in {(p, q)+, (p, q)−} is the 

one with largest weight. Hence, (N, c) is a yes-instance for Double-Constraint Coherence 

if and only if (N*, c*) is a yes-instance for Double-Constraint Coherence. ■ 

Rules (DC 4) – (DC 9) deal with all elements p in N that have exactly two 

neighbors, q and r. Each of these rules has the following general form. The part of N that 

consists of p, q, r and their incident constraints, is replaced in N* by q and r connected by 

a positive constraint (q, r)+ and a negative constraint (q, r)−. Further, the weights in N* on 

(q, r)+ and (q, r)− are set so as to exactly capture the coherence value obtained in a 

optimal partition (A ∪  R)P if (1) both q and r would be in the same set (both in A or both 

in R); captured by the weight (q, r)+  and if (2) q and r would be in different sets of the 

partition (one in A and the other in R); captured by the weight (q, r)−.  



 97

  (DC 2)

(DC 3)

q

c := c – xp

q

x or

p

q

x

q

c := c – max(x,y)p

q

x y

max(x,y) rq

p

q r

p

q r
orx y x y

sum(x,y)

(DC 4)

max(x,y) rq

p

q r
x y sum(x,y)

(DC 5)

(DC 8)

max(x,y) rq

sum(z,x,y))

(DC 9)

p

q r
x y

z

sum(x,y) rq

sum(z,max(x,y))
p

q r
x y

z

max(x,y) rq

p

q r

p

q r
orx y x y

sum(x,y,z)

z z

(DC 6)

(DC 7)

sum(x,y) rq

p

q r

p

q r
orx y x y

sum(z,max(x,y))

z z

 
 
Figure 5.2. Illustration of the reduction rules for Double-Constraint Coherence. 
Reduction rules (DC 2)−(DC 9) are illustrated. Solid lines represent positive constraints 
and dotted lines represented negative constraints. The symbols x, y and z represent 
weights. See text for details. 

 

(DC 4) First Degree-2 Disconnected Neighbor Rule: Let double-constraint 

network N = (P, C+ ∪  C−) and positive integer c form an instance for Double-Constraint 

Coherence. Let element p ∈  P, with degN(p) = 2, have two neighbors q and r such that q 

and r are independent and [(p, q), (p, r) ∈  C+ or (p, q), (p, r) ∈  C−]. Then let N* = (P*, 

C+* ∪  C−*), with P* = P − p, C+* = (C+\{(p, q), (p, r)}) ∪  (q, r)+, and C−* = (C− \{(p, q), 

(p, r)}) ∪  (q, r)−. Further, we set the weights w*(q, r)+ = w(p, q) + w(p, r) and w*(q, r)− = 

MAX(w(p, q), w(p, r)). Finally, let (N*, c*), with c* = c, be the new instance for Double-

Constraint Coherence. 

Proof: Let (A ∪  R)P be a partition such that CohN(A, R) is maximum. We 

distinguish two cases: (1) Let q, r both be in the same set of the partition (i.e., either q, r 

∈  A or q, r ∈  R). Since (p, q) and (p, r) are the same type of constraint (both positive or 

both negative), setting p ∈  A, or setting p ∈  R, will either satisfy both (p, q) and (p, r), or 



 98

neither of them. Since CohN(A, R) is maximum we conclude it must be the first option, 

and thus {(p, q), (p, r)} ⊆  SN (A, R). (2) Let q and r be in different sets of the partition 

(i.e., either q ∈  A and r ∈  R, or q ∈  R and r ∈  A). Since (p, q) and (p, r) are the same type 

of constraint (both positive or both negative), setting p ∈  A, or setting p ∈  R, can satisfy 

at most one of (p, q) and (p, r). Since CohN(A, R) is maximum we conclude the satisfied 

constraint is the one with the largest weight. We conclude that (N, c) is a yes-instance for 

Double-Constraint Coherence if and only if (N*, c*) is a yes-instance for Double-

Constraint Coherence. ■ 

(DC 5) Second Degree-2 Disconnected Neighbors Rule: Let double-constraint 

network N = (P, C+ ∪  C−) and positive integer c form an instance for Double-Constraint 

Coherence. Let p ∈  P, with degN(p) = 2, be an element with exactly two neighbors q, r 

that are independent, (p, q) ∈  C+ and (p, r) ∈  C−. Then let N* = (P*, C+* ∪  C−*), with P* 

= P\{p}, C+* = (C+\{(p, q), (p, r)}) ∪  {(q, r)+}, and C−* = (C− \{(p, q), (p, r)}) ∪  {(q, 

r)−}. Further, we set the weights w*(q, r)+ = MAX(w(p, q), w(p, r)) and w*(q, r)− = w(p, 

q) + w(p, r). Finally, let (N*, c*), with c* = c, be the new instance for Double-Constraint 

Coherence. 

Proof: Let (A ∪  R)P be a partition such that CohN(A, R) is maximum. We 

distinguish two cases: (1) Let q, r both be in the same set of the partition (i.e., either q, r 

∈  A or q, r ∈  R). Since (p, q) and (p, r) are different types of constraint (one is positive 

and the other negative), setting p ∈  A, or setting p ∈  R, can satisfy at most one of (p, q) 

and (p, r). Since CohN(A, R) is maximum we conclude that the satisfied constraint is the 

one with the largest weight. (2) Let q and r be in different sets of the partition (i.e., either 

q ∈  A and r ∈  R, or q ∈  R and r ∈  A). Since (p, q) and (p, r) are different types of 

constraint (one is positive and the other negative), setting p ∈  A, or setting p ∈  R, will 

either satisfy both (p, q) and (p, r), or neither of them. Since CohN(A, R) is maximum we 

conclude it must be the first option, and thus {(p, q), (p, r)} ⊆  SN(A, R). We conclude that 

(N, c) is a yes-instance for Double-Constraint Coherence if and only if (N*, c*) is a yes-

instance for Double-Constraint Coherence. ■ 

(DC 6) First Degree-2 Connected Neighbors Rule: Let double-constraint 

network N = (P, C+ ∪  C−) and positive integer c form an instance for Double-Constraint 



 99

Coherence. Let element p ∈  P, with degN(p) = 2, have two neighbors q and r such that (q, 

r)+ ∈  C+ and (q, r) − ∉  C−, and [(p, q), (p, r) ∈  C+ or (p, q), (p, r) ∈  C−]. Then let N* = 

(P*, C+* ∪  C−*), with P* = P\{p}, C+* = C+\{(p, q)+, (p, r)+}, and C−* = (C− \{(p, q)−, (p, 

r) −}) ∪  {(q, r)−}. Further, we set the weights w*(q, r)+ = w(p, q) + w(p, r) + w(q, r) and 

w*(q, r)− = MAX(w(p, q), w(p, r)). Finally, let (N*, c*), with c* = c, be the new instance 

for Double-Constraint Coherence. 

Proof: Let (A ∪  R)P be a partition such that CohN(A, R) is maximum. We 

distinguish two cases: (1) Let q, r be in the same set of the partition (i.e., either q, r ∈  A 

or q, r ∈  R). Then (q, r) ∈  SN(A, R). Further, since (p, q) and (p, r) are the same type of 

constraint (both positive or both negative), setting p ∈  A, or setting p ∈  R, will either 

satisfy both (p, q) and (p, r), or neither of them. Since CohN(A, R) is maximum we 

conclude it must be the first option. In sum, we have {(q, r), (p, q), (p, r)} ⊆  SN(A, R). (2) 

Let q and r be in different sets of the partition (i.e., either q ∈  A and r ∈  R, or q ∈  R and r 

∈  A). Then (q, r) ∉  SN(A, R). Further, since (p, q) and (p, r) are the same type of 

constraint (both positive or both negative), setting p ∈  A, or setting p ∈  R, can satisfy at 

most one of (p, q) and (p, r). Since CohN(A, R) is maximum we conclude the satisfied 

constraint is the one with the largest weight. We conclude that (N, c) is a yes-instance for 

Double-Constraint Coherence if and only if (N*, c*) is a yes-instance for Double-

Constraint Coherence. ■ 

(DC 7) Second Degree-2 Connected Neighbors Rule: Let double-constraint 

network N = (P, C+ ∪  C−) and positive integer c form an instance for Double-Constraint 

Coherence. Let element p ∈  P, with degN(p) = 2, have two neighbors q and r such that (q, 

r) − ∈  C− and (q, r) + ∉  C+, and [(p, q), (p, r) ∈  C+ or  (p, q), (p, r) ∈  C−]. Then let N* = 

(P*, C+* ∪  C−*), with P* = P\{p}, C+* = (C+\{(p, q)+, (p, r)+}) ∪  {(q, r)+}, and C−* = C− 

\{(p, q)−, (p, r) −}. Further, we set the weights w*(q, r)+ = w(p, q) + w(p, r) and w*(q, r)− 

=  w(q, r) + MAX(w(p, q), w(p, r)). Finally, let (N*, c*), with c* = c, be the new instance 

for Double-Constraint Coherence. 

Proof: Let (A ∪  R)P be a partition such that CohN(A, R) is maximum. We 

distinguish two cases: (1) Let q, r be in the same set of the partition (i.e., either q, r ∈  A 

or q, r ∈  R). Then (q, r) ∉  SN(A, R). Further, since (p, q) and (p, r) are the same type of 



 100

constraint (both positive or both negative), setting p ∈  A, or setting p ∈  R, will either 

satisfy both (p, q) and (p, r), or neither of them. Since CohN(A, R) is maximum we 

conclude it must be the first option, and thus {(p, q), (p, r)} ⊆  SN(A, R). (2) Let q and r be 

in different sets of the partition (i.e., either q ∈  A and r ∈  R, or q ∈  R and r ∈  A). Then 

(q, r) ∈  SN(A, R). Since (p, q) and (p, r) are the same type of constraint (both positive or 

both negative), setting p ∈  A, or setting p ∈  R, can satisfy at most one of (p, q) and (p, r). 

Since CohN(A, R) is maximum we conclude the satisfied constraint is the one with largest 

weight. We conclude that (N, c) is a yes-instance for Double-Constraint Coherence if and 

only if (N*, c*) is a yes-instance for Double-Constraint Coherence. ■ 

(DC 8) Third Degree-2 Connected Neighbors Rule: Let double-constraint 

network N = (P, C+ ∪  C−) and positive integer c form an instance for Double-Constraint 

Coherence. Let element p ∈  P, with degN(p) = 2, have two neighbors q and r such that (q, 

r) + ∈  C+ and (q, r)− ∉  C−, and (p, r)+ ∈  C+ and (p, q)− ∈  C−. Then let N* = (P*, C+* ∪  

C−*), with P* = P\{p}, C+* = C+\{(p, r)+}, and C−* = (C− \{(p, q)−}) ∪  {(q, r)−}. Further, 

we set the weights w*(q, r)+ = w(q, r)+ + MAX(w(p, q)−, w(p, r)+), and w*(q, r)− =  w(p, 

q)− + w(p, r)+. Finally, let (N*, c*), with c* = c, be the new instance for Double-

Constraint Coherence. 

Proof: Let (A ∪  R)P be a partition such that CohN(A, R) is maximum. We 

distinguish two cases: (1) Let q and r be in the same set of the partition (i.e., either q, r ∈  

A or q, r ∈  R). Then (q, r) ∈  SN(A, R). Further, since (p, q) and (p, r) are different types of 

constraint (one is positive and the other negative), setting p ∈  A, or setting p ∈  R, can 

satisfy at most one of (p, q) and (p, r). Since CohN(A, R) is maximum we conclude that 

the satisfied constraint is the one with the largest weight. (2) Let q and r be in different 

sets of the partition (i.e., either q ∈  A and r ∈  R, or q ∈  R and r ∈  A). Then (q, r) ∉  SN(A, 

R). Since (p, q) and (p, r) are different types of constraint (one is positive and the other 

negative), setting p ∈  A, or setting p ∈  R, will either satisfy both (p, q) and (p, r), or 

neither of them. Since CohN(A, R) is maximum we conclude it must be the first option, 

and thus {(p, q), (p, r)} ⊆  SN (A, R). We conclude that (N, c) is a yes-instance for Double-

Constraint Coherence if and only if (N*, c*) is a yes-instance for Double-Constraint 

Coherence. ■ 



 101

(DC 9) Third Degree-2 Connected Neighbors Rule: Let double-constraint 

network N = (P, C+ ∪  C−) and positive integer c form an instance for Double-Constraint 

Coherence. Let element p ∈  P, with degN(p) = 2, have two neighbors q and r such that (q, 

r) − ∈  C− and (q, r)+ ∉  C+, and (p, r)+ ∈  C+ and (p, q)− ∈  C−. Then let N* = (P*, C+* ∪  

C−*), with P* = P\{p}, C+* = (C+\{(p, r)+}) ∪  {(q, r)+}, and C−* = C− \{(p, q)−}. Further, 

we set the weights w*(q, r)+ = MAX(w(p, q)−, w(p, r)+), and w*(q, r)− =  w(q, r)−  + w(p, 

q)− + w(p, r)+. Finally, let (N*, c*), with c* = c, be the new instance for Double-

Constraint Coherence. 

Proof: Let (A ∪  R)P be a partition such that CohN(A, R) is maximum. We 

distinguish two cases: (1) Let q and r be in the same set of the partition (i.e., either q, r ∈  

A or q, r ∈  R). Then (q, r)− ∉  SN(A, R). Further, since (p, q) and (p, r) are different types 

of constraint (one is positive and the other negative), setting p ∈  A, or setting p ∈  R, can 

satisfy at most one of (p, q) and (p, r). Since CohN(A, R) is maximum we conclude that 

the satisfied constraint is the one with the largest weight. (2) Let q and r be in different 

sets of the partition (i.e., either q ∈  A and r ∈  R, or q ∈  R and r ∈  A). Then (q, r) ∈  SN(A, 

R). Since (p, q) and (p, r) are different types of constraint (one is positive and the other 

negative), setting p ∈  A, or setting p ∈  R, will either satisfy both (p, q) and (p, r), or 

neither of them. Since CohN(A, R) is maximum we conclude it must be the first option, 

and thus {(q, r), (p, q), (p, r)} ⊆  SN(A, R). We conclude that (N, c) is a yes-instance for 

Double-Constraint Coherence if and only if (N*, c*) is a yes-instance for Double-

Constraint Coherence. ■ 

When given an instance (N, c) for Double-Constraint Coherence, we can apply the 

polynomial-time reduction rules (DC 1) − (DC 9) until none of the rules applies anymore. 

If none of the rules (DC 1) − (DC 9) applies anymore, then we say that the resulting 

instance (N’, c’) is reduced for Double-Constraint Coherence. Note that we can reduce 

any instance for Double-Constraint Coherence in time O(|P|). Namely, each reduction 

rule runs in constant time. Further, each rule causes an element to be deleted from P. 

Thus we never apply more than |P| reduction rules.  



 102

5.5.3. A Problem Kernel  

Let (N, c) be a reduced instance for Double-Constraint Coherence. Then we know that N 

is of minimum degree 3. Namely, the reduction rules (DC 1) − (DC 9) ensure that all 

vertices with degree 0, 1 or 2 are removed from the network. The following lemma uses 

this fact to infer a problem kernel for c-Double-Constraint Coherence. 

Lemma 5.5. Let (N, c), with N = (P, C+ ∪  C−), be a reduced instance for Double-

Constraint Coherence. If |P| ≥ c then (N, c) is a yes-instance Double-Constraint 

Coherence. 

Proof: We show that there exists a partition such that for every element p ∈  P at 

least half of the constraints incident to p are satisfied. Let (A ∪  R)P  be a partition that 

satisfies the most constraints; i.e., |SN(A, R)| is maximum. We now prove that for every p 

∈  P at least half of the constraints incident to p are in SN(A, R). The proof is by 

contradiction. Assume that there exists an element p ∈  P such that strictly less than half 

of the constraints incident to p are in SN(A, R). We define a new partition (A’ ∪  R’)P  and 

we distinguish between two cases:  (1) Let p ∈  A. Then let A’ = A\{p} and R’ = R ∪  {p};  

(2) Let p ∈  R. Then let A’ = A ∪  {p} and R’ = R\{p}. Since, in both (1) and (2), partition 

(A’ ∪  R’)P satisfies all constraints incident to p that are not satisfied by the partition (A ∪  

R)P, we conclude that strictly more than half of the constraints incident to p are in SN(A’, 

R’). Further, the change from partition (A ∪  R)P to (A’ ∪  R’)P does not affect any of the 

other constraints in N. We conclude that the partition |SN(A’, R’)| > |SN(A, R)|, 

contradicting the fact that |SN(A, R)| is maximum. 

We have shown that for each element p ∈  P half of its incident constraints can be 

satisfied. Further, since the input is reduced, the minimum number of constraints incident 

to any element is at least 3. This means that for each element p at least 2 of its incident 

constraints can be satisfied.  

We note that each constraint has two elements as its endpoints. Thus we conclude 

that for any reduced instance on |P| = n elements there exists a partition (A ∪  R)P, such 

that CohN(A, R) ≥ 
2

2n = n. Thus, if (N, c) is a reduced instance for Double-Constraint 

Coherence and c ≤ n, then the answer is “yes” for (N, c). ■ 

From (DC 1)−(DC 9) and Lemma 5.5 we conclude the following theorem. 



 103

Theorem 5.2. c-Double-Constraint Coherence is in FPT and solvable in time O(2c 

+ |P|). 

Proof: We describe an fpt-algorithm for c-Double-Constraint Coherence. The 

algorithm takes as input an instance (N, c) for c-Double-Constraint Coherence and first 

reduces it using (DC 1)−(DC 9). For the resulting reduced instance (N’, c’) for c-Double-

Constraint Coherence we know that either |P’| < c or |P’| ≥ c.  If |P’| ≥ c then, using 

Lemma 5.5, we conclude that (N, c) is a yes-instance for c-Double-Constraint Coherence; 

in which case the computation has terminated in time O(n). If |P’| < c then we perform an 

exhaustive search on all 2|P’| possible partitions of P’. This search runs in O(2|P’|) which is 

O(2c), since |P’| < c. The exhaustive search time, combined with the polynomial time to 

reduce the instance, gives a total running time of O(2c + |P|) for c-Double-Constraint 

Coherence. ■ 

Since Coherence is a special case of Double-Constraint Coherence we also have: 

Corollary 5.10. c-Coherence is in FPT and solvable in time O(2c + |P|). 

 

5.6. A Constructive fpt-Algorithm for c-Coherence 

In the previous section I have presented an fpt-algorithm solving c-Coherence in time 

O(2c + |P|). As remarked earlier, the algorithm is not constructive. Namely, the reduction 

rules (DC 2) – (DC 9) all delete element p from N without specifying whether p ∈  A or p 

∈  R. These rules simply use the knowledge that one or the other must be the case to 

reduce the instance. Similarly, Lemma 5.5 proves that a reduced instance with more than 

c elements has at least coherence c, but it does not specify how a partition with that 

amount of coherence may be obtained.   

In this section I present a constructive fpt-algorithm for c-Coherence. This 

algorithm has a running time of O(2.52c + |P|2), and thus it is somewhat slower than the 

algorithm presented in the previous section. However, it has the advantage that it not only 

solves the decision version of Coherence, but also its search version. The argument is 

organized as follows. In Section 5.6.1, we first consider connected networks (i.e., 

networks that consist of a single component). Using the fact that a network on |P| 

elements that is a tree has coherence |P| − 1 (Corollary 5.5), we conclude that a connected 

network on |P| elements has at least coherence |P| − 1. This implies a problem kernel of 



 104

size |P| ≤ c for c-Coherence on connected inputs. Then, in Section 5.6.2, we use the 

reduction rule (DC 1) to obtain a bound on the number of components. This allows us to 

conclude a problem kernel of size |P| ≤ 2.52c − 2 for c-Coherence. 

5.6.1. A Problem Kernel for Connected Networks 

Lemma 5.6. Let (N, c), with N = (P, C), be an instance for c-Coherence, such that 

N is connected. If |P| ≥ c + 1, then (N, c) is a yes-instance for c-Coherence. 

Proof: Since N is connected, N has a spanning tree T = (PT, CT) with PT = P and 

CT ⊆  C. We consider T. From Corollary 5.5 we know that (T, c) is a yes-instance for c-

Coherence. Since T is a subgraph of N, we conclude that also (N, c) is a yes-instance for 

c-Coherence. ■ 

From Lemma 5.6 we conclude a constructive fpt-algorithm for c-Coherence on 

connected input networks that runs in time O(2c + |P|). 

Lemma 5.7. c-Coherence for connected networks is solvable by a constructive 

fpt-algorithm that runs in time O(2c + |P|). 

Proof: We describe an fpt-algorithm for c-Coherence on connected networks. The 

algorithm takes as input an instance (N, c) for c-Coherence, with connected network N = 

(P, C). First it counts the elements in P in time O(|P|). We distinguish two cases: (1) Let 

|P| ≥ c + 1. Then we conclude from Lemma 5.6 that (N, c) is a yes-instance for c-

Coherence. For a constructive result we additionally determine a spanning tree for N in 

time O(|P|) (Lemma 5.4, page 89), and we build a partition for T with coherence c using 

the Consistent Coherence algorithm in time O(|P|). The constructive computation also 

terminates in time O(3|P|) = O(|P|). (2) Let |P| ≤ c. Then we perform an exhaustive search 

on all possible partitions of P. This exhaustive search runs in O(2|P|) which is O(2c), since 

|P| ≤ c. The exhaustive search time, combined with the time to count the elements in P, 

gives a total running time of O(2c + |P|) for c-Coherence. ■ 

5.6.2. A General Problem Kernel  

We show that using reduction rule (DC 1) and Lemma 5.6 we can conclude a problem 

kernel for c-Coherence for general inputs. In the following, we call a network N reduced* 

if (DC 1) does not apply to N.  



 105

We start by observing that a reduced* network N with more than c components 

has at least coherence c.  

Lemma 5.8. Let (N, c), with N = (P, C), be an instance for c-Coherence, such that 

N is reduced* and the number of components in N is at least c3
1 . Then (N, c) is a yes-

instance for c-Coherence. 

Proof: Let N1, N2, …, Nx, with x ≥ c3
1 , be the components in N. Since N is 

reduced* we know that |Ni| ≥ 4 for each component Ni, i = 1, 2, …, x. From Lemma 5.6 

we conclude that the minimum coherence per component is 3.  Since N has at least 

c3
1 components we know N has at least coherence 3 c3

1  = c. Hence, (N, c) is a yes-

instance for c-Coherence. ■ 

We now show that, if Lemma 5.8 does not apply, a reduced* network N = (P, C) 

with |P| ≥ 11 3
1 −c  has at least coherence c. 

Lemma 5.9. Let (N, c), with N = (P, C), be an instance for c-Coherence, such that 

N is reduced*, the number of components in N is at most c3
1 − 1 and |P| ≥ 11 3

1 −c . Then 

(N, c) is a yes-instance for c-Coherence. 

Proof: Let N1, N2, …, Nx, with x ≤ c3
1 − 1, be the components in N. From N = (P, 

C) we construct a connected network N* = (P*, C*) as follows: We set P* = P and C* = 

C ∪  B. Here B is a set of bridges, connecting the components in N, and is defined as B = 

{(vi, vi+1) : vi ∈  Ni and vi+1 ∈  Ni+1, i = 1, 2, …, x −1}. Note that N* is a connected network 

and has exactly x − 1 edges more than N. From Lemma 5.3 we conclude that N* has at 

least coherence |P*| − 1 = |P| − 1. Since, there are x − 1 ≤ c3
1 − 2 edges more in N* then 

there are in N, we conclude that N has at least coherence |P| − 1 − c3
1 + 2 = |P| − c3

1 + 1. 

Since |P| ≥ 11 3
1 −c  it follows that N has at least coherence 11 3

1 −c  − c3
1 + 1 = c. We 

conclude that (N, c) is a yes-instance for c-Coherence. ■ 

From Lemma 5.8 and 5.9 we conclude a constructive fpt-algorithm for c-

Coherence that runs in time O(2.52c + |P|2). 

Lemma 5.10. c-Coherence is solvable by a constructive fpt-algorithm that runs in 

time O(2.52c + |P|2). 



 106

Proof: We describe an fpt-algorithm for c-Coherence. The algorithm takes as 

input an instance (N, c) for c-Coherence, with N = (P, C), and first reduces* (N, c) to (N’, 

c’), with N’ = (P’, C’). Then it counts the number of components and the number of 

elements in P’. All this can be done in time O(|P|). We distinguish three cases: (1) Let the 

number of components in N’ be at least '3
1 c . From Lemma 5.8 we conclude that (N’, c’), 

and thus also (N, c), is a yes-instance for c-Coherence. (2) Let the number of components 

in N’ be at most '3
1 c −1 and |P’| ≥ 1'1 3

1 −c . From Lemma 5.9 we conclude that (N’, c’), 

and thus also (N, c), is a yes-instance for c-Coherence. To obtain a constructive result for 

cases  (1) and (2), we determine a spanning forest F for N’, and build a partition for F 

with c’ coherence using the Consistent Coherence algorithm. (3) Let the number of 

components in N’ be at most '3
1 c −1 and |P’| ≤ 2'1 3

1 −c . Then we perform an exhaustive 

search on all possible partitions of P. This exhaustive search runs in O(2|P’|). Since |P’| ≤ 

2'1 3
1 −c and c’ ≤ c, we know that O(2|P’|) is O(2 ( )23

11 −c ). Further, note that 

O(2 ( )23
11 −c ) = O(2 c3

11 ) − O(22) , which is O(2 c3
11 ) ≈ O(2.52c). The exhaustive search 

time, combined with the time required for the reduction from (N, c) to (N’, c’), gives a 

total running time of O(2.52c + |P|2) for c-Coherence. ■ 

 

5.7. |C−|-Coherence is in FPT 

In this section we consider the parameterized complexity of Coherence when the 

parameter is the number of negative constraints in the input network, |C−|. The choice of 

this parameter is motivated by two observations made at the beginning of the chapter: If 

the input network N contains only negative constraints then Coherence is NP-hard 

(Corollary 5.2, page 84), but if the input network N contains only positive constraints 

then Coherence is in P (Observation 5.1, page 86). A question that naturally arises is the 

following. If the input network contains both negative and positive constraints, does the 

presence of positive constraints add non-polynomial time complexity over and above the 

non-polynomial time complexity due to the presence of negative constraints? In other 

words, we ask: Is the parameter |C−| sufficient for confining the non-polynomial time 

complexity in the general Coherence problem?  I will show that the answer is “yes,” by 

proving that |C−|-Coherence ∈  FPT.  



 107

The proof is organized as follows. First, Section 5.7.1 presents a generalization of 

Coherence, called Annotated Coherence. Section 5.7.2, presents a branching rule that can 

be used to build a search tree, with leaves labeled by instances for Annotated Coherence 

such that all constraints incident to elements in P are positive constraints. Section 5.7.3 

describes how Annotated Coherence for such special instances can be reduced to the 

polynomial-time problem Min-Cut. In Section 5.7.4, we conclude an fpt-algorithm for 

|C−|-Coherence. 

For completeness, I note that a direct consequence of Corollary 5.2 is that |C+|-

Coherence is not in FPT (unless P = NP). 

Corollary 5.11. |C+|-Coherence is not in FPT (unless P = NP).  

Proof: Assume that |C+|-Coherence is in FPT and P ≠ NP. Then there exists an 

algorithm that solves Coherence in time O(f(|C+|) nα), for some function f and some 

constant α. But that means that we can solve Coherence on networks with only negative 

constraints in time O(f(0) nα), which is O(nα); meaning Coherence on networks with only 

negative constraints is in P. But then, from Corollary 5.2, we have P = NP. ■ 

5.7.1. Annotated Coherence 

In Coherence, any element may be assigned to either side of the partition: i.e., to A or to 

R. We have seen in Section 5.4.2, that in Foundational Coherence—a generalization of 

Coherence—some elements (the ones in D) are pre-determined to be in the set A.  Here, I 

generalize Coherence even further by also allowing that some elements are pre-

determined to be in the set R. This generalized problem we call Annotated Coherence.   

Annotated Coherence (decision version) 

Input: A network N = (P, C), with (P’ ∪  A’ ∪  R’)P and (C+ ∪  C−)C. For each (p, 

q) ∈  C there is an associated positive integer weight w(p, q). A positive integer c. 

Question: Does there exist a partition of P into A and R such that A’ ⊆  A, R’ ⊆  R, 

and CohN(A, R) ≥ c?  

One way to think of Annotated Coherence is as the problem that arises when one is in the 

middle of the process of solving Coherence; i.e., some elements in P have already been 

assigned (the ones in A’ and R’), but other elements in P still remain to be assigned (the 



 108

ones in P’).55 Using this interpretation of Annotated Coherence I will present a branching 

algorithm for Coherence. This algorithm uses the branching rule described in the next 

subsection. 

5.7.2. Branching into Pos-Annotated Coherence 

Let us distinguish between two types of elements in P: the elements that are connected to 

at least one negative constraint, denoted P−, and the elements that are connected to 

positive constraints only, P+. Note that P = P− ∪  P+. We now define a branching rule, 

called (AC 1), that uses the observation that for each p ∈  P−, and an optimal partition (A 

∪  R)P, either p ∈  A or p ∈  R.  (cf. branching rule (VC 7) in Section 4.3). 

(AC 1) The Min-Element-In-A-or-R Branching Rule: Let node s in the search 

tree be labeled by instance (N, c) for Annotated Coherence, with N  = (P, C), P = P’ ∪  A’ 

∪  R’, and P = P− ∪  P+. Further, let p ∈  P’ such that p ∈  P−. Then we create two children 

of s in the search tree, called s1 and s2, and label s1 by (N1, c1) and label s2 by (N2, c2). 

Here N1 = (P1, C1) with P1’ = P’\{p}, A1’ = A’ ∪  {p}, R1’ = R’, c1 = c, and N2 = (P2, C2) 

with P2’ = P’\{p}, A2’ = A’, R2’ = R’ ∪  {p}, c2 = c. 

Proof: We need to show that (N, c) is a yes-instance for Annotated Coherence if 

and only if and only if (N1, c1) or (N2, c2) is a yes-instance for Annotated Coherence.  (⇒) 

Let (N, c) be a yes-instance for Annotated Coherence. Then there exists a partition (A ∪  

R)P, with A’ ⊆  A and R’ ⊆  R such that CohN(A, R) ≥ c.  We distinguish two cases: (1) Let 

p ∈  A. Then (N1, c1) is a yes-instance for Annotated Coherence. (2) Let p ∈  R. Then (N2, 

c2) is a yes-instance for Annotated Coherence. (⇐ ) Let (N1, c1) or (N2, c2) be a yes-

instance for Annotated Coherence. We distinguish two cases: (1) Let (N1, c1) be a yes-

instance for Annotated Coherence. Then there exists a partition (A1 ∪  R1)P1, with A1’ ⊆  

A1 and R1’ ⊆  R1 such that CohN1(A1, R1) ≥ c1. But then also CohN(A1, R1) ≥ c1 = c. We 

conclude (N, c) is a yes-instance for Annotated Coherence. (2) Let (N2, c2) be a yes-

instance for Annotated Coherence. Then there exists a partition (A2 ∪  R2)P2, with A2’ ⊆  

                                                 
55 In the design of fpt-algorithms it is often practical to work with annotated versions of a 
problem (see e.g. Alber, et al., 2001, Stege and van Rooij, 2003).  



 109

A2 and R2’ ⊆  R2 such that CohN2(A2, R2) ≥ c2. But then also CohN(A2, R2) ≥ c2 = c. We 

conclude (N, c) is a yes-instance for Annotated Coherence. ■ 

The branching rule (AC 1) can be used to construct a search tree as follows. We 

take as input an instance (N, c) for Annotated Coherence and apply (AC 1) to (N, c) until 

it cannot be applied anymore (in which case we know that P = P+). When branching 

terminates, each leaf si of the search tree T is labeled by an instance (Ni, ci) with all 

elements in Pi’ connected to positive constraints only. Further, the application of (AC 1) 

results in a search tree T with fan(T) = 2, and the depth(T ) ≤ |P−|, and thus, the size of T 

is O(2|P−|).  

Note that we have not yet solved Annotated Coherence: all we did so far is create 

a search tree with 2|P−| leaves such that each leaf is labeled by a special case of Annotated 

Coherence in which all “unassigned” elements in P are incident to positive constraints 

only. We call this special case Pos-Annotated Coherence. 

Pos-Annotated Coherence 

Input: A network N = (P, C), with (P’ ∪  A’ ∪  R’)P and (C+ ∪  C−)C. For every (p, 

q) ∈  C−, p, q ∈  A’ ∪  R’. For each (p, q) ∈  C there is an associated positive integer 

weight w(p, q). A positive integer c. 

Question: Does there exist a partition of P’ into A and R such that A’ ⊆  A, R’ ⊆  R, 

and CohN(A, R) ≥ c?  

Next we show that Pos-Annotated Coherence is solvable in polynomial time O(|P+|3) by 

reducing it to the known polynomial-time problem Min-Cut. 

5.7.3. Pos-Annotated Coherence is in P56  

Here we show a polynomial-time reduction from Pos-Annotated Coherence to a problem 

called Min-Cut (cf. Max-Cut discussed in Section 5.3). The problem Min-Cut takes as 

input an edge-weighted graph G = (V, E), with two special vertices s, t ∈  V, where s is 

called source and t is called sink. In its optimization version, the goal is to partition the 

vertex set V into sets A and R, such s ∈  A, t ∈  R, and the sum of the weights on edges that 
                                                 
56 I thank Allan Scott and Parissa Agah for useful discussions on the problem Pos-
Annotated Coherence. I am indebted to Allan Scott for the idea that Pos-Annotated 
Coherence reduces to Min-Cut.   



 110

have one endpoint in A and one endpoint in R is minimum. The decision version of this 

problem is as follows: 

Min-Cut (decision version) 

Input: An edge weighted graph G = (V, E). A source s ∈  V and a sink t ∈  V. For 

each edge (u,v) ∈  E there is an associated positive integer weight w(u, v). A 

positive integer k.   

Question: Does there exist a partition of V into disjoint sets A and R such that, s ∈  

A, t ∈  R, and WG(A, R) = ∑
∈ ),(Cut )(

),(w
RAu,v G

vu  ≤ k? Here CutG(R, A)= {(u, v) ∈  E : u ∈  

A and v ∈  R}. 

It is known that Min-Cut is solvable in time O(|V|3) (see e.g. Cormen, Leiserson, & 

Rivest, 1990).57   

The reduction from Pos-Annotated Coherence to Min-Cut involves a couple of 

steps. I first present two reduction rules, (AC 2) and (AC 3); see Figure 5.3 for an 

illustration. After having applied these reduction rules to an instance (N, c) for Pos-

Annotated Coherence we know that for the reduced instance (Ni, ci) there only exist one 

element s ∈  Ai’ and one element t ∈  Ri’. I then present a reduction from reduced 

instances for Pos-Annotated Coherence to Min-Cut. 

The reduction rule (AC 2) for Annotated Coherence is based on the observation 

that for constraints with both endpoints in A’ ∪  R’ we can simply check whether or not 

they are satisfied by the assignment A’ ∪  R’, delete them from the network, and update c 

accordingly. Namely, for those constraints it is predetermined whether or not they will be 

satisfied in the final partition.  

 

                                                 
57 I thank Minko Markov for bringing to my attention the classic result that Min-Cut is 
equivalent to a problem called Max-Flow. Algorithms for Min-Cut/Max-Flow can be 
found in many introductory textbooks on algorithms and/or graph theory (e.g. Cormen, 
Leiserson, & Rivest, 1990; Gross & Yellen, 1990; Gould, 1988; Foulds, 1992).  



 111

 

 
(AC 2) 

 
(AC 3) 

 
 
Figure 5.3. Illustration of reduction rules (AC 2) and (AC 3). 
Here the rules (AC 2) and (AC 3) are applied to an instance for a Pos-Annotated 
Coherence. Positive constraints are indicated by solid lines and negative constraints by 
dotted lines. The black dots represent elements in A’, the white dots represent elements in 
R’, and the gray dots represent elements in P’. Application of (AC 2) to the instance 
results in the removal of all constraints with both endpoints in A’ ∪  R’, and subsequent 
application of (AC 3) results in merging all elements in A’ into one element s, and in 
merging all elements in R’ into one element t.  The bold lines in the bottom figure 
indicate that the weights of those constraints have been changed in the merge procedure 
of (AC 3). Note that the instance at the bottom is an instance for the Min-Cut problem. 



 112

 

 (AC 2) Delete Pre-Determined Constraints Rule: Let (N, c) be an instance for 

Annotated Coherence. If there exists a constraint (p, q) ∈  A’ ∪  R’, then let P* = P, and 

C* = C\(p, q) and further, 

(1) if (p, q) ∈  C+ and p, q ∈ A’ or p, q ∈ R’ then c* =  c − w(p, q), 

(2) if (p, q) ∈  C− and p, q ∈ A’ or p, q ∈ R’ then c* = c, 

(3) if (p, q) ∈  C+ and (p ∈ A’ and q ∈ R’) or (p ∈ R’ and q ∈ A’) then c* = c, 

(4) if (p, q) ∈  C− and (p ∈ A’ and q ∈ R’) or (p ∈ R’ and q ∈ A’) then c* = c − w(p, q). 

Finally, let the resulting instance, (N*, c*), be the new instance for Annotated Coherence. 

Proof: Annotated Coherence is defined such that for any candidate solution (A ∪  R)P, 

A’ ⊆  A and R’ ⊆  R. Thus the weight of an edge (p, q) ∈  A’ ∪  R’ will count towards 

coherence if and only if condition (1) or condition (4) is met. ■ 

The second reduction rule, (AC 3), is applied only if rule (AC 2) does not apply. 

The rule (AC 3) is based on the observation that for all elements in A’ we can merge them 

into one single element s without affecting the amount of coherence in the network; 

similarly, for all elements in R’ we can merge them into one single element t.  

(AC 3) Merge Pre-Assigned Elements Rule: Let (N, c) be an instance for 

Annotated Coherence such that (AC 2) does not apply. If there exist two elements p and q 

such that p, q ∈  A’ or p, q ∈  R’, then let P* = P\{q}, C* = (C\RN(q)) ∪  Cqp where Cqp = 

{(p, r) : (q, r) ∈  RN(q)}, and c* = c. Further, we update the weight function w*(.) for each 

constraint (x, y) ∈  C*  as follows: 

(1) if (x, y) ∈  C* \Cqp then w*(x, y) = w(x, x), 

(2) if (x, y) ∈  Cqp and (x, y) ∉  RN(q) then w*(x, y) = w(x, y)  

(3) if (x, y) ∈  Cqp and (q, y) ∈  RN(q) then w*(x, y) = w(x, y) + w(q, y). 

(4) if (x, y) ∈  Cqp and (x, q) ∈  RN(q) then w*(x, y) = w(x, y) + w(x, q). 

Finally, let the resulting instance, (N*, c*), be the new instance for Annotated Coherence. 

Proof: Since (AC 2) does not apply, we know that for any two elements p, q ∈  A’ 

∪  R’, (p, q) ∉  C. Hence, deleting q from P does not cause deletion of a constraint 

between p and q. By (1) re-connecting all constraints that previously connected P’ to q 

such that they now connect to p instead of q, and (2) setting the weight for each constraint 



 113

(p, r) ∈  C* as w*(p, r)  = w(p, r) + w(q, r) (here we define w(q, r) = 0, if (q, r) ∉  C), we 

ensure that (N, c) is a yes-instance for Annotated Coherence if and only if (N*, c*) is a 

yes-instance for Annotated Coherence. ■ 

We say an instance (N, c) for Annotated Coherence is reduced if and only if (AC 

2) and (AC 3) do not apply (N, c). The following lemma presents a polynomial-time 

reduction from reduced instances for Pos-Annotated Coherence to Min-Cut. 

Lemma 5.11. Let (N, c), with N = (P, C), be a reduced instance for Pos-

Annotated Coherence, with A’ = {s} and R’ = {t}. Let (G, k), with G = (V, E) such that V 

= P and E = C, for every (u, v) ∈  E, wG(u, v) = wN(u, v) and ∑ ∈
−=

Cqp
cqpwk

),(
),( . 

Then (N, c) is a yes-instance for Pos-Annotated Coherence if and only if (G, k) is a yes-

instance for Min-Cut. 

Proof: Since (N, c) is a reduced instance for Pos-Annotated Coherence we know 

C = C+ = E. Let (A ∪  R)P = (A ∪  R)V be any partition. Then for every (p, q) ∈  C = E, (p, 

q) ∈  CutG(A, R) if and only if (p, q) ∉  SN(A, R). In other words, C  = CutG(A, R) ∪  SN(A, 

R). Thus we have CohN(A, R) = ∑ ∈ Cqp
qpw

),(
),( − WG(A, R). We conclude that (N, c) is a 

yes-instance for Pos-Annotated Coherence if and only if (G, k) is a yes-instance for Min-

Cut. ■ 

5.7.4. An fpt-algorithm for |C−|-Annotated Coherence 

Given the observations made in Sections 5.7.2, and 5.7.3, we are now in a position to 

construct an fpt-algorithm for |C−|-Annotated Coherence. The algorithm works as 

follows: It takes as input an instance (N, c) for Annotated Coherence, and recursively 

applies branching rule (AC 1) until no longer possible. Then each leaf i, with i = 1, 2, …, 

2|P−|, in the resulting search tree is labeled by an instance (Ni, ci) for Pos-Annotated 

Coherence. Subsequently, the algorithm reduces each (Ni, ci) using rules (AC 2) and (AC 

3). Finally, it solves the Min-Cut problem for each reduced instance (Ni’, ci’). 

 Since the search tree size is bounded by O(2|P−|), the reduction rules (AC 2) and 

(AC 3) can be applied in time O(|P|2), and Min-Cut can be solved in time O(|P|3), we 

conclude that the whole algorithm runs in time O(2|P−| (|P|2 
 + |P|3)) which is O(2|P−| |P|3). 

Because this running time is fpt-time for parameter |P−| we conclude Theorem 5.3. 



 114

 Theorem 5.3. |P−|-Annotated Coherence is in FPT. 

Since |P−| ≤ |C−| we know that O(2|P−| |P|3) is O(2|C−| |P|3),  

 Corollary 5.12. |C−|-Annotated Coherence is in FPT. 

Since, Coherence is a special case of Annotated Coherence, we also conclude: 

Corollary 5.13. |P−|-Coherence is in FPT. 

 Corollary 5.14. |C−|-Coherence is in FPT 

Note that Theorem 5.3 presents a stronger result than Corollary 5.12. It shows that 

although the number of negative constraints is sufficient for capturing the non-

polynomial time complexity inherent in Annotated Coherence, it is not necessary—i.e., 

the number of elements that are incident to at least one negative constraint suffices as 

well.  

 

5.8. Conclusion 

In this chapter I have illustrated techniques for complexity analysis by considering the 

problem Coherence as defined by Thagard (2000) and Thagard and Verbeurgt (1998). 

Section 5.3 illustrated the use of polynomial-time reduction to prove that Coherence is 

NP-hard. Section 5.4 discussed and illustrated the conditions under which this NP-

hardness result generalizes to other coherence problems.  Sections 5.5 and 5.6 presented 

two different ways to use reduction and kernelization rules to derive a problem kernel for 

c-Coherence. Finally, Section 5.7 illustrated how a branching rule and reduction rules can 

be combined to construct a bounded search tree for |C−|-Coherence.  

 Besides illustrating techniques, the analyses have lead to some interesting 

observations about Coherence. Among other things, we have found that Coherence is 

computationally easy (1) if it is possible to satisfy all constraints, (2) if the amount of 

coherence that one is aiming for is not too high, and (3) if the number of negative 

constraints in the network is not too large. Further, we observed that result (2) also holds 

for the more general problem Double-Constraint Coherence, and that result (3) also holds 

for the more general problem Annotated Coherence (including also Foundational 

Coherence as a special case).   

Many open questions remain. As I noted in Section 5.4, it remains to be shown 

whether or not Single-Element Discriminating Coherence and Single-Element 



 115

Foundational Coherence are NP-hard. Also, it is of interest to study the classical 

complexity of other special cases and variants of Coherence than the ones considered in 

Sections 5.4.1 and 5.4.3. In this chapter, I have presented several fpt-algorithms for 

Coherence: two for parameter c, one for parameter |P−|, and one for parameter |C−|. Future 

research may investigate whether it is possible to obtain even faster fpt-algorithms for 

these parameterizations. Further, Coherence and its generalizations have many implicit 

parameters that I have not considered. For some such parameters it is easily determined 

whether or not they are sufficient to capture the non-polynomial time complexity in 

Coherence (e.g., the parameter |D| in Discriminating Coherence and Foundational 

Coherence) but for others this is far from trivial (e.g., the parameter |H| in Discriminating 

Coherence and Foundational Coherence).58 Lastly, since one ideally aims for low 

incoherence (i.e., a small number of unsatisfied constraints), a parameter that may be of 

particular interest is the relational parameter ι  =∑ ∈
−

Cqp
cqpw

),(
),( . Is ι -Coherence in 

FPT? As explained in Section 4.4.2, the fact that c-Coherence ∈  FPT does not answer 

this question.  

 

                                                 
58 Note, however, that if elements in D are connected to elements in H by positive 
constraints only (as generally seems to be the case in applications discussed by Thagard 
(2000), then |H|-Foundational Coherence is in FPT by Theorem 5.3 (page 114), since 
then D ⊆  P+.  



 116

Chapter 6. Subset Choice59 

 

In this chapter we consider the problem Subset Choice, a generalization of a model by 

Fishburn and LaValle (1996). I start by describing the general problem Subset Choice as 

defined by van Rooij, Stege and Kadlec (2003). Then I discuss applications of Subset 

Choice in human decision-making. The main part of this chapter is again devoted to 

classical and parameterized complexity analyses of the problem. As before, in 

interpreting the results we assume P ≠ NP and FPT ≠ W[1]. I will close with a brief 

discussion and suggestions for future research.  

 

6.1. Subset Choice as Hypergraph Problem 

Subset choice denotes the situation in which a decision maker is presented with a set of 

choice alternatives and is asked to choose a subset from the available set. Here we 

consider subset choice problems in which the goal is to choose a subset with satisfactory 

(subjective) value. Fishburn and LaValle (1996) presented a model of the value of sets 

(and subsets) using weighted graphs. In the following, I present a generalization of their 

model using weighted hypergraphs (see also van Rooij et al., 2003). 

A hypergraph is a generalization of the concept of a graph. In a graph G = (V, E), 

the set E consists of unordered pairs of distinct vertices, i.e., E ⊆  V × V. In a hypergraph 

H = (V, E), the set E consists of unordered h-tuples of distinct vertices, 2 ≤ h ≤ |V| (i.e., E 

⊆  U
||2 Vh

hV
≤≤

, where Vh denotes the h-fold product of V). In other words, a graph is a special 

type of hypergraph—viz., one in which E contains only 2-tuples of vertices. In a 

hypergaph, we call an element in E a hyperedge. 

 In the context of Subset Choice, every vertex v ∈  V represents a choice 

alternative, and a hyperedge (v1, v2, ..., vh) ∈  E, 2 ≤ h ≤ |V|, represents the presence of an 

h-way interaction between choice alternatives v1, v2, ..., vh. Each vertex v ∈  V has an 

associated vertex weight wV(v), and each hyperedge e = (v1, v2, ..., vh), e ∈  E, has 

associated hyperedge weight wE(e). For simplicity, we assume that wV(v) ∈  , and wE(e) 

                                                 
59 Parts of this chapter also appear in a manuscript submitted for publication by I. van 
Rooij, U. Stege and H. Kadlec (2003), entitled Sources of Complexity in Subset Choice. 



 117

∈  \{0} (here denotes the set of integers, and  \{0} denotes the set of non-zero 

integers).60 A vertex weight wV(v) represents the value of choice alternative v when 

evaluated in isolation. A hyperedge weight wE(e), with e = (v1, v2, ..., vh), represents the 

added value of the combination of vertices v1, v2, ..., vh over and above the value of the 

singular elements v1, v2, ..., and vh and over and above the value of all hyperedges that are 

combinations of at most h – 1 vertices in {v1, v2, ..., vh}.   

We assume that a decision-maker, when presented with a set of choice 

alternatives V, embodies a (latent) value-structure that can be modeled by a weighted 

hypergraph H = (V, E). The value associated with choosing subset V’ ⊆  V for a value-

structure H is then given by: 

valueH(V’) =  ∑∑
∈∈

+
)'(E

E
'

V )(w)(w
VeVv H

ev ,   (1) 

where EH(V’) = {(v1, v2, ..., vh) ∈  E | v1, v2, ..., vh ∈  V’}.  

Having introduced the necessary terminology, we can now define the general 

Subset Choice problem: 

Subset Choice  

Input: A weighted hypergraph H = (V, E), E ⊆  U
||2 Vh

hV
≤≤

. For every v ∈  V there is a 

weight wV(v) ∈   and for every e ∈  E there is a weight wE(e) ∈   \{0}. A positive 

integer p.  

Question: Does there exist a subset V’ ⊆  V such that valueH(V’) ≥ p?  

6.1.1. Notation and Terminology  

We define notation and terminology specifically for hypergraphs: We say a vertex v ∈  V 

is incident to hyperedge e = (v1, v2, ..., vh) and, conversely, e is incident to v, if e ∈  E and 

v ∈  {v1, v2, ..., vh}. The degree of a vertex v ∈  V is the total number of hyperedges in H 

that are incident to v, denoted degH(v). The span of an hyperedge e = (v1, v2, ..., vh) is 

denoted by span(e) = h. Two vertices u, v ∈  V are neighbors in H if there exists an 

hyperedge (v1, v2, ..., vh) ∈  E  with u, v ∈  {v1, v2, ..., vh}. The (open) neighborhood NH(v) 
                                                 
60 All results reported in this chapter generalize straightforwardly to value-structures with 
any values of fixed precision, simply by scaling the weights and results by the precision 
factor. 



 118

is the set of neighbors of v in H, and the closed neighborhood is denoted NH[v] =  NH(v) 

∪  {v}. Note that in graphs we have degG(v) = |NG(v)| for every v ∈  V, but in hypergraphs 

degH(v) may be larger or smaller than |NH(v)| for every v ∈  V. Further note that for any 

specific hypergraph H = (V, E) there exists a positive integer ε ≤ |V| such that spanH(e) ≤ 

ε.  

In our analyses we will sometimes consider the special case that ε  = 2 (i.e., the 

special case that the hypergraph is a graph; cf. Fishburn & LaValle, 1996). Further, we 

will consider value-structures that can be represented by hypergraphs with special 

weighting functions. We define the following classes for hypergraphs. Let H = (V, E) be a 

weighted hypergraph. Then we say: (1) H is a unit-weighted hypergraph if wV(v) ∈  {−1, 

+1} for all v ∈  V and wE(e) ∈  {−1, +1} for all e ∈  E; (2) H is an edge-weighted 

hypergraph if wV(v) ∈  {−1, +1} for all v ∈  V and wE(e) ∈   \{0} for all e ∈  E; (3) H is a 

vertex-weighted hypergraph if wV(v) ∈    and wE(e) ∈  {−1, +1} for all e ∈  E; (4) H is a 

conflict hypergraph if wV(v) ≥ 0 for all v ∈  V and wE(e) ≤ −1 for all e ∈  E; (5) H is a 

surplus hypergraph if wV(v) ≤ 0 for all v ∈  V and wE(e) ≥ +1 for all e ∈  E. Intersections 

of these classes define further special cases considered in our analyses. Table 6.1 gives an 

overview of the special value-structures that we will consider.  

 

Table 6.1. Overview of special value-structures. 

value-structure  wV(v) wE(e) span(e) 

unit-weighted conflict graph (UCG) +1 −1 2 

unit-weighted surplus graph (USG) −1 +1 2 

edge-weighted conflict graph (ECG) +1 ≤ −1 2 

vertex-weighted conflict graph (VCG) ≥ 1 −1 2 

conflict graph (CG) ≥ 1 ≤ −1 2 

unit-weighted conflict hypergraph (UCH) +1 −1 ≤ |V| 

conflict hypergraph (CH) ≥ 1 ≤ −1 ≤ |V| 

surplus hypergraph (CH) ≤ −1 ≥ 1 ≤ |V| 

Note: wV(v) denotes the weight of vertices, wE(e) denotes the weight on hyperedges, and 
span(e) denotes the span of hyperedges in the value-structure. 
 



 119

In our analyses we also consider several explicit, implicit and relational parameters of the 

input. Table 6.2 presents an overview of all parameters considered in this chapter. 

 

Table 6.2. Overview of input parameters for Subset Choice. 

Parameter Definition 

ε For all e ∈  E, spanH(e) ≤ ε 

ΩV For all v ∈  V, wV(v) ≤ ΩV 

ωV For all v ∈  V, wV(v) ≥ −ωV 

ΩE For all e ∈  E, wE(e) ≤ ΩE 

ωE For all e ∈  E, wE(e) ≤ −ωE 

∆ For all v ∈  V, degH(v) ≤ ∆ 

θ For all v ∈  V, NH(v) ≤ θ 

p A positive integer  

q q = p − valueH(V)  

 

6.2. Subset Choice as Cognitive Theory 

The problem Subset Choice arises in a many different settings (see e.g. Bossert, 1989, 

Farquhar & Rao, 1976; Fisburn & LaValle, 1993, 1996; Kannai & Peleg, 1984), 

including medical decision-making, management, voting and consumer choice. Below I 

will briefly sketch applications in each domain. See also Table 1 in Farquhar and Rao 

(1976) for an overview of many more applications. 

Medical Decision-making: The task of a physician to prescribe a combination of 

medications to a patient with multiple ailments can be modeled as follows. Let each 

vertex v ∈  V represent a medication, and its vertex weight wV(v) represent the benefits for 

the patient of taking medication v when considered in isolation. Further, let each 

hyperedge e = (v1, v2, …, vh), e ∈  E and its weight wE(e) model the beneficial or 

detrimental effects of taking medications v1, v2, …, vh in combination. The physician’s 

task may then be to prescribe a subset of medications such that the overall benefit to the 

patient is satisfactory. Similarly, a physician’s choice of medical tests to diagnose a 

patient can be modeled as a Subset Choice problem (see also Farquhar & Rao, 1976).    



 120

Management: The task of forming a committee (or a work team) can be modeled 

as follows. Let each vertex v ∈  V represent a candidate for the committee, and its vertex 

weight wV(v) represents the (judged) individual contribution of candidate v to the group 

(e.g., his/her individual skills and abilities). Further, each hyperedge e = (v1, v2, …, vh), e 

∈  E, models an interdependency between candidates v1, v2, …, vh, with a positive weight 

wE(e) meaning that combining the candidates v1, v2, …, vh leads to increased productivity, 

and a negative weight wE(e) meaning that combining v1, v2, …, vh leads to reduced 

productivity (cf. Fishburn & LaValle, 1996). The goal is to choose a set of candidates 

such that the overall level of productivity is satisfactory. Similarly, the problem of 

selecting a set of job applicants can be modeled as a Subset Choice problem (see also 

Figure 6.1 for an illustration).    

Voting: The task of electing a set of political representatives can be modeled 

analogously to the task of forming a committee and/or selecting job applicants described 

above (cf. Haynes, Hedetniemi, & Slater, 1998). Also, voting in an approval voting 

system constitutes a subset choice problem (e.g. Falmagne & Regenwetter, 1996; 

Regenwetter, Marley, & Joe, 1998).61  

Consumer Choice: Many consumer choice problems are subset choice problems. 

Consider, for example, a consumer that wants to buy a pizza and must decide on a set of 

pizza toppings (or, any other menu selection task; see also Farquhar & Rao, 1976). Then 

each vertex weight wV(v) represents the individual taste value of topping v. Further, for 

each hyperedge e = (v1, v2, …, vh), a positive weight wE(e) means that toppings v1, v2, …, 

vh compliment each other, while a negative weight wE(e) means that toppings v1, v2, …, 

vh clash. The goal of the consumer is to choose a set of toppings of satisfactory tastiness. 

Similarly, when purchasing a computer, the task of choosing a subset of satisfactory 

value from among all computer options (monitor, software, printer, scanner, DVD, CD 

burner, etc.) is a subset choice problem (see also Fishburn & LaValle, 1996).  

                                                 
61 In an approval voting system, the voter is to indicate for each political candidate 
whether or not s/he approves of the candidate, and the candidate with the most approval 
votes wins.   



 121

 

wV(a) = 20.2 
wV(b) = 22.5 
wV(c) = 19.6 
wV(d) = 18.4 
wV(e) = 16.3 

wE(a, b) = −3.8 
wE(a, c) = −2.4 
wE(a, e) = −1.2 
wE(b, c) = −1.2 
wE(b, d) = −4.1 

wE(b, e) = −0.8 
wE(c, d) = −0.9 
wE(d, e) = −3.8 
wE(a, b, c) = 0.8 
wE(b, d, e) = 0.7 

 
Figure 6.1. Example of a Subset Choice problem. 
A university department has available a set of 3 professor positions, and a search 
committee has to choose from among 5 applicants, called a, b, c, d, and e, to fill the 
positions. The example assumes that applicants are being evaluated solely in terms of the 
new contributions that they bring to a department. The figure on the left gives a 
schematic representation of the applicants’ fields of specialization and their overlap. The 
hypergraph H (on the right) and the vertex and hyperedge weights (on the bottom) model 
the situation as follows. Each vertex p in H represents an applicant, and each hyperedge 
(p1, p2, …, ph) in H represents an overlap between the fields of applicants p1, p2, …, ph. 
Each applicant p has an associated value, denoted wV(p), representing the judged 
contribution of person p to the department when evaluated independently of the other 
applicants. If there is overlap between the fields of two applicants p and q, then hiring 
both p and q will contribute less to the department than the sum of their respective 
contributions (viz., then a part of what p contributes is also contributed by q, and vice 
versa). This is represented by a negative weight wE(p, q). If there is an overlap of three 
fields (e.g., in this example, fields of a, b and c overlap), we define a positive weight for 
their combination. This weight corrects for the over-counting due to the lower order 
weights. For example, weight wE(a, b, c) is set so as to compensate in the computation of 
valueH({a, b, c}) for the fact that in the sum wV(a) + wV(b) + wV(c) + wE(a, b) + wE(a, c) 
+ wE(b, c) the overlap between a, b and c has been removed once to often. 
 

I close this section with a comment on the relationship between Subset Choice 

and Coherence. Note that Coherence can be seen as a variant of Subset Choice; viz., one 

in which the value function depends on both the set of chosen alternatives (the set A in 

Coherence) and the set of rejected alternatives (the set R). Further, like Subset Choice, 

a 

b 
c 

d e 

e

d c

b

a

 

 



 122

Coherence can be naturally extended to networks that are hypergraphs (see e.g. Schoch, 

2000). Due to the similarities between the two problems, their respective areas of 

application may overlap and they may then serve as competing models. The relationship 

between Coherence and Subset Choice will be further illustrated in a reduction from 

Coherence to Subset Choice presented in Section 6.3 (Lemma 6.3, page 126). 

 

6.3. Subset Choice is NP-hard 

In this section we prove the following theorem.  

Theorem 6.1. Subset Choice is NP-hard. 

For illustrative purposes, I present three different proofs of Theorem 6.1. The first of 

these proofs, in Lemma 6.1, is an adaptation of the reduction from Independent Set to 

Profit Independence as presented in Section 4.6 (page 77). The second, in Lemma 6.2, is 

due to Fishburn and LaValle (1996) and also involves a polynomial-time reduction from 

the problem Independent Set. The third proof involves a reduction from Coherence 

(Lemma 6.3). Later in this chapter, even a fourth proof of Theorem 6.1 will appear (in 

Lemma 6.5, page 138). This latter proof involves yet another reduction from Independent 

Set. 

I present multiple proofs of Theorem 6.1 for several reasons. First, I wish to 

illustrate that many different polynomial-time reductions are possible to prove that a 

problem is NP-hard. This is not surprising, of course, since all NP-hard problems are all 

directly or indirectly reducible to each other, and thus we know there exist at least as 

many reductions between any two NP-hard problems as there are NP-hard problems. 

What Lemma 6.1 and 6.2 (see also Lemma 6.5 in Section 6.5.2) illustrate, however, is 

that even multiple more-or-less direct reductions from one problem to another may exist. 

Second, the first proof (unlike the proof due to Fishburn & LaValle, 1996) has as a 

corollary that Subset Choice is NP-hard even in the very restricted case when the value-

structure is a unit-weighted conflict graph. This result serves as the basis for the 

parameterized complexity analyses in Sections 6.4 and 6.5. Third, in the present context 

it is useful to illustrate the close relationship between Coherence and Subset Choice. This 

also sets up the possibility for generalizing certain results for Subset Choice to 

Coherence.  



 123

We start with the first reduction from Independent Set to Subset Choice (cf. 

Lemma 4.3, page  77).  

Lemma 6.1. Let the graph G = (V, E) and the positive integer k form an instance 

for Independent Set. Then we define an instance for Subset Choice, consisting of a 

weighted hypergraph G* with span ε =2 (i.e., G* is a graph) and positive integer p, as 

follows. Let G* = (V*, E*) with V* = V and E* = E. Further, for every v ∈  V* let wV(v) = 

+1 and for every e ∈  E* let wE(e) = –1. Let p = k. Then G and k form a yes-instance for 

Independent Set if and only if G* and p form a yes-instance for Subset Choice.  

Proof:  (⇒) Let (G, k) be a yes-instance for Independent Set. Then there exists an 

independent set V’ ⊆  V for G with |V’| ≥ k. This means that EG(V’) = ∅  and therefore 

EG*(V’) = ∅ . Thus valueG*(V’) = ∑∑
∈∈

+
)'(E

E
'

V
*

)(w)(w
VeVv G

ev  = |V’| – |EG*(V’)| = |V’| ≥  k = p. 

Therefore, (G*, p) is a yes-instance of Subset Choice. 

 (⇐ ) Let (G*, p) be a yes-instance for Subset Choice. Then there exists a subset 

V’ ⊆  V* with valueG*(V’) ≥ p. We distinguish two cases: (1) If EG*(V’) = ∅  then EG(V’) = 

∅  and therefore V’ is an independent set for G, with |V’| ≥ p = k. We conclude that (G, k) 

is a yes-instance of Independent Set. (2) If EG*(V’) ≠ ∅  then EG(V’) ≠ ∅ . We transform 

V’ into an independent set V” for G using the following algorithm: 

1. V” ← V’ 

2. while EG(V”) ≠ ∅  do 

3. pick an edge (u,v) ∈  EG(V”) 

4. V” ← V”\{v} 

5. end while 

6. return V” 

The algorithm considers each edge in G at most once and thus runs in time O(|E|) 

or O(|V|2). Note that every call of line 4 results in the removal of at least one edge from 

EG(V”). Hence, valueG*(V”) ≥ valueG*(V’) ≥ p. Furthermore, when the algorithm halts 

then EG(V”) = ∅  and thus V” is an independent set of size at least p = k for G.  We 

conclude that (G, k) is a yes-instance for Independent Set. ■ 



 124

Note that the reduction in lemma 6.1 is a polynomial-time reduction. Namely, we 

can copy every element in V and E to V* and E* respectively in time O(|V|2), we can set p 

= k in time O(1), and we can assign each vertex in V the weight ‘1’ and assign each edge 

in E the weight ‘−1’ in time O(|V|2). Further, the algorithm that, given a subset with value 

at least p, computes an independent set of size at least k = p, runs in time O(|V|2). Since 

Independent Set is known to be NP-complete (e.g. Garey & Johnson, 1979), Lemma 6.1 

proves Theorem 6.1. 

Observe that, in the proof of Theorem 6.1, G* is always a unit-weighted conflict 

graph (i.e., wV(v) = 1 for all v ∈  V and wE(e) = −1 for all e ∈  E). Thus the proof shows 

that Subset Choice is NP-hard even in the restricted case where the value-structure can be 

represented by a unit-weighted conflict graph. 62 I will refer to this special case as Unit-

weighted Conflict Graph (UCG) Subset Choice.   

Corollary 6.1. UCG Subset Choice is NP-hard. 

I remark that, since for any unit-weighted conflict graph G = (V, E) and any 

subset V’ ⊆  V, valueG(V’) = ∑∑
∈∈

+
)'(E

E
'

V )(w)(w
VeVv G

ev  = |V’| – |EG(V’)| = profitPI,G(V’), the 

problem UCG Subset Choice is equivalent to the problem Profit Independence introduced 

in Chapter 4 (page 68).  

Lemma 6.2 presents the reduction from Independent Set to Subset Choice 

proposed by Fishburn and LaValle (1996, p. 189). I note that Fishburn and LaValle did 

not present a proof of their reduction. It turns out that the proof of Lemma 6.1 also works 

identically for Lemma 6.2. It is possible, however, to prove the “only if” direction in 

                                                 
62 Note that any value-structure G = (V, E), E ⊆  V2, with integer weight wV(v) = α,  for 
constant α ≥ 1, and wE(e) = − wV(v), for all v ∈  V and all e ∈  E, can be represented by a 
unit-weighted conflict graph G* = (V*, E*), with w*V(v) = 1 for all v ∈  V and w*E(e) = 
−1 for all e ∈  E. In general, any value structure H = (V, E) with wV(v) ∈   for all v ∈  V 
and wE(e) ∈   \{0} for all e ∈  E, can be modeled by a hypergraph H* = (V*, E*), with 
w*V(v) d

v)(w V=  for all v ∈  V* and w*E(e) = d
e)(w E  for all e ∈  E*, where d is a common 

divisor of all vertex and hyperedge weight values in H. There exist a subset V’ ⊆  V with 
valueH(V’) = p for H if and only if valueH*(V’) = d

p  for H*. 

 



 125

Lemma 6.2 with a simpler argument than the one used for Lemma 6.1. I will present this 

simpler argument in the proof below.  

Lemma 6.2. Let the graph G = (V, E) and the positive integer k form an instance 

for Independent Set. Then we define an instance for Subset Choice, consisting of a 

weighted hypergraph G* with span ε = 2 (i.e., G* is a graph) and positive integer p, as 

follows. Let G* = (V*, E*) with V* = V and E* = E. Further, for every v ∈  V* let wV(v) = 

+1 and for every e ∈  E* let wE(e) = –|V|2. Let p = k. Then G and k form a yes-instance for 

Independent Set if and only if G* and p form a yes-instance for Subset Choice. 

Proof:  (⇒) Identical to the proof of Lemma 6.1. (⇐ ) Let (G*, p) be a yes-

instance for Subset Choice. Then there exists a subset V’ ⊆  V* with valueG*(V’) ≥ p. We 

observe that the size of V’ is bounded by |V|. We show that EG*(V’) = ∅ . Assume that 

EG*(V’) ≠ ∅  then valueG*(V’) < 0.  Since p is a positive integer and valueG*(V’) ≥ p we 

reach a contradiction. We conclude that EG*(V’) = ∅ . Then EG(V’) = ∅  and therefore V’ 

is an independent set for G, with |V’| ≥ p = k. We conclude that (G, k) is a yes-instance 

for Independent Set. ■ 63 

The next lemma presents a reduction from Coherence to Subset Choice (Lemma 

6.3). The reduction in Lemma 6.3 is illustrated in Figure 6.2, and uses the strategy of 

local replacement (Garey & Johnson, 1979, cf. the reduction from Vertex Cover to 

Dominating Set presented in Chapter 3, page 37). The basic idea is as follows: Given an 

instance (N, c) for Coherence with network N = (P, C), we define a graph G = (V, E) with 

V ⊇  P and E ⊇  C. For each constraint (u, v) in N we define a special substructure in G on 

edge (u, v) ∈  E; this substructure is of one form for positive constraints and of another 

form for negative constraints. The transformation ensures that (N, c) is a yes-instance for 

Coherence if and only if (G, p), with p = c, is a yes-instance for Subset Choice. 

 

 
 
 
 
 
                                                 
63 Note that the proof of Lemma 6.2 also supports a reduction from G to G* in which all 
hyperedge weights in G* are set to −|V| instead of −|V|2. 



 126

 
Instance (N, c) 
for Coherence

Instance (G, p), p = c, 
for Subset Choice

 
 
Figure 6.2. Illustration of the reduction in Lemma 6.3.  
(Left) An instance (N, c) for Coherence. For simplicity, the example assumes that all 
constraints in N have weight ‘1’. Note that this special case of Coherence is also NP-hard 
(Corollary 5.3, page 84). The solid lines represent positive constraints in N, and the 
dotted lines represent negative constraints in N. (Right) The instance (G, p) for Subset 
Choice obtained on the transformation from (N, c) in Lemma 6.3. Here white and light 
gray vertices have weight ‘0’ and dark gray vertices have weight ‘+1’; solid edges have 
weight ‘+1’ and dotted edges have weight ‘−1’. Note that (N, c) is a yes-instance for 
Coherence if and only if (G, p) is a yes-instance for Subset Choice. 
 

Lemma 6.3. Let network N = (P, C), with weight function wC(.), and the positive 

integer c form an instance for Coherence. Then we define an instance for Subset Choice, 

consisting of a weighted graph G = (V, E) and positive integer p, as follows.  

(1) For each element v ∈  P there is a corresponding vertex v ∈  V. 

(2) For each positive constraint (u, v) ∈  C+, there is a corresponding edge (u, v) ∈  E. 

Further we create in G a vertex xuv, and we attach xuv to both u and v with the edges 

(xuv, u) and (xuv, v). Finally we set vertex weights wV(u) = wV(v) = 0, and wV(xuv) = 

wC(u, v), and we set edge weights wE(u, v) = wC(u, v), and wE(xuv, u) = wE(xuv, v) = 

−wC(u, v).  

(3) For each negative constraint (u, v) ∈  C−, there is a corresponding edge (u, v) ∈  E. 

Further we create in G two vertices xu and xv. We attach xu to u with edge (xu, u); we 

attach xv to v with edge (xv, v); and we attach xu and xv to each other with edge (xu, xv). 



 127

Finally we set vertex weights wV(u) = wV(v) = wV(xu) = wV(xv) = 0, and we set edge 

weights wE(u, v) =  wE(xu, xv) = − wC(u, v), and wE(xu, u) = wE(xv, v) = wC(u, v). 

(4) Finally, we set p = c.  

Then (N, c) is a yes-instance for Coherence if and only if (G, p) is a yes-instance for 

Subset Choice. 

Proof:  (⇒) Let (N, c) be a yes-instance for Coherence. Then there exists a 

partition (A ∪  R)P, with CohN(A, R) = ∑
∈ ),(S )(

C ),(w
RAu,v N

vu ≥ c. We consider the constraints in 

SN(A, R) one by one, and we build a set V’ ⊇  A, V’ ⊆  V, with valueG(V’) ≥ c. Let (u, v) ∈  

SN(A, R): (a) if u, v ∈  A, then let u, v ∈  V’; (b) if u, v ∈  R, then let xuv ∈  V’; (c) if u ∈  A 

and v ∈  R, then let u, xu ∈  V’; (d) if u ∈  R and v ∈  A, then let v, xv ∈  V’. Note that in case 

(a) (u, v) is a positive constraint (otherwise it would not be in SN(A, R)), and thus 

valueG({u, v}) =  wV(u) + wV(v) + wV(xuv) = wV(xuv) = wC(u, v); in case (b) (u, v) is a 

positive constraint, and thus valueG({xuv}) =  wC(u, v); in case (c) (u, v) is a negative 

constraint, and thus valueG({u, xu}) =  wC(u, v); and, in case (d) (u, v) is a negative 

constraint, and thus valueG({v, xv}) =  wC(u, v). We conclude that valueG(V’) =  CohN(A, 

R) ≥ c = p, and thus (G, p) is a yes-instance for Subset Choice. 

(⇐ ) Let (G, p) be a yes-instance for Subset Choice. Then there exists a subset V’ 

⊆  V with valueG(V’) ≥ p. Assume that the size of V’ maximum. We consider the elements 

in P, and we build a partition (A ∪  R)P as follows. Let v ∈  P. If v ∈  V’, then let v ∈  A 

otherwise let v ∈  R. We now consider each edge (u, v) ∈  C: (a) Let (u, v) ∈  C+. By the 

construction of G, the weight wC(u, v) counts towards valueG(V’) if and only if [u, v ∈  V’ 

and xuv ∉  V’] or [u, v ∉  V’ and xuv ∈  V’], and thus wC(u, v) counts towards CohN(A, R) if 

and only if [u, v ∈  V’ and xuv ∉  V’] or [u, v ∉  V’ and xuv ∈  V’]. (b) Let (u, v) ∈  C−. By the 

construction of G, the weight wC(u, v) counts towards valueG(V’) if and only if [u, xu ∈  V’ 

and v, xx ∉  V’] or [u, xu ∉  V’ and v, xv ∈  V’], and thus wC(u, v) counts towards CohN(A, R) 

if and only if [u, xu ∈  V’ and v, xx ∉  V’] or [u, xu ∉  V’ and v, xv ∈  V’]. We conclude that 

CohN(A, R) = valueG(V’) = p ≥ c, and thus (N, c) is a yes-instance for Coherence. ■  

 



 128

6.4. Subset Choice on Unit-weighted Conflict Graphs 

In the previous section we have seen that Subset Choice is NP-hard even for the special 

case where the value-structure can be modeled by a unit-weighted conflict graph, called 

UCG Subset Choice (Corollary 6.1). In this section we investigate the parameterized 

complexity of UCG Subset Choice for two different parameters. The first parameter is the 

natural parameter for UCG Subset Choice, the positive integer p. The second parameter is 

the relational parameter q, where q is defined as follows: Let (H, p), with H = (V, E), be 

an instance for Subset Choice; then q = p − valueH(V). As we can rewrite p = valueH(V) + 

q, the criterion q is naturally interpreted as the requirement that the value of the chosen 

subset V’ should exceed the value of V by amount q.   

 First, in Section 6.4.1, we will show that p-UCG Subset Choice is not in FPT 

(unless FPT = W[1]). In Section 6.4.2, I explain in more detail how the relational 

parameter q for Subset Choice relates to the natural parameter p, by introducing a 

problem called Subset Rejection. Then, in Section 6.4.3, we will show that q-UCG Subset 

Choice is in FPT.  

6.4.1. p-UCG Subset Choice is W[1]-hard 

The following theorem shows that p-UCG Subset Choice is not in FPT (unless FPT = 

W[1]). The proof involves a reduction from the known W[1]-complete problem, k-

Independent Set (Downey & Fellows, 1999). 

Theorem 6.2. p-UCG Subset Choice ∉  FPT (unless FPT = W[1]). 

Proof: Reconsider the proof of Lemma 6.1. Lemma 6.1 presents a polynomial-

time reduction in which we transform any instance (G, k) for Independent Set to and 

instance (G*, p) for Subset Choice, with G* a unit weighted conflict graph and p = k. In 

other words, Lemma 6.1 presents a parametric reduction from k-Independent Set to p-

UCG Subset Choice. Since, the problem k-Independent Set is known to be W[1]-

complete, we conclude that p-UCG Subset Choice is W[1]-hard. ■ 

Since UCG Subset Choice is a special case of Subset Choice we conclude:  

Corollary 6.2. p-Subset Choice ∉  FPT (unless FPT = W[1]). 



 129

Corollary 6.2 shows that the desire to obtain a satisfactorily large subset value (i.e., we 

want a value of at least p) is, in itself, not a crucial source of complexity in Subset 

Choice.  

6.4.2. Subset Rejection and Parameter q 

This section explains in more detail the relational parameterization of Subset Choice, 

when parameterized by q = p – valueH(V). To facilitate thinking in terms of the parameter 

q (instead of p) we define a new value function on subsets of vertices in a weighted 

hypergraph: Let H = (V, E) be a hypergraph and let V’ ⊆  V be a subset. Then the 

improvement in value of V\V’, relative to the value of V, is called rejection value of V’ 

and is defined as: 

rejectH(V’)  = valueH(V/V’) – valueH(V)  

= 












+ ∑∑

∈∈ )'\(E
E

'\
V )(w)(w

VVeVVv H

ev  – 







+ ∑∑

∈∈ )(E
EV )(w)(w

VeVv H

ev  

= 












+⋅− ∑∑

∈∈ )'(R
E

'
V )(w)(w1

VeVv H

ev  

where RH(V’) = {(v1, v2, ..., vh) ∈  E | v1 or v2 or ... or vh ∈  V’}.  

 Note that a vertex v has positive rejection-value if its weight plus the sum of the 

weights of its incident hyperedges is negative. In other words, a choice alternative has 

positive rejection-value if it strongly clashes with other choice alternatives in the set of 

available alternatives. More generally, a subset V’ ⊆  V has positive rejection-value if the 

sum of the values of its elements plus the sum of the weights of all hyperedges incident to 

a vertex v ∈  V is negative. Thus, removing a rejection set V’ with positive rejection-value 

from V entails the removal of negative value from H.  

We can now state a new problem, called Subset Rejection: 

Subset Rejection  

Input: A weighted hypergraph H = (V, E), E ⊆  U
||2 Vh

hV
≤≤

, for every v ∈  V a weight 

wV(v) ∈  , for every e ∈  E a weight wE(e) ∈   \{0}, and a positive integer q.  

Question: Does there exist a subset V’ ⊆  V such that rejectH(V’) ≥ q? 



 130

While the problem Subset Choice asks for the subset V’ that we want to choose, the 

problem Subset Rejection asks for the subset V’ that we want to reject (in the latter case 

V\V’ is the subset that we want to choose). Note that there exists a subset V’ ⊆  V with 

rejectH(V’) ≥ q = p − valueH(V) if and only if there exists a subset V* = V\V’ with 

valueH(V*) ≥ p = q + valueH(V). Thus, the natural parameterization of Subset Rejection 

(denoted q-Subset Rejection) is a relational parameterization for Subset Choice (denoted 

(p − valueH(V))-Subset Choice or, simply, q-Subset Choice). 

6.4.3. q-UCG Subset Choice is in FPT 

Above we have seen that q-Subset Choice is a relational parameterization for Subset 

Choice. In this section, we consider the parameterized complexity of q-Subset Choice on 

unit-weighted conflict graphs, i.e., q-UCG Subset Choice. We prove the following 

theorem. 

Theorem 6.3. q-UCG Subset Choice ∈  FPT.  

For simplicity, we work with the version Subset Rejection instead of Subset Choice. That 

is, we consider the problem as one of deciding whether or not a subset V’ with rejectH(V’) 

≥ p − valueH(V) = q exists; instead of deciding whether or not a subset V* = V\V’ with 

valueH(V*) ≥ p exists. Keep in mind, though, that the two conceptualizations are 

equivalent; i.e., the answer is “yes” for the one if and only if the answer is “yes” for the 

other.64   

The proof of Theorem 6.3 is organized as follows. We start with two 

observations: The first is a general observation that holds for conflict hypergraphs 

(Observation 6.1), the second applies specifically to unit-weighted conflict graph 

(Observation 6.2). Using Observations 6.1 and 6.2, we define a branching rule, (UCG 1), 

that can be used to construct a bounded search tree for q-Subset Rejection, and thus also 

                                                 
64 Although it is true that the search versions of Subset Choice and Subset Rejection ask 
for a different solution subset (i.e., if V’⊆  V is a solution for the one problem, then V\V’ is 
a solution for the other), this difference is insubstantial for present purposes. Namely, the 
transformation from a set V’ to its complement V\V’ can be done in polynomial-time and 
thus does not affect the (classical and parameterized) complexity classification of Subset 
Choice/Subset Rejection. Further, since V is given as part of the input, one can build the 
sets V’ and V\V’ simultaneously by deleting a vertex v from V as soon as v is included in 
V’; the remaining vertices in V together form V\V’.  



 131

for q-Subset Choice. Finally, we conclude an fpt-algorithm that solves q-Subset Choice in 

time O(2q|V|). 

Observation 6.1 applies to general conflict hypergaphs. It shows that a vertex v 

with non-positive rejection-value (i.e., its weight plus the weights of its incident edges is 

positive), in a conflict hypergraph, never needs to be rejected (i.e., always can be chosen). 

Namely, if rejectH({v}) ≤ 0, then there always exists a subset V’ with maximum rejection-

value such that v ∉  V’. 

Observation 6.1. Let conflict hypergraph H = (V, E) and positive integer q form 

an instance for Conflict Hypergraph (CH) Subset Rejection. Further, let v ∈  V be a vertex 

such that rejectH({v}) ≤ 0. Then (H, q) is a yes-instance for CH Subset Rejection if and 

only if there exist a subset V’ with rejectH(V’) ≥ q and v ∉  V’. 

Proof: (⇒) Let (H, q) be a yes-instance for CH Subset Rejection. Then there 

exists a subset V* ⊆  V with rejectH(V*) ≥ q. We show that there exist a subset V’ ⊆  V* 

with rejectH(V’) ≥ rejectH(V*) ≥ q and v ∉  V’.  We distinguish two cases (1) Let v ∉  V*. 

Then V’ = V* proves the claim. (2) Let v ∈  V*. Then consider the subset V*\{v}. Since H 

is a conflict hypergraph (i.e., it has only negative edges and positive vertices) and 

rejectH({v}) ≤ 0, we know that rejectH(V*\{v}) ≥ rejectH(V*) ≥ q. Then V’ = V*\{v} 

proves the claim. (⇐ ) Let (H, q) be an instance for CH Subset Rejection and let V’ ⊆  V 

with rejectH(V’) ≥ q and v ∉  V’. Then (H, q) is a yes-instance for CH Subset Rejection. ■ 

Observation 6.2 applies to unit-weighted conflict graphs. It shows that for every 

edge (u, v) in a unit-weighted conflict graph we may reject u or v. Namely, in that case, 

there always exists a subset V’ with maximum rejection-value with at least one of u or v 

in V’. 

Observation 6.2. Let G = (V, E) and q form an instance for UCG Subset 

Rejection and let (u, v) ∈  E. Then (G, q) is a yes-instance for UCG Subset Rejection if 

and only if there exists V’ ⊆  V with rejectG(V’) ≥ q and u ∈  V’ or  v ∈  V’. 

Proof: (⇒) Let (G, q) be a yes-instance for UCG Subset Rejection and let (u, v) ∈  

E. Then there exist a subset V* ⊆  V with rejectG(V*) ≥ q. We show that there exist a 

subset V’ ⊇  V* with rejectG(V’) ≥ rejectG(V*) ≥ q such that v ∉  V’.  We distinguish two 

cases (1) Let u ∈  V* or v ∈  V*. Then the V’ = V* proves the claim. (2) Let u, v ∉  V*. 



 132

Then (u, v) ∉  RG(V*). Since wV(u) = 1 and  wE(u,v) = −1 we can conclude rejectG(V* ∪  

{u}) ≥ rejectG(V’ ) + (−wV(u) − wE(u,v)) = rejectG(V’) ≥ q.  Then V’ = V* ∪  {u} proves 

the claim. (⇐ ) Let (G, q) be an instance for UCG Subset Rejection and let V’ ⊆  V with 

rejectG(V’) ≥ q and u ∈  V’ or  v ∈  V’. Then (G, q) is a yes-instance for UCG Subset 

Rejection. ■ 

From Observation 6.2, we know that for every edge in a unit-weighted conflict 

graph we can include at least one of its endpoints in V’ without loss in rejection-value. 

From Observation 6.1 we now that we only need to include endpoints if they have 

positive rejection-value in V’. The rule (UCG 1) uses these observations to branch on 

edges in a unit-weighted conflict graph.  

(UCG 1) The Positive Endpoint Edge-Branching Rule. Let s be a search tree 

node labeled by an instance (G, q), G = (V, E), for UCG Subset Rejection and let (v1, v2) 

∈  E with rejectG ({vi}) > 0 for at least one vertex vi ∈  {v1, v2}. Then for each vi ∈  {v1, v2} 

with rejectG ({vi}) > 0 we create a child si of s and label it by (Gi, qi), where Gi = (V\{vi}, 

E\RG({vi})), qi = q – rejectG({vi}).  

Note that (UCG 1) only applies if there exists an edge (v1, v2) in G  with 

rejectG({v1}) > 0 or rejectG({v2}) > 0. Thus application of (UCG 1) to a node in the search 

tree always leads to the creation of at least one child of that node. If only one of v1 and v2 

has positive rejection-value then exactly one child is created, and if both v1 and v2 have 

positive rejection-value then exactly two children are created.  

To prove that (UCG 1) is a valid branching rule for UCG Subset Rejection, we 

need to show that (G, q) is a yes-instance for UCG Subset Rejection if and only if at least 

one of the children of s is labeled by a yes-instance for UCG Subset Rejection. 

Proof of (UCG 1):  Let (G, q) be a yes-instance for UCG Subset Rejection and let 

(v1, v2) ∈  E with rejectG ({vi}) > 0 for at least one vertex vi ∈  {v1, v2}. We distinguish two 

cases.  (1) Let both v1 and v2 have positive rejection-value. Then application of rule 

(UCG 1) to edge (v1, v2) leads to the creation of two instances (G1, q1) and (G2, q2), where 

(G1, q1) represents the possibility that v1 ∈  V’ and (G2, q2) represents the possibility that 

v2 ∈  V’. From Observation 6.2 we know that there exists a subset V’ ⊆  V with maximum 

rejection-value such that v1 ∈  V’ or v2 ∈  V’. We conclude that (G, q) is a yes-instance for 

 



 133

v

w
u

x

(G1, q1), q1 = q – rejectG({v})

(UCG 1)

w
u

x

v

w

x

z

y

z

y

z

y

(G2, q2), q2 = q – rejectG({u})

(G, q)

 
 

 
 

Figure 6.3. Illustration of branching rule (UCG 1) for 
UCG Subset Choice. 
The rule (UCG 1) is applied to an instance (G, q) for 
UCG Subset Rejection. The top figure illustrates 
braching on an edge (u, v) in G where both endpoints 
u and v have positive rejection-value. The left figure 
illustrates branching on an edge (v, w), where only 
one endpoint, v, has positive rejection-value.  In the 
first case two new instances (G1, q1) and (G2, q2) are 
created, while in the second case only one new 
instance (G1, q1) is created (in other words, in the 
latter case (USC 1) works as a reduction rule). Note 
that, in unit-weighted conflict graphs, vertices with 
non-positive rejection-value are singletons or pendant 
vertices (e.g. w, x, y, and z). This means that we 
cannot apply (UCG 1) if and only all vertices left in 
the graph are of this type. Note that including any of 
these vertices in a subset can never improve its 
rejection-value (see Observation 6.1).  

 

 

 

v

w
u

x

(G1, q1), q1 = q – rejectG({v})

(UCG 1)

z

y

(G, q)

w
u

x

z

y



 134

UCG Subset Rejection if and only if (G1, q1) or (G2, q2) is a yes-instance for UCG Subset 

Rejection. (2) Let only one of v1 and v2 have positive rejection-value. W.l.o.g. let 

rejectG({v1}) > 0 and rejectG({v2}) ≤ 0. Then application of rule (UCG 1) leads to the 

creation of only one instance (G1, q1) representing the assumption that v1 ∈  V’. From 

Observation 6.2 we know that there exists a subset V’ ⊆  V with maximum rejection-value 

and v1 ∈  V’ or v2 ∈  V’.  Further, from observation 6.1 we know that there exists a subset 

V’ ⊆  V with maximum rejection-value such that v2 ∉  V’.  We conclude that (G, q) is a 

yes-instance for UCG Subset Rejection if and only if (G1, q1) or (G2, q2) is a yes-instance 

for UCG Subset Rejection. ■ 

With the following lemma we conclude an fpt-algorithm for q-UCG Subset 

Rejection that runs in time O(2q|V|).  

Lemma 6.4. q-UCG Subset Rejection can be solved in time O(2q|V|).  

Proof: We describe an fpt-algorithm for q-UCG Subset Rejection. The algorithm 

takes as input an instance (G, q) and creates a search tree T by recursively applying (UCG 

1) to (G, q) until either an instance (G’, q’) is encountered with q’ ≤ 0 (in which case the 

algorithm returns the answer “yes”) or (UCG 1) cannot be applied anymore. If the 

algorithm halts without returning the answer “yes” then we know that each leaf si in the 

search tree T is labeled by an instance (Gi, qi), such that all vertices in Gi have non-

positive rejection-value. Then, from Observation 6.1, we can conclude that (G, q) is a no-

instance. We now prove that the algorithm halts in time O(2q|V|). 

First, to apply (UCG 1) to an instance (G, q), G = (V, E), we need to find a vertex 

v ∈  V with rejectG({v}) ≥ 1. To find such a vertex we need to consider at most |V| 

vertices. Further, whenever we consider a vertex that has non-positive rejection-value we 

spend no more than O(1) time to compute its rejection-value. Hence, we can find a vertex 

with positive rejection-value (or know that none exists) in time O(|V|). If we find a vertex 

v with rejectG({v}) ≥ 1, then we branch on any edge (v, w) incident to v. For each new 

search tree node si that we create we spend at most O(|V|) time to label it by (Gi, qi). 

Namely, we spend time O(degG(v)) to compute the value rejectG({v}), and we need time 

O(degG(v)) to delete v and its adjacent edges from G.  Thus each node in the search tree 

can be labeled in time O(degG(v)). Since degG(v) ≤ |V| − 1, we conclude that O(degG(v)) ≤ 

O(|V|).   



 135

Second, observe that each application of (UCG 1) leads to the creation of at most 

2 new branches in the search tree, and thus, fan(T) ≤ 2. Further, whenever (UCG 1) 

creates a node labeled by (G’, q’) for a parent labeled by (G, q) then q’ ≤ q − 1. Thus, we 

have depth(T) ≤ q. We conclude that the size of the search tree is at most O(2q). 

Combined with the running time needed for applying (UCG 1) we can conclude the 

algorithm runs in time O(2q|V|). ■ 

Since, the parameterized problem q-UCG Subset Rejection is equivalent to q-

Subset Choice, we also have: 

Corollary 6.3. q-UCG Subset Choice can be solved in time O(2q|V|).  

Since, O(2q|V|) is fpt-time for parameter q, Corollary 6.3 proves Theorem 6.3. 

6.4.4. Improved Results for q-UCG Subset Choice 

In the previous section we have shown how we can solve q-UCG Subset Choice in fpt-

time O(2q|V|). The arguments we used to derive this result are intended to provide an easy 

to follow illustration. I remark that, with the use of different techniques and a better 

running-time analysis, it is possible to derive a much faster fpt-algorithm for q-UCG 

Subset Choice that runs in time O(1.151q + q|V|). This result follows from work by Ulrike 

Stege and myself on the parameterized problem p-Profit Cover (see e.g. Stege et al. 

2002). Here I briefly sketch how our results obtained for p-Profit Cover translate to q-

UCG Subset Choice. 

Let G = (V, E) be a unit-weighted conflict graph. Then for any subset V’ ⊆  V, we 

have rejectG(V’) = 












+− ∑∑

∈∈ )'(E
E

'
V )(w)(w

VeVv G

ev  =  |RG(V’)| − |V’| = profitPC,G(V’). This means 

that (G, q) is a yes-instance UCG Subset Rejection if and only if (G, p), with p = q, is a 

yes-instance for Profit Cover. In other words, the parameterized problems q-UCG Subset 

Rejection and p-Profit Cover are equivalent. This means that any result for p-Profit Cover 

directly translates to q-UCG Subset Rejection, for q = p, and thus also to q-UCG Subset 

Choice. 

In Stege et al. (2002), it is shown that p-Profit Cover has a problem kernel of size 

|V| ≤ 2p for connected input graphs, and a problem kernel of size |V| ≤ 3p − 3 for 

disconnected input graphs.  Hence we can conclude: 



 136

Corollary 6.4. q-UCG Subset Choice has a problem kernel of size |V| ≤ 2q for 

connected input graphs, and a problem kernel of size |V| ≤ 3q − 3 for disconnected input 

graphs. 

The kernelization procedure of Stege et al. (2002) runs in time O(p|V|). From 

Corollaries 6.3 and 6.4 we conclude that q-UCG Subset Choice is solvable in time 

O(2q(3q − 3) + q|V|), which is O(2qq + q|V|). Since it is possible to re-kernelize the input 

after each application of branching rule (UCG 1), using an analysis technique by 

Neidermeier and Rossmanith (1999), we conclude the following improvement in the 

running time for q-UCG Subset Choice: 

Corollary 6.5. q-UCG Subset Choice can be solved in time O(2q + q|V|). 

Moreover, with the use of reduction rules, kernelization, a different branching rule, re-

kernelization after each branching, and detailed case analyses, it is possible to conclude a 

bounded search tree for p-Profit Cover whose size is O(1.151p) (Stege et al., 2002).  

Corollary 6.6. q-UCG Subset Choice can be solved in time O(1.151q + q|V|). 

 

6.5. Generalizing q-UCG Subset Choice 

Theorem 6.3 shows that if a decision-maker has a value-structure that can be represented 

by a unit-weighted conflict graph, and s/he aims to choose a subset with a value that is at 

least q more than valueG(V), then the task is practically feasible for large |V| as long as q 

is not too large. In this subsection we study to what extent this result generalizes to value-

structures that form generalizations of the unit-weighted conflict graph. Specifically, we 

will consider Subset Choice on edge-weighted conflict graphs (ECG Subset Choice), on 

vertex-weighted conflict graphs (VCG Subset Choice), on conflict graphs (CG Subset 

Choice), and on conflict hypergraphs (CH Subset Choice).   For problems Π and Π’, let 

Π’ ⊆  Π denote that Π’ is a special case of Π. Then we have UCG Subset Choice ⊆  ECG 

Subset Choice ⊆  CG Subset Choice ⊆  CH Subset Choice; and also UCG Subset Choice 

⊆  VCG Subset Choice ⊆  CG Subset Choice ⊆  CH Subset Choice. 

The investigation in Sections 6.5.1−6.5.4 takes the following form. Each 

subsection considers one of the aforementioned problems. For each considered problem 

Π we ask: Is q sufficient to capture the non-polynomial complexity inherent in Π? If the 

answer is “no,” we attempt to find a superset κ ⊇  q, such that κ-Π ∈  FPT. In Section 6.6, 



 137

we will review to what extent the analysis in this section has led to the identification of 

crucial sources of complexity as defined in Section 4.5.  

6.5.1. q-ECG Subset Choice is in FPT 

Here we show that q-ECG Subset Choice is in FPT. First note that Observation 6.1 also 

applies to ECG Subset Choice (viz., edge-weighted graphs are a special type of conflict 

hypergraphs). Further, Observation 6.2 for unit-weighted conflict graphs directly 

generalizes for edge-weighted conflict graphs, as shown in Observation 6.3. 

Observation 6.3. Let G = (V, E) and q form an instance for ECG Subset 

Rejection and let (u, v) ∈  E. Then (G, q) is a yes-instance for ECG Subset Rejection if 

and only if there exists V’ ⊆  V with rejectG(V’) ≥ q and u ∈  V’ or  v ∈  V’. 

Proof: Analogous to the proof of Observation 6.2, with G being an edge-weighted 

conflict graphs instead of unit-weighted graph. ■ 

From Observations 6.1 and 6.3 we can conclude that the algorithm described for 

q-UCG Subset Choice also solves q-ECG Subset Choice in time O(2q|V|). 

Corollary 6.7. q-ECG Subset Choice ∈  FPT. 

Corollary 6.7 shows that the presence of edge-weights in a conflict graph, in itself, does 

not add non-polynomial time complexity to subset choice on conflict-graphs over and 

above the non-polynomial time complexity already captured by q. 

6.5.2. q-VCG Subset Choice is W[1]-hard 
Here we show that, although q is sufficient for capturing the non-polynomial time 

complexity in ECG Subset Choice, the same is not true for VCG Subset Choice (unless 

FPT = W[1]).   

Theorem 6.4. q-VCG Subset Choice ∉  FPT (unless FPT = W[1]). 

To prove Theorem 6.4, we present a parametric reduction from k-Independent Set to q-

VCG Subset Choice in Lemma 6.5 (see Figure 6.4 for an illustration). For simplicity, in 

this reduction we assume that the input graph for k-Independent Set is of minimum 

degree 1 (i.e., G contains no singletons). Since k-Independent Set (with or without 

singletons) is known to be W[1]-complete (Downey & Fellows, 1999) the reduction 

shows that q-VCG Subset Choice is W[1]-hard. 



 138

Lemma 6.5. Let (G, k), G = (V, E), be an instance for k-Independent Set, where G 

contains no singletons. We build an instance (G*, q), with G* = (V*, E*), for q-VCG 

Subset Choice as follows. G* has the same edges and vertices as G but is a vertex-

weighted conflict graph. Therefore let V* = V and E* = E. We define the weights for G* 

as follows: for every v ∈  V* let wV(v) = degG*(v)−1 and for every e ∈  E* let wE(e) = –1. 

Note that rejectG*({v}) = 1 for all v ∈  V*. Furthermore let q = k. Then G has an 

independent set of size at least k if and only if there exists V’ ⊆  V* with rejectG*(V’) ≥ k.   

 

2

3

1

2

3

2

4
2

2

2

0 0

0

 
 
Figure 6.4. Illustration of the reduction in Lemma 6.5.  
The reduction transforms G into G*. The unweighted version of the figure 
represents graph G, and the weighted version of the figure represents the graph 
G*. Only the vertex weights are shown for G*; since G* is a vertex-weighted 
conflict graph, all edge weights are set ‘−1.’ Note that wV(v) = degG(v) − 1 for 
each vertex v in G*. This property ensures that G has an independent set of size k 
if and only if there exists a subset V’ ⊆  V, with rejectG*(V’) ≥ q = k. 

 

Proof of Lemma 6.5: (⇒) Let V’ ⊆  V, V’ = {v1, v2, ..., vk}, be an independent set 

for G. This means that no two vertices vi, vj ∈  {v1, v2, ..., vk} share an edge in G and since 

V = V*  also no two vertices vi, vj ∈  {v1, v2, ..., vk} share an edge in G*. Thus rejectG*(V’) 

=  rejectG*({v1}) + rejectG*({v2}) + ... + rejectG*({vk}) =  k.  

 (⇐ ) Let V’ ⊆  V* with rejectG*(V’) ≥ q. We show G has an independent set of size 

at least q. We distinguish two cases: (1) If V’ is an independent set for G* then V’ is an 

independent set for G. Assume V’ = {v1, v2, ..., vk}. Then rejectG*(V’) = rejectG*({v1}) + 

rejectG*({v2}) + ... + rejectG*({vk}) = q, and thus k = q. (2) If V’ is not an independent set 



 139

for G*, we transform V’ into an independent set V” for G* with the algorithm described 

in the proof of Lemma 6.1 (page 123). Note that line 4 of the algorithm always results in 

the removal of at most degG*(v) −1 edges from RG*(V’). Hence, in line 4, rejectG*(V”\{v}) 

≥ rejectG*(V”) − wV(v) − (degG*(v) −1) = rejectG*(V”) − (degG*(v) −1) + (degG*(v) −1)  = 

rejectG*(V”), and thus in line 6, rejectG*(V”) ≥ q. Furthermore, when the algorithm halts 

V” is an independent set for G* and therefore for G. Thus case (1) applies to V’ = V’’. ■ 

I comment that the above reduction runs in polynomial-time, and thus Lemma 6.5 

also constitutes a proof that Subset Choice is NP-hard (Theorem 6.1). Further, since VCG 

Subset Choice is a special case of CG Subset Choice, which in turn is a special case of 

CH Subset Choice, we also conclude: 

Corollary 6.8. q-CG Subset Choice ∉  FPT (unless FPT = W[1]). 

Corollary 6.9. q-CH Subset Choice ∉  FPT (unless FPT = W[1]). 

6.5.3. {q, ΩV}-CG Subset Choice is in FPT 

We consider another parameter for Subset Choice: The maximum vertex weight, denoted 

by ΩV. Note that for every instance (H, q), H = (V, E), for Subset Choice, there exist a 

positive integer value ΩV such that for all v ∈  V, wV(v) ≤ ΩV. Thus, ΩV is an implicit 

parameter for Subset Choice. In the following we will show that, although q-CG Subset 

Choice is W[1]-hard (Corollary 6.8), the parameter set {q, ΩV} is sufficient for capturing 

the non-polynomial time complexity inherent in CG Subset Choice.  

Theorem 6.5. {q, ΩV}-CG Subset Choice ∈  FPT 

The proof of Theorem 6.5 is organized as follows. First we observe that for every vertex 

in a conflict graph with positive rejection-value we can always either reject that vertex or 

reject at least one of its neighbors (Observation 6.4 below). Using Observation 6.4 and 

Observation 6.1 (see page 131) we define a branching rule that can be used to construct 

an fpt-algorithm for {q, ∆}-CG Subset Choice (here ∆ denotes the maximum vertex 

degree). Then we show that there exists a function f(ΩV, q) such that ∆ ≤ f(ΩV, q). This 

allows us to conclude the existence of an fpt-algorithm for {q, ΩV}-CG Subset Choice. 



 140

 Observation 6.4 shows that, for an instance (G, q) for CG Subset Choice and a 

vertex v with positive rejection-value, if a subset V’ ⊆  V has maximum rejection-value 

and v ∉  V’ then v has at least one neighbor u ∈  V with u ∈  V’.   

Observation 6.4. Let G and q form an instance for CG Subset Choice and let v ∈  

V with rejectG(v) > 0. Then G and q form a yes-instance for CG Subset Choice if and only 

if there exists V’ ⊆  V with rejectG(V’) ≥ q, and at least one vertex u ∈  NG[v], with u ∈  V’. 

Proof: (⇒) Let (G, q) be a yes-instance for CG Subset Choice and let v ∈  V with 

rejectG(v) > 0. Then there exists V* ⊆  V with rejectG(V*) ≥ q. We show there exists V’ ⊆  

V such that rejectG(V’) ≥ rejectG(V*) ≥ q and at least one vertex u ∈  NG[v], with u ∈  V’. 

We distinguish two cases: (1) There exists a vertex u ∈  NG[v] with u ∈  V*. Then V’ = V* 

proves the claim. (2) There does not exist u ∈  V* with u ∈  NG[v]. Then v ∉  V*, since v ∈  

NG[v]. Further, since rejectG({v}) ≥ 1 we know that rejectG(V* ∪  {v}) ≥ rejectG(V*) + 

rejectG({v}) ≥ rejectG(V*) + 1 > q, and thus V’ = V* ∪  {v} proves the claim. (⇐ ) Let G 

and q form an instance for CG Subset Choice and let V’ ⊆  V be any subset with 

rejectG(V’) ≥ q. Then (G, q) is a yes-instance for CG Subset Choice. ■ 

From Observation 6.1 (page 131) we know we can exclude vertices with non-

positive rejection-value from consideration for a solution subset for CG Subset Rejection. 

From Observation 6.4, we know that a subset with maximum rejection-value for a vertex-

weighted conflict graph contains at least one vertex in NG[v] for each v in G with positive 

rejection-value. The rule (CG 1) uses these observations to branch on vertices with 

positive rejection-value in a vertex-weighted conflict graph (refer to Figure 6.5 for an 

illustration). Note how (CG 1) allows us to construct a bounded search tree for {q, ∆}-CG 

Subset Choice (cf. branching rule (IS 1) for Independent Set discussed in Chapter 4, page 

70).   

(CG 1) The Positive Vertex-or-At-Least-One-Neighbor Branching Rule #1. 

Let s be a search tree node labeled by an instance (G, q), G = (V, E) for CG Subset 

Choice and let v ∈  V, with rejectG({v}) > 0 and NG(v) = {v1, ..., vk}, k ≤ ∆. Then for each 

vi ∈  NG[v] with rejectG({vi}) > 0 we create a child si of s and label it by (Gi, q i), Gi = 

(V\{vi}, E\RG({vi})), qi = q – rejectG({vi}). 



 141

Proof: Let (G, q) be a yes-instance for CG Subset Rejection and let v ∈  V, with 

rejectG({v}) > 0, NG(v) = {v1, ..., vk}. Application of (CG 1) results in the creation of an 

instance (Gu, qu) for each u ∈  U, with U = {vi ∈  NG[v] : rejectG({vi}) > 0}. Here, each 

instance (Gu, qu) represents the assumption that u ∈  V’. From Observation 6.4 we know 

that there exists a subset V’ ⊆  V with maximum rejection-value and V’ ∩ U  ≠ ∅ . 

Further, from observation 6.1 we know that there exists a subset V’ ⊆  V with maximum 

rejection-value and vi ∉  V’ for all vi ∈  NG[v] with rejectG({vi}) ≤ 0.  We conclude that (G, 

q) is a yes-instance for CG Subset Rejection if and only if at least one of (Gu, qu) is a yes-

instance for CG Subset Rejection. ■ 

Application of (CG 1) to a search tree node s leads to the creation of at most 

degG(v) + 1 ≤ ∆ + 1 children of s. Further for each newly created instance (Gi, q i), we 

have |Gi| ≤ |G|, ∆i ≤ ∆, qi ≤ q − 1. Thus we can use (CG 1) to build a search tree with 

fan(T) ≤ ∆ +1 and depth(T) ≤ q.  

Lemma 6.6. {∆, q}-CG Subset Rejection can be solved in time O((∆ +1)q|V|). 

Proof: Analogous to the proof of Lemma 6.5, we define an fpt-algorithm for {∆, 

q}-CG Subset Rejection: The algorithm takes as input an instance (G, q) and recursively 

applies (CG 1) to some vertex v in G with rejectG{v) > 0 until either a “yes”-answer is 

returned or (CG 1)  cannot be applied anymore. If the algorithm halts without returning 

the answer “yes” then we know that each leaf si in the search tree T is labeled by an 

instance (Gi, qi), such that all vertices in Gi have non-positive rejection-value. Then, from 

Observation 6.1, we can conclude that (G, q) is a no-instance.  

We next prove that the algorithm halts in time O(2q|V|). To find a vertex v to 

branch on (or know that none exists), and label a new node in the search tree, we need at 

most in time O(|V|). Since each application of (CG 1) leads to the creation of at most ∆ + 

1 new branches in the search tree, we know that fan(T) ≤ ∆ +1. Further, whenever (CG 1) 

creates a node labeled by (G’, q’), for a parent labeled (G, q), then q’ ≤ q − 1, and thus 

depth(T) ≤ q. We conclude that the size of the search tree is at most O((∆ +1)q). 

Combined with the time spent per node of the search tree we conclude that the algorithm 

runs in time O((∆ +1)q|V|). ■ 

 



 142

 

v

w
u

yx

(G
, q

) (C
G

 1
)

(G
0, 

q 0
), 

q 0
= 

q
−

re
je

ct
G

({
v}

)

(G
1, 

q 1
), 

q 1
= 

q
−

re
je

ct
G

({
u}

)

(G
2, 

q 2
), 

q 2
= 

q
−

re
je

ct
G

({
w

})

(G
3, 

q 3
), 

q 3
= 

q
−

re
je

ct
G

({
x}

)

(G
4, 

q 4
), 

q 4
= 

q
−

re
je

ct
G

({
y}

)

w
u

yx

v

w

yx

v

u

yx

v

w
u

y

v

w
u

x

v

w
u

yx

(G
, q

) v

w
u

yx

(G
, q

) (C
G

 1
)

(G
0, 

q 0
), 

q 0
= 

q
−

re
je

ct
G

({
v}

)

(G
1, 

q 1
), 

q 1
= 

q
−

re
je

ct
G

({
u}

)

(G
2, 

q 2
), 

q 2
= 

q
−

re
je

ct
G

({
w

})

(G
3, 

q 3
), 

q 3
= 

q
−

re
je

ct
G

({
x}

)

(G
4, 

q 4
), 

q 4
= 

q
−

re
je

ct
G

({
y}

)

w
u

yx

v

w

yx

v

u

yx

v

w
u

y

v

w
u

x

 

Fi
gu

re
 6

.5
. I

llu
st

ra
tio

n 
of

 b
ra

nc
hi

ng
 ru

le
 (C

G
 1

). 
Se

e 
ne

xt
 p

ag
e 

fo
r d

es
cr

ip
tio

n.
 



 143

Figure 6.5. Illustration of branching rule (CG 1). 
Here (CG 1) is applied to an instance (G, q) for CG Subset Rejection. The instances 
obtained after branching rule application on vertex v in G, are denoted (Gi, qi) with i = 0, 
1, 2, …, degG(v). For clarity, the vertex and edge weights are not depicted for; but the 
reader may assume that, in this example, each of the vertices u, v, w, x, and y, has positive 
rejection-value in G. The rule (CG 1) assumes that v or at least of its neighbors u, w, x, 
and y can be included in V’. In this example, degG(v) = 4, thus (at most) five new 
instances are created by (CG 1). 
 

The following lemma shows that for any instance (G, q) for CG Subset Rejection we can 

bound the vertex degree by a function f(ΩV, q). 

Lemma 6.7. Let (G, q) be an instance for CG Subset Rejection and let ΩV be the 

maximum vertex weight in G. If there exists a vertex v ∈  V with degG(v) ≥ q + ΩV  then 

(G, q) is a yes-instance.  

Proof: We know for every v ∈  V, rejectG({v}) =  












+− ∑

∈ })({R
EV )(w)(w

ve G

ev ≥ −ΩV + 

degG(v). Let v ∈  V be a vertex with degG(v) ≥ q + ΩV. Then rejectG({v}) ≥ q and thus (G, 

q) is a yes-instance for CG Subset Rejection. ■ 

From Lemma 6.7 we conclude a refinement of the search tree algorithm described 

above for Lemma 6.6: As soon as we encounter a node labeled by (G, q), such that ∆ ≥ q 

+ ΩV, we terminate the search and return the answer “yes.” This way we ensure that for 

the resulting bounded search tree T, fan(T) ≤ ∆ + 1 ≤ q + ΩV . We conclude the following 

corollary. 

Corollary 6.10. {q, ΩV}-CG Subset Choice can be solved in time O((q + 

ΩV)q|V|). 

Since time O((q + ΩV)q|V|) is fpt-time for {q, ΩV}-CG Subset Choice, Corollary 

6.10 proves Theorem 6.5. Note that, since VCG Subset Choice is a special case of CG 

Subset Choice, all results discussed above for CG Subset Choice also apply to VCG 

Subset Choice. 

6.5.4. {q, ΩV, ε}-CH Subset Choice is in FPT  

Here we consider Subset Choice on general conflict hypergraphs. Recall that a hypergaph 

is a generalization of a graph (Section 6.1, page 116). Like a conflict graph has positive 



 144

weighted vertices and negative weighted edges, so a conflict hypergaph has positive 

weighted vertices and negative weighted hyperedges.  

In this section we prove the following theorem. 

Theorem 6.6. {q, ε, ΩV}-CH Subset Choice is in FPT 

Recall that ε denotes the maximum span in a hypergraph. Since, for every hypergraph H 

= (V, E), there exists a positive integer ε such that span(e) ≤ ε for every e ∈  E, the integer 

ε is an implicit parameter for CH Subset Choice. 

The proof of Theorem 6.6 is organized as follows. First, we observe that 

Observation 6.4 for conflict graphs directly generalizes to conflict hypergraphs 

(Observation 6.5). Then we consider a new input parameter θ, denoting the maximum 

neighborhood of any vertex in H (i.e., θ is a positive integer, such that for every v in 

|NH(v)| ≤ θ). Using Observation 6.1 and 6.4, we derive a branching rule (CH 1) that can 

be used to construct an fpt-algorithm for {q, θ}-CH Subset Rejection. We will show that 

there exists a function f(ε, ∆) with θ ≤ f(ε, ∆). This allows us conclude an fpt-algorithm 

for {q, ε, ∆}-CH Subset Rejection. Finally, we show that there exists a function g(ΩV, q), 

with ∆ ≤ g(ΩV, q), and conclude an fpt-algorithm for {q, ε, ΩV}-CH Subset Choice. 

Note that the proof of Observation 6.5 is the same as the proof of Observation 6.4, 

using as instance (H, q), such that H is a conflict hypergraph instead of conflict graph. 

Observation 6.5. Let H and q form an instance for CH Subset Choice and let v ∈  

V with rejectH(v) > 0. Then H and q form a yes-instance for CH-Subset Choice if and 

only if there exists V’⊆  V, with rejectH(V’) ≥ q, and at least one vertex u ∈  NH[v], with u 

∈  V’. 

Proof: (⇒) Let (H, q) be a yes-instance for CH Subset Choice and let v ∈  V with 

rejectH(v) > 0. Then there exists V* ⊆  V with rejectH(V*) ≥ q. We show there exists V’ ⊆  

V such that rejectH(V’) ≥ rejectH(V*) ≥ q and at least one vertex u ∈  NH[v], with u ∈  V’. 

We distinguish two cases: (1) There exists a vertex u ∈  NH[v] with u ∈  V*. Then V’ = V* 

proves the claim. (2) There does not exist u ∈  V* with u ∈  NH[v]. Then v ∉  V*, since v ∈  

NH[v]. Further, since rejectH({v}) ≥ 1 we know that rejectH(V* ∪  {v}) ≥ rejectH(V*) + 

rejectH({v}) ≥ rejectH(V*) + 1 > q, and thus V’ = V* ∪  {v} proves the claim. (⇐ ) Let H 



 145

and q form an instance for CH Subset Choice and let V’ ⊆  V be any subset with 

rejectH(V’) ≥ q. Then (H, q) is a yes-instance for CH Subset Choice.  ■ 

From Observations 6.1 and 6.5 we conclude a branching rule (CH 1) for CH 

Subset Choice that allows us to construct a bounded search tree T, with size(T) ≤ f(q, θ). 

Note that (CH 1) is identical to (CG 1) with the exception that it takes as input a conflict 

hypergraph instead of a conflict graph.  

(CH 1) The Positive Vertex-or-At-Least-One-Neighbor Branching Rule #2. 

Let s be a search tree node labeled by an instance (H, q), H = (V, E) for CH Subset 

Rejection and let v ∈  V, with rejectH({v}) > 0 and NH(v) = {v1, ..., vk}, k ≤ θ. Then for 

each vi ∈  {v, v1, ..., vk} with rejectH({vi}) > 0 we create a child si of s and label it by (Hi, q 

i), Hi = (V\{vi}, E\RH({vi})), qi = q – rejectH({vi}). 

Proof: Analogous to the proof of (CG 1), using as instance (H, q), such that H is a 

conflict hypergraph instead of a conflict graph, and using Observation 6.5 instead of 

Observation 6.4.  ■ 

We now show how (CH 1) can be used to define an fpt-algorithm for {q, θ}-CH 

Subset Rejection. 

Lemma 6.8. {q, θ}-CH Subset Rejection can be solved in time O((θ +1)q|V|2). 

Proof: Analogous to the proofs of Lemmas 6.5 and 6.6, we define an fpt-

algorithm for {q, θ}-CH Subset Rejection. The algorithm takes as input an instance (H, 

q) and recursively applies (CH 1) to a vertex v in H until either a “yes”-answer is returned 

or (CH 1) cannot be applied anymore (in which case, by Observation 6.1, we return the 

answer “no”).  

We can find a vertex v to branch on (or know that none exists), and label a new 

node in the search tree, in time O(|V|2) (the labeling can no longer be done in linear time, 

because a vertex in a hypergraph may have as many as ((|V| − 1)(|V| − 2))/2 incident 

hyperedges). Since (CH 1) creates a bounded search tree T with fan(T) ≤ θ + 1 and 

depth(T) ≤ q, we conclude that size(T) ≤ O((θ +1)q). In sum, we can decide {q, θ}-CH 

CH Subset Rejection in time O((θ + 1)q |V|2). ■ 

Note that unlike NG(v), NH(v) may be larger than degH(v), and thus θ is not 

bounded by a function f(∆) in hypergraphs. Since spanH(e) ≤ ε for all e ∈  E, we do know 



 146

that, for every v ∈  V, |NH(v)| ≤ (ε − 1)degH(v), and thus θ ≤ (ε − 1)∆. This observation 

allows us to conclude the following lemma. 

Corollary 6.11. {q, ε, ∆}-CH Subset Rejection can be solved in time O(((ε − 1)∆ 

+ 1)q |V|2). 

To show that ∆ is bounded by some function g(ΩV, q), we observe that Lemma 

6.7 for conflict graphs generalizes directly to Lemma 6.9 for conflict hypergraphs. 

 Lemma 6.9. Let (H, q), with H = (V, E), be an instance for CH Subset Rejection 

and let ΩV be the maximum vertex weight in H. If there exists a vertex v ∈  V with 

degH(v) ≥ q + ΩV, then (H, q) is a yes-instance.  

Proof: We know for every v ∈  V, rejectH({v}) =  







+⋅− ∑

∈ })({R
EV )(w)(w1

ve H

ev ≥ 

−ΩV + degH(v). Let v ∈  V be a vertex with degH(v) ≥ q + ΩV. Then rejectH({v}) ≥ q and 

thus (H, q) is a yes-instance for CH Subset Rejection. ■ 

Using Lemma 6.9 we can refine the algorithm in Lemma 6.8: We terminate the 

search as soon as we encounter an instance (G, q) with ∆ ≥ q + ΩV and return the answer 

“yes.” This ensures that for the resulting search tree T, fan(T) ≤ q + ΩV −1, and we 

conclude the following corollary:  

Corollary 6.12. {q, ε, ΩV}-CH Subset Choice can be solved in time O(((ε − 1) (q 

+ ΩV −1) + 1)q |V|2). 

Since time O(((ε − 1) (q + ΩV −1) + 1)q |V|2) is fpt-time for {q, ε, ΩV}-CH Subset 

Choice, Corollary 6.12 proves Theorem 6.6. 

 

6.6. Crucial Sources of Complexity  

In Sections 6.4 and 6.5 we have investigated the parameterized complexity of different 

parameterizations of Subset Choice on conflict hypergraphs. Many subset choice 

problems that arise in practice may be of this type. To illustrate, consider again the 

consumer that has to decide on a set of pizza toppings: Assume a person p likes 

pepperoni (which has, say, value x > 0 for p) and likes mushrooms (value y > 0). Let z 

denote the value for of having both pepperoni and mushrooms on a pizza.  Even if p think 

that pepperoni and mushrooms taste well together, we may nevertheless have z < x + y 



 147

(cf. the notion ‘diminishing marginal utility’ in economic theory; e.g. Parkin & Bade, 

1997). Loss in value due to combining alternatives may also happen when alternatives 

represent different activities or events that conflict in space and/or time (see e.g. footnote 

11 on page 11) or when alternatives share some of their value-supporting features (cf. 

Figure 6.1).  

In this section, we reconsider some of the results obtained in the previous 

sections, with the aim of identifying crucial sources of complexity in Subset Choice for 

value-structures that are conflict hypergraphs. We start by reconsidering the result that 

{q, ε, ΩV}-CH Subset Choice ∈  FPT (Corollary 6.12). Is the parameter set {q, ε, ΩV} a 

crucial source of complexity for CH Subset Choice? Recall from Section 4.5 (page 73) 

that we can conclude that {q, ε, ΩV} is a crucial source of complexity for CH Subset 

Choice if and only if κ-CH Subset Choice ∉  FPT for every κ ⊂  {q, ε, ΩV}. In other 

words, we need to know if {q, ε, ΩV} is a minimal parameter set for CH Subset Choice. 

What do we know about the parameterized complexity of κ-CH Subset Choice for 

different κ ⊂  {q, ε, ΩV}? To answer this question, in the following we first reconsider 

Theorem 6.2 (page 128) and then Theorem 6.4 (page 137). 

Theorem 6.2 states that p-UCG Subset Choice is not in FPT (unless FPT = W[1]). 

We next show how this theorem implies the fixed-parameter intractability of κ-Subset 

Choice for the parameter set κ = {p, ε, ωV, ΩV, ωE, ΩE}. Here, p, ε and ΩV are defined as 

before (i.e., the positive integer in the input, the maximum span, and the maximum vertex 

weight). The new parameters ωV, ωE, ΩE are defined as follows: Let H = (V, E) be a 

weighted hypergraph, Then ωV ≥ 0 denotes the absolute size of the most negative vertex 

weight, ωE ≥ 1 denotes the absolute size of the most negative hyperedge weight, and ΩE ≥ 

1 denotes the largest positive hyperedge weight. Note that for every instance H = (V, E) 

for Subset Choice, there exist values ωV, ΩV, ωE, and ΩE such that for all v ∈  V,  –ωV ≤ 

wV(v) ≤ ΩV and for all e ∈  E, –ωE ≤ wE(e) ≤ ΩE. Hence, ωV, ΩV, ωE, and ΩE are all 

implicit parameters for Subset Choice. 

 For UCG Subset Choice the input hypergraph is a unit-weighted conflict graph. In 

other words, in UCG Subset Choice, the values ε, ωV, ΩV, ωE, ΩE are all constants; 



 148

specifically we have ε = 2, ωV = 0, ΩV = 1, ωE = 1, ΩE = 1. This means that we can 

conclude the following corollary from Theorem 6.2. 

 Corollary 6.13. {p, ε, ωV, ΩV, ωE, ΩE}-CH Subset Choice ∉  FPT (unless FPT = 

W[1]). 

Proof: The proof is by contraction. Assume {p, ε, ωV, ΩV, ωE, ΩE}-CH Subset 

Choice ∈  FPT and FPT ≠ W[1]. Then there exists an algorithm solving Subset Choice in 

time O(f(p, ε, ωV, ΩV, ωE, ΩE)nα). In UCG Subset Choice we have ε = 2, ωV = 0, ΩV = 1, 

ωE = 1, ΩE = 1, and thus we can solve UCG Subset Choice in time O(f(p, ε, ωV, ΩV, ωE, 

ΩE)nα) = O(f(p, 2, 0, 1, 1, 1)nα) = O(f(p)nα). This means that p- UCG Subset Choice ∈  

FPT. But then, from Theorem 6.2, we can conclude that FPT = W[1]. ■ 

Recall from Section 4.5 (page 73) that, for a problem Π and parameter set κ, if κ-

Π ∉  FPT then κ’-Π ∉  FPT for all κ’ ⊆  κ. Thus, from Corollary 6.13 we conclude that κ-

Subset Choice ∉  FPT, for all κ ⊆  {p, ε, ωV, ΩV, ωE, ΩE} (unless FPT = W[1]). In other 

words, we can conclude from Corollary 6.13 that κ-CH Subset Choice ∉  FPT, for κ = 

{ε}, κ = {ΩV}, and κ = {ε, ΩV} (unless FPT = W[1]). 

 We now reconsider Theorem 6.4. This theorem states that q-VCG Subset Choice 

is not in FPT (unless FPT = W[1]). Since VCG Subset Choice is a special case of CH 

Subset Choice, such that ε = 2, ωV = 0, ωE = 1, ΩE = 1, we conclude the following 

corollary. 

Corollary 6.14. {q, ε, ωV, ωE, ΩE}-UC Subset Choice ∉  FPT (unless FPT = 

W[1]). 

Proof: Analogous to the proof of Corollary 6.13. 

From Corollary 6.14, we conclude that κ-CH Subset Choice ∉  FPT, for κ = {q}, and κ = 

{q, ε} (unless FPT = W[1]).  

In sum, from the above analyses, we know that κ-CH Subset Choice is not in FPT 

(unless FPT = W[1]) for five of the six possible κ ⊂  {q, ε, ΩV}. The only proper subset 

that was not considered is κ = {q, ΩV}. It remains an open question whether or not {q, 

ΩV}-CH Subset Choice is in FPT. Hence, at present time, we do not know whether {q, ε, 

ΩV} or {q, ΩV} is a crucial source of complexity in CH Subset Choice.  



 149

Despite the open question posed above, I note that we did succeed in identifying 

crucial sources of complexity for some special cases of CH Subset Choice. Namely, from 

Theorem 6.3 (page 130) we know that q-ECG Subset Choice ∈  FPT. Since {q} contains 

only one element it is minimal, and thus we know that {q} is a crucial source of 

complexity for ECG Subset Choice (and thus also for UCG Subset Choice). Further, from 

Corollary 6.8 we know q-CG Subset Choice ∉  FPT (unless FPT = W[1]), from Corollary 

6.13 we know  ΩV-CG Subset Choice ∉  FPT (unless FPT = W[1]), and from Theorem 

6.3 (page 130) we know {q, ΩV}-CG Subset Choice ∈  FPT. We conclude that {q, ΩV} is 

a crucial source of complexity in CG Subset Choice (and thus also for VCG Subset 

Choice). 

 

6.7. Surplus Subset Choice  

In Sections 6.4 − 6.6 we have considered special cases of Subset Choice with conflict 

hypergraphs as input. Here I briefly discuss the special cases of Subset Choice with 

surplus hypergraphs as input, called SH Subset Choice. Recall that in surplus 

hypergraphs all vertices have negative weights and all hyperedges have positive weights. 

Arguably, like CH Subset Choice, also SH Subset Choice often arises in practice. To 

illustrate, consider again the situation in which a consumer needs to decide on a set of 

computer parts. Since each part (e.g. computer, monitor, printer, scanner) costs money—

and by itself is useless—we may assume that each part when evaluated alone has 

negative value. In combining parts, however, we may obtain a value surplus. For 

example, a computer alone, a monitor alone, and a printer alone may all have negative 

value, but the computer-monitor-printer combination may have positive value.  

 In the following we consider the special case of SH Subset Choice where the 

value-structure is modeled by a unit-weighted surplus graph (i.e., span ε = 2, all vertices 

have weight ‘−1,’ and all edges have weight ‘+1’). We will refer to this special case as 

USG Subset Choice.  In Section 6.3, we have seen that Subset Choice is NP-hard even on 

unit-weighted conflict graphs. Note that the only difference between unit-weighted 

conflict graphs and unit-weighted surplus graphs is a reversal in sign of vertex- and edge-

weights. Interestingly, this reversal in sign leads to a different complexity classification. 

Theorem 6.7. USG Subset Choice ∈  P. 



 150

To prove Theorem 6.7 we prove Lemma 6.10 below. The lemma implies that we 

can solve USG Subset Choice by simply choosing all the vertices in every component of 

G that contains at least one cycle; we then check whether this set of vertices has at least 

value p in G. Since the components and cycles in a graph can be found in polynomial 

time (Brandstädt, Le, & Spinrad, 1999; Gross & Yellen, 1999), Theorem 6.7 follows. 

Lemma 6.10.  Let G = (V, E) be an instance for USG Subset Choice. Let Ci = (Vi, 

Ei), 1 ≤ i ≤ l, be the components of G. Let U denote the set of components of G that 

contain at least one cycle. Then the set V’ = {v ∈  V | v ∈  Vi and Ci ∈  U, 1 ≤ i ≤ l} has 

maximum value.  

Proof: Let V’ = {v ∈  V | v ∈  Vi and Ci ∈  U, 1 ≤ i ≤ l}. We show in two steps that 

valueG(V’) is maximum. We show that (1) we cannot improve the value of any vertex set 

V* ⊆  V by including vertices from V\V’ in V*. We conclude that there is a vertex set with 

maximum value that does not contain any vertices from V\V’. Then we show that (2) 

there does not exist a set V* ⊂  V’ with valueG(V*) > valueG(V’). 

(1) Let V* ⊆  V. Consider the subgraph F of G induced by vertex set V\V’. Then 

by the definition of V’, F = (V\V’, EG(V\V’)) is a forest. In any forest the number of edges 

is smaller than the number of vertices (for a proof of this basic property see e.g. Gross & 

Yellen, 1999, see also page 90). Since every subgraph of a forest is also a forest, we 

know that for any subset V” ⊆  V\V’, |EG(V”)| < |V”|. Therefore, for any subset V” ⊆  

V\V’, valueG(V”) = |EG(V”)| – |V”| < 0. Consider V* ∪  V”. Then valueG(V* ∪  V”) < 

valueG(V*). In other words, we can never improve the value of a vertex set V* ⊆  V by 

including vertices in V\V’.  

(2) From the above we know that if the value of V’ is not maximum, then there 

must exist a set V* ⊂  V’ with valueG(V*) > valueG(V’). We show by contradiction that 

such a set cannot exist. Let V* ⊂  V’ be a largest vertex set with valueG(V*) > valueG(V’). 

Then at least one of the following two situations is true. (a) There exists a vertex v ∈  

V’\V* such that v has at least one neighbor u ∈  V*. But then valueG(V* ∪  {v}) ≥  

valueG(V*) + |EG({v, u})| – |{v}|  = valueG(V*) + |{(v, u)}| – |{v}|  = valueG(V*) + (1 – 1) 

= valueG(V*), contradicting the claim that V* is a largest vertex set with valueG(V*) > 

valueG(V’). (b) There exists a cycle < v1, v2, ..., vk , v1> with v1, v2, ..., vk ∈  V’\V*. But then 



 151

valueG(V* ∪  {v1, v2, ..., vk}) ≥  valueG(V*) + |EG({v1, v2, ..., vk })| – |{v1, v2, ..., vk}|  ≥ 

valueG(V*) + k – k ≥ valueG(V*), again contradicting the claim that V* is a largest vertex 

set with valueG(V*) > valueG(V’).  ■ 

Theorem 6.7 shows that Subset Choice is computationally easy for value-

structures that can be modeled by unit-weighted surplus graphs. It remains an open 

question, however, whether Subset Choice for general surplus hypergraphs is in P.  

 

6.8. Subset Choice when Size Matters 

Throughout this chapter we have assumed no restrictions on the size of the to-be-chosen 

subset. Clearly, in many real-world settings size restrictions do apply (see also Figure 

6.1); e.g., there may be an exact bound (as when you have exactly k job positions to fill), 

an upper-bound (as when you can afford at most k toppings on your pizza), or a lower-

bound (as when you require at least k members in a committee) on the size of the to-be-

chosen subset. In this section I offer a word of caution: We cannot assume that the results 

for subset choice without size restrictions automatically generalize to subset choice with 

size restrictions. To illustrate, we consider the problem Exact-bound Subset Choice: 

Exact-bound Subset Choice  

Input: A weighted hypergraph H = (V, E), U
||2 Vh

hV
≤≤

, for every v ∈  V a weight 

wV(v) ∈  , for every e ∈  E a weight wE(e) ∈   \{0}, and positive integers p and k. 

Question: Does there exist a subset V’⊆  V such that valueH(V’) ≥ p and |V’| = k? 

Recall that USG Subset Choice without size restrictions is in P (Theorem 6.7, page 149). 

In contrast, we have the following theorem for Exact-bound Subset Choice on unit-

weighted surplus graphs.  

Theorem 6.8.  USG Exact-bound Subset Choice is NP-hard. 

To prove Theorem 6.8 we reduce from the NP-complete problem Clique (Garey & 

Johnson, 1979). For a graph G = (V, E) and a subset V’ ⊆  V, we say V’ is a clique for G if 

for every two vertices u, v ∈  V’, (u,v) ∈  E.  

Clique (decision version) 

Input: A graph G = (V, E) and a positive integer k. 

Question: Does there exist a clique V’ ⊆  V for G with |V’| ≥ k? 



 152

For a graph G = (V, E) and a positive integer k, we make two observations. First, if V’ is 

a clique for G then any subset V’’ ⊆  V’ is also a clique for G. We conclude Observation 

6.6. 

Observation 6.6. If G and k form a yes-instance for Clique then there exists V’ ⊆  

V such that V’ is a clique and |V’| = k. 

Further, for any set V’ ⊆  V, with |V’| = k, the number of possible pairs of vertices 

is given by 
2

)1( −kk . We conclude Observation 6.7. 

Observation 6.7. Let V’ ⊆  V with |V’| = k. Then V’ is a clique if and only if 

|EG(V’)| = 
2

)1( −kk . 

Using Observations 6.6 and 6.7, we now prove Theorem 6.8. 

Proof of Theorem 6.8: Let graph G = (V, E) and positive integer k constitute an 

instance for Clique. From G and k we build an instance for USG Exact-bound Subset 

Choice consisting of G*, p and k as follows: let G* = (V*, E*) be a weighted graph such 

that V* = V and E* = E. For every v ∈  V* let wV(v) = −1 and for every e ∈  E* let wE(e) = 

+1 (i.e., G* is a unit-weighted surplus graph). Further, let p = kkk −−
2

)1( . This 

transformation can be done in time O(|V|2). It remains to be shown G and k form a yes-

instance for Clique if and only if G*, p and k form a yes-instance for Exact-bound Subset 

Choice. Because Clique is NP-hard even for k ≥ 5, in the following we can assume that k 

≥ 5.  

(⇒) Let G and k form a yes-instance of Clique. Then, from Observation 6.6, we 

know there exists V’ ⊆  V, such that V’ is a clique and |V’| = k. Since valueG*(V’) =  

∑∑
∈∈

+
)'(E

E
'

V
*

)(w)(w
VeVv G

ev  = |EG*(V’)| − |V’| =  kkk −−
2

)1( = p, we conclude that G*, p and 

k form a yes-instance for USG Exact Bound Subset Choice.   

(⇐ ) Let G*, p and k form a yes-instance for USG Exact Bound Subset Choice. 

Then there exists V’ ⊆  V = V* with |V’| = k and valueG*(V’) = |EG*(V’)| − |V’| ≥ p = 



 153

kkk −−
2

)1( . But that means that |EG(V’)| = |EG*(V’)| = 
2

)1( −kk  and thus, from 

Observation 6.7, we conclude that V’ is a clique for G of size k. ■ 

Note that the polynomial-time reduction in the proof above also happens to be a 

parametric reduction from k-Clique to {k, p}-USG Exact Bound Subset Choice, with p = 

kkk −−
2

)1( . Since k-Clique is known be W[1]-complete (Downey & Fellows, 1999), the 

reduction establishes that {k, p}-USG Exact Bound Subset Choice is W[1]-hard.  

Corollary 6.15. {k, p}-USG Exact Bound Subset Choice ∉  FPT (unless FPT = 

W[1]). 

Theorem 6.7 and 6.8 illustrate that classical complexity results do not 

automatically generalize to subset choice under subset-size restrictions. The same holds 

for parameterized complexity results. To know which results do generalize, and which do 

not, a case-by-case analysis will need to be performed.  

 

6.9. Conclusion 

In this chapter I have illustrated techniques for complexity analysis by considering the 

problem Subset Choice, a generalization of a model proposed by Fishburn and LaValle, 

(1996; see also van Rooij et al., 2003). Section 6.3 presented multiple polynomial-time 

reductions to prove that Subset Choice is NP-hard. Sections 6.4 and 6.5 presented 

parameterized complexity analyses of Subset Choice on conflict hypergraphs. The results 

obtained in these sections were then used, in Section 6.6, to illustrate the notion of 

‘crucial source of complexity.’ Section 6.7 contrasted UCG Subset Choice with USG 

Subset Choice and showed that, while the former is NP-hard, the latter is in P. Finally, 

Section 6.8 considered Subset Choice with subset-size restrictions, and illustrated that 

results obtained for subset choice problems without subset-size restrictions do not 

necessarily generalizes to subset choice problem with subset-size restrictions.  

 Besides illustrating techniques, the analyses have lead to some interesting 

observations about Subset Choice. Among other things, we have found that Subset 

Choice is computationally easy (1) on unit-weighted conflict graphs if q is not too large, 

(2) on conflict graphs if q and ΩV are not too large, (3) on conflict hypergraphs if q, ε, 



 154

and ΩV are not too large, and (4) on unit-weighted surplus graphs.  In contrast, Subset 

Choice on unit-weighted surplus graphs is computationally hard if there is an exact bound 

on the size of the chosen subset. Further, we have found that the parameter sets {p, ε, ωV, 

ΩV, ωE, ΩE} and {q, ε, ωV, ωE, ΩE} do not constitute crucial sources of complexity for 

Subset Choice—not on general hypergraphs, and not on conflict hypergraphs.  

Many open questions remain. As noted in Section 6.5, it remains to be shown 

whether {q, ΩV} or {q, ε, ΩV} is a crucial source of complexity in Subset Choice on 

conflict hypergaphs. In other words, does the span of a value-structure (i.e., the degree of 

interaction between choice alternatives) add non-polynomial complexity over and above 

q and ΩV? Further, we do not know yet whether Subset Choice on surplus hypergraphs is 

in P. Also the effect of subset-size restriction on the computational complexity of Subset 

Choice remains to be explored.   

In this chapter I have chosen to distinguish between conflict hypergaphs and 

surplus hypergaphs. These choices were motivated by (1) the belief that there exist real-

world value-structures that conform to one of these two types of hypergraphs, and (2) the 

search for useful classical and/or fixed-parameter tractability results for special cases of 

Subset Choice. Conflict hypergraphs and surplus hypergraphs are, of course, just two 

examples of value-structures that may arise in practice. Future research may aim to study 

also other types of value-structures that arise in real-world situations (e.g, value-

structures that can be modeled by ‘intersection hypergraphs” as in Figure 6.2).  

 



 155

Chapter 7. Cue Ordering and Visual Matching 

 

Chapters 5 and 6 presented detailed complexity analyses of the problems Coherence and 

Subset Choice. Both Coherence and Subset Choice are (modeled as) hypergraph 

problems. Complexity analysis is of course not restricted to that particular class of 

problems—it extends to all combinatorial problems (see e.g. Downey & Fellows, 1999). 

To illustrate, this chapter discusses two very different problems; the first is a permutation 

problem and the second is a number problem. The permutation problem is called Min-

Incomp-Lex and was formulated by Martignon and Schmitt (1999; Schmitt, 2003) in the 

domain of binary-cue prediction. The number problem is called Bottom-up Visual 

Matching and was formulated by Tsotsos (1989, 1990) in the domain of visual search. 

We consider each problem in turn and sketch how the parameterized complexity 

techniques introduced in Chapter 4 also apply to these types of problems.  The chapter 

closes with a combined discussion.  

 

7.1. Min-Incomp-Lex 

Here we consider the problem Min-Incomp-Lex, as formulated by Martignon and Schmitt 

(1999; Schmitt, 2003). Section 7.1.1, explains the application of this problem in the 

domain of binary-cue prediction (see also Martignon & Hoffrage, 2002). Section 7.1.2 

presents notation, terminology and the exact problem definition of Min-Incomp-Lex. 

Finally, in Section 7.1.3, we discuss the result by Martignon and Schmitt (1999; Schmitt, 

2003) that Min-Incomp-Lex is NP-hard, and sketch some preliminary fpt-results.  

7.1.1. Motivation: Binary-Cue Prediction 

Martignon and Schmitt (1999; see also Gigerenzer & Goldstein, 1996; Martignon & 

Hoffrage, 2002; Todd & Gigerenzer, 2000) studied the cognitive task of predicting the 

ordering of two objects (is a > b? or is b > a?) based on information about relevant 

features of the objects. As an example, consider the following scenario. You are asked 

which of two cities (the objects), say, Amsterdam and The Hague, has the larger 

population (the ordering). You are further given the following information (the features): 

Amsterdam has an international airport while The Hague does not, both cities have a 



 156

street-car system, Amsterdam is the capital of the Netherlands, Dutch government is 

stationed in The Hague. Note that each feature takes on a binary value  (e.g., a city either 

is a capital city or it is not; a city either has an airport or it does not). Further, the features 

serve as (fallible) cues to the relationship between the two cities with respect to their size 

(e.g., capital cities tend to be larger than other cities, government cities are typically 

larger than other cities).  

If the presence (absence) of a feature serves as a cue that the object is likely 

“large,” then we code the presence (absence) of that feature as ‘1,’ and code the absence 

(presence) of that feature as ‘0.’ For example, in Figure 7.1, we are given a set of objects 

A = (a1, a2, …, a6) and set of features F = {f1, f2, …, f10}.  Each object ai ∈  A has a value 

(either ‘1’ or ‘0’) for each of the 10 features, f1, f2, …, f10. Further, for simplicity, objects 

are labeled according to size, with a1 > a2 > … > a6. Note that, in the task of binary-cue 

prediction this ordering is unknown, and the task is to predict the order for any given pair 

based on the feature values. Since the feature values are fallible cues the prediction may 

be incorrect.  

  

f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8 f 9 f 10

a 1 1 0 1 1 0 1 1 1 1 1
a 2 1 1 1 1 0 1 1 0 0 1
a 3 0 1 1 0 0 0 1 1 0 0
a 4 1 0 0 1 0 1 0 1 0 1
a 5 0 0 0 0 0 1 0 0 0 0
a 6 0 0 0 0 0 1 0 0 0 0  

Figure 7.1. Illustration of a binary-cue prediction task. 
A set of objects A = (a1, a2, …, a6) and set of features F = {f1, 
f2, …, f10}. The binary-value (0 or 1) of object ai on feature fj is 
listed in cell (i,j) of the matrix. Objects are labeled according to 
size, i.e., a1 > a2 > … > a6. The ordering of objects is unknown 
to the person performing the binary-cue prediction task. 

 

Say you are given the pair of objects (a1, a3) ∈  A × A from Figure 7.1. How would you 

use the information about the features of a1 and a3 to predict which is the larger of the 

two? There are several reasonable strategies one may take. One strategy described by 



 157

Martignon and Schmitt (1999) is the lexicographic strategy (see also Gingerenzer & 

Goldstein, 1996; Todd & Gigerenzer, 2000; Martignon & Hoffrage, 2002; cf. Payne et al. 

1993). This strategy works as follows: For a given pair of objects we compare their 

features values, considering features in a pre-specified order, and as soon as a feature is 

encountered for which the two objects take a different value, we predict that the object 

with value ‘1’ on that feature is the larger of the two. 

To illustrate, consider again Figure 7.1. We define a fixed permutation π(F) of n 

features, π(F) = < fπ1, fπ2, …, fπn>. For example, for F = {f1, f2, …, f10} in Figure 7.1 let 

us set π(F)  = < f8, f5, f2, f4, f1, f7, f6, f10, f9, f3>. This permutation is then used to compare 

every possible pair in A × A as follows. For each pair we consider the features in the 

order specified by π(F); as soon as we encounter a feature that takes a different value for 

the two objects, search is terminated and we return the object with the value ‘1’ on that 

feature (the returned object is predicted to be the larger of the two). For example, let (a1, 

a3) ∈  A × A be the pair that we are comparing at this moment. We start by considering the 

first feature fπ1 = f8 in our predetermined feature permutation π(F). We note that a1 and a3 

both take the same value on this feature (both have value ‘1’), so the feature does not 

serve as a cue to the order of these two objects (we say f8 does not distinguish between a1 

and a3). We continue by considering the second feature in the permutation, fπ2 = f5. 

Because f5 also does not distinguish between a1 and a3 we continue to consider the third 

feature in the permutation, fπ3 = f2, and find that a1 and a3 have a different value on this 

feature (one has value ‘1’ and the other value ‘0’). Because a3 is the one with value ‘1,’ 

we predict a3 is the larger object.   

In our example, using the feature permutation π(F)  = <f8, f5,  f2, …, f9,  f5>, we 

predicted that a3 is larger than a1. This is an incorrect prediction, since a1 > a3. We could, 

of course, change the feature permutation so that pair (a1, a3) would be compared 

correctly (e.g., we could set π(F) = <f8,  f5,  f1, …,  f9,  f5> instead), but this may cause 

other pairs to be compared incorrectly (e.g., pair (a3, a4) is compared incorrectly by the 

new permutation, while it was compared correctly by the original permutation).  



 158

Clearly, when using the Lexicographic strategy as described here, the total 

number of incorrect paired-comparisons one will make for a given set of objects A (i.e., 

the total number summed over all possible m(m −1)/2 pairs for |A| = m objects) depends 

on how the permutation π(F) is defined. Martignon and Schmitt (1999) studied the task 

of determining an optimal feature permutation—i.e., one that leads to a minimum number 

of total incorrect comparisons. They called this task Min-Incomp-Lex.65 The next section 

defines this problem more formally.  

7.1.2. Notation, Terminology and Problem Definition 

We start by defining notation and terminology. Let A = {a1, a2, …, am} denote a set of 

objects and let F = {f1, f2, …, fn} denote a set of features, with |A| = m and |F| = n. For 

each a ∈  A there is an associated value bi(a) ∈  {0, 1} denoting the binary-value that 

object a takes on feature fi, i = 1, 2, …, n. The vector [b1(ai) b2(ai)  … bn(ai)] we call the 

feature vector of ai and the vector [bj(a1) bj(a2)  … bj(am)] we call the object vector of 

feature fj. For example, in Figure 7.1 feature vectors appear in the rows, and object 

vectors appear in the columns (e.g. object a2 has feature vector [1 1 1 1 0 1 1 0 0 1] and 

feature f4 has object vector [1 1 0 1 0 0]). 

 There is a complete ordering S(A) on the elements in A: i.e., for any two objects 

ai, aj ∈  A, i ≠ j, we have either ai > aj or ai < aj in S(A). Unless otherwise noted, objects in 

A are labeled in order: i.e., a1 > a2 > a3 > … > am.66 We say a feature fk distinguishes a 

pair of objects (ai, aj) ∈  A × A, if bk(ai) ≠ bk(aj). Further, if bk(ai) > bk(aj) then fk  is said to 

predict that ai > aj, and if i < j we say the prediction is correct (by this we mean that the 

prediction matches the order of ai, aj in S(A). A permutation of features F = {f1, f2, …, fn} 

is denoted by π(F) = <fπ1, fπ2, …, fπn>.  

We next define the Lexicographical (LEX) algorithm. LEX is an algorithm that 

takes as input a set of objects A = {a1, a2, …, am}, a complete ordering S(A) = (a1 > a2 > 

a3 > … > am) of objects in A, a set of features F = {f1, f2, …, fn}, a set of pairs of distinct 

                                                 
65 Min-Incomp-Lex stands for minimum number of incorrect comparisons under the 
lexicographic strategy. 
66 The only exception to this rule appears in the proof of Theorem 7.1, where the labeling 
of objects in A is driven by the reduction. 



 159

objects P ⊆  A × A, and a permutation π(F) =  <fπ1, fπ2, …, fπn>. LEX considers each 

feature f ∈  F in the order specified by the permutation π(F). For each such feature f ∈  F, 

LEX tests for each pair (ai, aj) ∈  P, whether f distinguishes between ai and aj. If it does, 

then LEX predicts that the object with value ‘1’ on feature f is the larger of the two, and 

the pair is removed from P (for any given pair we never make a prediction more than 

once). Meanwhile, LEX keeps track of the number of incorrect predictions it makes (see 

the variable ‘error’ in the algorithm).  

Lexicographical (LEX) algorithm 

Input: A set of objects A = {a1, a2, …, am}, a complete ordering S(A) = (a1 > a2 > 

a3 > … > am) of objects in A, a set of features F = {f1, f2, …, fn}, a set of pairs of 

objects P ⊆  A × A, and a permutation π(F) =  <fπ1, fπ2, …, fπn>. 

Output: A prediction (either ai > aj or ai < aj) for each pair (ai, aj) ∈  P that is 

distinguished by at least one feature in F, and the value error. 

1. error := 0 

2. while (P ≠ ∅ ) do 

3. pick a pair (ai, aj) ∈  P 

4. x := 1 

5. while (x ≤ n) do 

6. if bπx(ai) > bπx(aj) then 

7. predict and output ai > aj 

8. if i > j  

9. error := error + 1 

10. end if 

11. x := n  

12. end if 

13. if bπx(ai) < bπx(aj) then 

14. predict and output ai < aj 

15. if i < j  

16. error := error + 1 

17. end if 



 160

18. x := n  

19. end if 

20. x = x + 1 

21. end while 

22. P := P\{(ai, aj)} 

23. end while 

24. return error 

Note that for some pairs in P the algorithm LEX may not output a prediction. This means 

that we cannot distinguish these pairs based on the features in F. Note that such 

undistinguished pairs do not contribute to the error count. Further, note that LEX runs in 

time O(nm2): There are in the worst case m(m −1)/2 pairs of objects to compare and n 

features to consider per pair. We define the function ErrorLEX(A, S(A), F, P, π(F)) = 

error, where error is the value returned in line 24 of LEX when run on input (A, S(A), F, 

P, π(F)). Note that 0 ≤ ErrorLEX(A, S(A), F, P, π(F)) ≤ |P|. Using this definition of the 

function ErrorLEX(A, S(A), F, P, π(F)) we define the problem Min-Incomp-Lex as 

follows: 

 Min-Incomp-Lex (optimization version) 

Input: A set of objects A = {a1, a2, …, am} and a set of features F = {f1, f2, …, fn}. 

Each a ∈  A has an associated value bi(a) ∈  {0, 1}, i = 1, 2, …, n, denoting the 

value that a takes on feature fi ∈  F. A complete ordering S(A), with a1 > a2 > …> 

am. 

Output: A permutation π(F) =  <fπ1, fπ2, …, fπn>, such that ErrorLEX(A, S(A), F, P, 

π(F)) is minimized. Here P ⊆  A × A denotes the set of all pairs of distinct objects 

in A. 67 

In the analyses we again work with the problem’s decision version:  

Min-Incomp-Lex (decision version) 

Input: A set of objects A = {a1, a2, …, am} and a set of features F = {f1, f2, …, fn}. 

Each a ∈  A has an associated value bi(a) ∈  {0, 1}, i = 1, 2, …, n, denoting the 

                                                 
67 Two objects ai, aj ∈  A are said to be distinct if i ≠ j.  



 161

value that a takes on feature fi ∈  F. A complete ordering S(A), with a1 > a2 > …> 

am. An integer k ≥ 0. 

Question: Does there exist a permutation π(F) =  <fπ1, fπ2, …, fπn>, such that 

ErrorLEX(A, S(A), F, P, π(F)) ≤ k? Here P ⊆  A × A denotes the set of all pairs of 

distinct objects in A. 

In the remainder of this section an instance for Min-Incomp-Lex will be denoted by a 4-

tuple (A, F, S(A), k). 

7.1.3. Classical and Parameterized Complexity 

The problem Min-Incomp-Lex has been shown to be NP-hard (Martignon & Schmitt, 

1999; Schmitt, 2003).  

Theorem 7.1. Min-Incomp-Lex is NP-hard (Martignon & Schmitt, 1999). 

The proof of Theorem 7.1 involves a reduction from Vertex Cover. I sketch the reduction 

below. For the details of the proof the reader is referred to (Schmitt, 2003). 

Sketch of proof for Theorem 7.1. Given an instance (G, k), G = (V, E), for Vertex 

Cover we create an instance (A, F, S(A), k) for Min-Incomp-Lex as follows: Let F = 

{f1, f2, …, fn, fn+1} be a feature set with |F| = |V| + 1 = n + 1. We define one special 

object a0 ∈  A with bx(a0) = 1, for x = 1, 2, …., n and bn+1(a0) = 0.  Then, for every 

vertex vi ∈  V, we define ai ∈  A with bx(ai) = 0 for x = i, and bx(ai) = 1 for all x ≠ i, and 

let ai  > a0 in S(A); and for every edge (vi, vj) ∈  E, we define ai,j ∈  A with bx(ai,j) = 0 

for x = i, and x = j, and bx(aij) = 1 for all x ≠ i, j, and let ai,j < a0 in S(A).  Note that so 

far we have defined only a partial order on the elements of A. We complete the order 

as follows: For all pairs (ag, ah) for which the order is not yet defined, if g < h then let 

ag > ah; if g > h then let ag < ah. On this transformation (G, k) is a yes-instance for 

Vertex Cover if and only if (A, F, S(A), k) is a yes-instance for Min-Incomp-Lex. ■ 

Martignon and Schmitt (1999, p. 574; see also Martignon & Hoffrage, 2002, p. 39) 

contend that, with Theorem 7.1, it is proven that there are no essentially simpler 

strategies for solving Min-Incomp-Lex than by searching through all n! possible 



 162

permutations of n features.68 Since, ErrorLEX(A, S(A), F, P, π(F)) can be computed in 

time O(nm2) per permutation π(F),  the proposed exhaustive search would run in time 

O(n! nm2). In the following we qualify the claim by Martignon and Schmitt.  

Although Martignon and Schmitt are correct in saying that Theorem 7.1 

establishes that no polynomial-time algorithm can solve Min-Incomp-Lex (unless P = 

NP), there may still exist algorithms with running times that are polynomial in n = |F| 

(albeit non-polynomial in other aspects of the input). In other words, there may exist an 

fpt-algorithm that runs in time O(g(κ)nα), where α is a constant, κ is some input 

parameter of Min-Incomp-Lex, and function g depends only on κ (not on n). A first 

obvious input parameter for Min-Incomp-Lex is the size of the set of objects, |A| = m. 

Next we show there exists an fpt-algorithm for m-Min-Incomp-Lex that runs in time 

O(g(m) nα), with g(m) = 2m!m2 and α = 2.   

Consider again Figure 7.1, and observe that, for example, the object vectors for f1 

and f4 are the same; i.e., both are [1 1 0 1 0 0]. This means that for each pair (ai, aj) ∈  P, 

both features f1 and f4 make the same prediction (either both predict ai > aj or both predict 

ai < aj), or both make no prediction. Since in the computation of the function ErrorLEX(A, 

S(A), F, P, π(F)) we never consider a pair in P more than once, only one of f1 and f4 can 

contribute to the error count. This means that deleting one of them from F does not affect 

the answer to the problem Min-Comp-Lex. This observation leads to the following 

reduction rule:  

(MIL 1) Feature Duplicates Rule. Let (A, F, S(A), k) be an instance for Min-

Incomp-Lex. Further, let fx, fy ∈  F be two features such that for every pair (ai, aj) ∈  P 

features fx and fy make the same prediction or both features make no prediction. Then let 

(A, F*, S(A), k) with F* =  F\{ fy}, be the new instance for Min-Incomp-Lex. 

We call an instance (A, F, S(A), k) for Min-Incomp-Lex reduced if (MIL 1) does 

not apply to (A, F, S(A), k). How many features can a reduced instance have? It can have 

at most |F| ≤ 2m features, since with m objects we can have at most 2m different object 

                                                 
68 I note that, assuming P ≠ NP, an NP-hardness proof is sufficient to conclude at least 
exponential time complexity of a problem (i.e., a complexity on the order of αn for 
constant α, or worse), but not a complexity on the order of n!. 



 163

vectors. We reduce an instance in time O(n2m),69 and we can solve Min-Incomp-Lex in 

time O(|F|! n2m)—simply by checking all possible permutations of F—we conclude that 

Min-Incomp-Lex is solvable in time O(2m!nm2
 + n2m), which is O(2m! n2m2). Since O(2m! 

n2m2) is fpt-time for m-Min-Incomp-Lex, we conclude that m-Min-Incomp-Lex ∈  FPT.   

Now, a critical reader may contest that in many applications for the Min-Incomp-

Lex problem |A| is larger than |F|. In such applications 2m! >> n!, making the running 

time O(2m! n2m2) worse than the original O(n! nm2). In this case, I have two comments: 

(1) Since the size of parameters depends on the particulars of the application, knowing 

the size of parameters goes beyond complexity analysis per se. (2) Admittedly 2m! is a 

horrible function and a running time O(2m! n2m2) is unfeasible even for m as small as 5. 

The point of the illustration, however, was merely to show that it is possible to have a 

running-time that is polynomial in n. Furthermore, it may very well be possible to bound 

|F| by a much slower growing function of |A| than the one I have presented here. I leave 

this for future research to determine.  

A second point of criticism might be that, although we have shown that it is 

possible to have a running time for Min-Incomp-Lex that is polynomial in n, the strategy 

used is still not essentially different than checking all possible permutations on |F| 

features. That is, although we introduced a reduction rule (MIL 1) that potentially shrinks 

the size of F, as well as bounds |F| in a function of |A|, if (MIL 1) does not apply 

(anymore) we still proceeded with an exhaustive search on all |F|! possible feature 

permutations. In other words, the main strategy for solving Min-Incomp-Lex has 

remained basically the same; only our analysis changed.  Next we derive a more strategic 

algorithm. To do so we first define an annotated version of Min-Incomp-Lex as follows: 

Annotated Min-Incomp-Lex 

Input: A set of objects A = {a1, a2, …, am} and a set of features F = {f1, f2, …, fn}. 

Here F partitions into F1 = { f1, f2, …, fn1} and F2 = {f n1+1,  f n1+2, …, fn}. Each a ∈  

A has an associated value bi(a) ∈  {0, 1}, i = 1, 2, …, n, denoting the value that a 

takes on feature fi ∈  F. A complete ordering S(A), with a1 > a2 > …> am, and a 

permutation of the features in F1, π(F1). An integer k ≥ 0. 
                                                 
69 To compare two object vectors we need to make at most m = |A| comparisons; and 
there are at most n(n − 1)/ 2  = |F|(|F| −1)/2 pairs of features to check. 



 164

Question: Does there exist a permutation of the features in F2, π(F2), such that 

ErrorLEX(A, S(A), F, P, π(F2)) ≤ k? Here P ⊆  A × A denotes the set of pairs of 

distinct objects in A that are not distinguished by any feature in F1. 

We denote an instance of Annotated Min-Incomp-Lex by a 5-tuple (A, (F1 ∪  F2)F, S(A), 

π(F1), k). Note that Min-Incomp-Lex is a special case of Annotated Min-Incomp-Lex 

with F1 = ∅ . Annotated Min-Incomp-Lex can be thought of as the problem that arises 

when we are in the process of solving Min-Incomp-Lex: The features for the first n1 

positions of the permutation π(F) for Min-Incomp-Lex have already been determined 

(these are the features in F1, and their order is given by π(F1)). The remaining n − n1 

positions need to be filled with the features in F2.  

 We observe that the previously described reduction rule (MIL 1) for Min-Incomp-

Lex directly generalizes to the reduction rule (AMIL 1) for Annotated Min-Incomp-Lex. 

(AMIL 1) Feature Duplicates Rule. Let (A, (F1 ∪  F2)F, S(A), π(F1), k) be an 

instance for Annotated Min-Incomp-Lex. Further, let fx, fy ∈  F2 be two features such that 

for every pair (ai, aj) ∈  P, feature fx and fy make the same prediction or both features 

make no prediction. Then let (A, (F1 ∪  F2*)F*, S(A), π(F1), k), with F2* =  F2\{ fy}, be the 

new instance for Annotated Min-Incomp-Lex. 

We next derive a second reduction rule for Annotated Min-Incomp-Lex. Consider 

again Figure 7.1, and assume we have decided on the first two positions of our 

permutation, given by π(F1), with F1 = {f2, f3}. Observe that f2 and f3 together distinguish 

the pairs (a1, a2), (a1, a3), (a1, a4), (a2, a4), (a3, a4), (a1, a5), (a2, a5), (a3, a5), (a1, a6), (a2, 

a6), and (a3, a6).70 Recall that in the problem Annotated Min-Incomp-Lex P is the set of 

all pairs of distinct objects that are not distinguished by any feature in F1. Thus, in this 

example, P = {(a2, a3), (a4, a5), (a4, a6), (a5, a6)}. Now inspect f1. Even though f1 by itself 

makes an incorrect prediction for pair (a3, a4), placing f1 in the 3rd position of our 

permutation (i.e., after f2 and f3) cannot lead to an incorrect prediction anymore. Namely, 

(a3, a4) ∉  P, and for all other pairs in P the feature f1 by itself makes either no prediction 

or the correct prediction. In general, if there exists a feature f ∈  F2 that for all pairs in P 

                                                 
70 Note that which pairs are distinguished by {f2, f3} does not depend on π({f2, f3}).  



 165

either makes no prediction or makes the correct prediction, then we can safely place f in 

the (n1 +1)th position of our permutation. This leads to the following reduction rule: 

(AMIL 2) Never-Wrong Feature Rule. Let (A, (F1 ∪  F2)F, S(A), π(F1), k), with 

S(A) = (a1 > a2 > … > an), be an instance for Annotated Min-Incomp-Lex. If there exist a 

feature fx ∈  F2, such that for every pair (ai, aj) ∈  P, i < j, we have bx(ai) ≥ bx(aj) then let 

F2* = F2\{fx}, let F1* = F1 ∪  {fx}, and let π(F1*) = < π(F1), fx >. Finally, let (A, (F1* ∪  

F2*)F*, S(A), π(F*1), k) be the new instance for Annotated Min-Incomp-Lex. 

When solving Annotated Min-Incomp-Lex for an instance (A, (F1 ∪  F2)F, S(A), 

π(F1), k) we apply reduction rules (AMIL 1) and (AMIL 2) for as long as possible. If the 

rules do not apply anymore we call an instance (A, (F1 ∪  F2)F, S(A), π(F1), k) reduced*. 

Now observe that reduced* instances for Annotated Min-Incomp-Lex have a useful 

property: Every feature in F2 makes an incorrect prediction for at least one pair in P 

(otherwise (AMIL 2) would apply). We can use this observation to build a search tree 

whose depth is bounded by a function of k. We do so using branching rule (AMIL 3). 

This branching rule takes as input a reduced* instance (A, (F1 ∪  F2)F, S(A), π(F1), k). For 

each f ∈  F2 the rule (AMIL 3) creates a new node in the search tree representing the 

possibility that in an optimal permutation for (A, (F1 ∪  F2)F, S(A), π(F1), k), feature f is in 

position n1 + 1. At every node we update k to reflect the number of incorrect predictions 

made by feature f for pairs in P.  

(AMIL 3) Feature In-or-Out Rule. Let search tree node s be labeled by an 

instance (A, (F1 ∪  F2)F, S(A), π(F1), k) for Annotated Min-Incomp-Lex. Then, for every f 

∈  F2 create a child sf of node s and label it by (A, (F*1 ∪  F*2)F*, S(A), π(F*1), k*). Here 

F2* = F2\{f}, F1* = F1 ∪  {f}, π(F1*) = < π(F1), f >, and k* = k − ErrorLEX(A, S(A), {f}, P, 

π({f})).  

We now solve Min-Incomp-Lex using the following algorithm: The algorithm 

takes as input an instance for (A, (F1 ∪  F2)F, S(A), π(F1), k) for Annotated Min-Incomp-

Lex. We initialize F1 = ∅ , and start by applying reduction rules (AMIL 1) and (AMIL 2) 

until no longer possible. Then we recursively apply branching rule (AMIL 3) (while 

always reducing* before applying (AMIL 3) again), until either P = ∅  (in which case we 



 166

return the answer “yes”), or F2 = ∅  (in which case we also return the answer “yes”),71 or 

k < 0. If the algorithm halts without returning the answer “yes” then we return the answer 

“no.” 

 Note that on each application of (AMIL 3) k* ≤ k − 1 and |F2*| ≤ |F2| − 1, with |F2| 

≤ |F| = n. Thus, the ith application of (AMIL 3) leads to the creation of at most n − (i +1) 

new search tree nodes, and we never apply (AMIL 3) more than k times. This means that 

the size of the search tree is bounded by n(n − 1)(n − 2) …(n − (k −1)), which is 









− )!(
!
kn

nO . Together with the time spent at each node of the search tree, to label the 

node and reduce* an instance before branching, we conclude a total running time of 









−

22

)!(
! mn
kn

nO . 

 The described algorithm is an fpt-algorithm for {n, k)-Min-Incomp-Lex. Recall, 

however, that the goal was not to show that {n, k}-Min-Incomp-Lex ∈  FPT. This we 

already knew. Namely, as remarked at the beginning of this subsection (page 162), the 

problem Min-Incomp-Lex is solvable in time O(n! nm2), and thus {n}-Min-Incomp-Lex 

∈  FPT. Since, {n, k} ⊇  {n}, it follows that also {n, k}-Min-Incomp-Lex ∈  FPT (see 

Section 4.5, page 73). The goal here was to describe a strategy that is better than the 

naïve exhaustive search proposed by Martignon and Schmitt (1999). The algorithm that I 

have sketched here is not only more strategic, but also its running time 







−

22

)!(
! mn
kn

nO  

is better than O(n! nm2) for k < n (albeit still impractical for moderately sized n and k). 

 

 

 

 

                                                 
71 Reminder: The pairs in P that cannot be distinguished by any feature in F2 are ignored 
in the error count. 



 167

7.2. Bottom-up Visual Matching 

Here we consider the problem Bottom-up Visual Matching, formulated by Tsotsos (1989, 

1990, 1991). Section 7.2.1, explains the application of this problem in the domain of 

visual search. Section 7.2.2 presents the exact problem definition of Bottom-up Visual 

Matching. Finally, in Section 7.2.3, we discuss the result by Tsotsos (1989, 1990) that 

Bottom-up Visual Matching is NP-hard, and we show how a known result for this 

problem can be interpreted as an fpt-result. 

7.2.1. Motivation: Visual Search 

Tsotsos (1990) studied the complexity of visual search tasks. In a visual search task one 

is presented with a visual display containing a set of stimuli (e.g. a collection of green 

circles). The goal is to decide whether or not a target stimulus is present among them, 

where a target is defined as a stimulus that is different in some respect from all other 

stimuli in the display (e.g. a green square, or a red circle). In other words, the target is the 

“odd-man-out.” Figure 7.2 presents an illustration.  

 

 
 
Figure 7.2. Illustration of a visual search task.  
The target is the “odd man out;” i.e., a visual object that is different from all 
other visual objects in the display. Note that in the display on the left no 
such target is present, while in the display on the right there is.  

 

Tsotsos argues that, to perform the visual search task, the perceptual system not only has 

to search through a set of visual objects and potential targets, but it also has to determine 

for each visual object and each potential target whether or not they match. The latter 

subtask of visual search, Tsotsos calls visual matching. Since visual input is noisy, visual 

matching is not a trivial task. Consider, for example, Figure 7.3. There, on the left, a 

visual object is displayed (called the test image) and a hypothesized target is presented on 



 168

the right (called the target image). Both test image I and target image T are sets of 

pixels.72 A pixel p is a 3-tuple p = (x, y, b), where x, y specify the location of the pixel in a 

Euclidean coordinate system, and b is a positive integer representing the brightness level 

of pixel p. The images I and T use the same coordinate system and the origins coincide 

for I and T. Thus, for each pixel pi ∈  I, pi = (x, y, bi), there is a corresponding pt ∈  T, with 

pt = (x, y, bt). 

 

 
 

Figure 7.3. Illustration of a visual matching task. 
A noisy test image I (left) and a target image T (right). Here, pixels take on four 
different brightness levels: (1) white, (2) light gray, (3) dark gray, and (4) black.  

 

Do the two images in Figure 7.3 match sufficiently to warrant the response “yes, the 

target is present”? To determine this, Tsotsos proposes, the visual system computes for 

each pixel pi = (x, y, bi) ∈  I, (1) the difference in brightness of pi and pt = (x, y, bt), 

defined as diff(pi) = |bi − bt|; and (2) the correlation in brightness for pi and pt = (x, y, bt), 

defined as corr(pi) = bibt. Figure 7.4 illustrates the computation of these functions for the 

test and target image in Figure 7.3.  

                                                 
72 My characterization of the matching task here is a simplification of the one by Tsotsos 
(1989, 1990). The three main simplifications are as follows: (1) Here we assume that 
each pixel has only one task relevant feature (brightness), while Tsotsos’ model allows 
pixels to have multiple features (e.g. color, depth, motion). (2) Here we assume that 
brightness values are represented by non-negative integers, while Tsotsos allows them to 
take on any non-negative value of fixed precision. (3) Here we assume |I| = |T|, while 
Tsotsos allows I to be larger than T or vice versa.  Note that the restrictions that apply 
here are for simplicity of exposition only and do not alter the nature of the task in any 
fundamental way (see also Tsotsos, 1991). 



 169

10210
00102
00000
01110
00000

21821
111213
111611
1122121
1611116

21221
11313
11411
13231
41114

11411
11411
11411
14141
41114

bi bt

diff(pi) corr(pi)

 
 

Figure 7.4. Illustration of Top-down or Bottom-up Visual Matching 
The two matrices at the top give a numeric representation of the brightness values in 
the image I (top-left) and the target T (top-right) from Figure 7.3. The matrices at the 
bottom show for each of the 25 pixels in I, the absolute difference of the brightness 
value of that pixel and its corresponding pixel in T (bottom-left), and the product of 
the brightness value of that pixel and its corresponding pixel in T (bottom-right).   

 

Then, one possible way of determining whether or not a satisfactory match exists is as 

follows:  

(1) Compute the sum of all difference values, ∑ ∈ Ip
p)(diff , and the sum of all 

correlation values, ∑ ∈ Ip
p)(corr . 

(2) Set two criteria θ and φ (Here θ represents that largest satisfactory total difference 

between test and target, and φ represents the smallest satisfactory total correlation 

between test and target image). 

(3) If  ∑ ∈ Ip
p)(diff ≤ θ and ∑ ∈ Ip

p)(corr ≥ φ, then we return the answer “yes” (i.e., we 

conclude a satisfactory match between test and target) and “no” otherwise.  

Because in step (1) the boundary of the test/target image is used to guide the computation 

of the match, Tsotsos calls this approach Top-down Visual Matching. Top-down Visual 

Matching is computationally easy and solvable in time O(|I|) (or in time O(|T|), since |I| = 

|T|). In contrast, the problem Bottom-up Visual Matching is computationally much 



 170

harder. Here the task is to decide whether there exist any arbitrary73 subset of pixels I’ ⊆  

I, such that ∑ ∈ '
)(diff

Ip
p ≤ θ and ∑ ∈ '

)(corr
Ip

p ≥ φ. In other words, in Bottom-up Visual 

Matching, unlike in Top-Down Visual Matching, the boundaries of the image and/or the 

target are not used to guide the search for a match. Clearly, we can solve Bottom-up 

Visual Matching in time O(2|I|).74 But the question is: Can we solve Bottom-up Visual 

Matching more efficiently? Section 7.2.3 discusses Tsotsos’ answer to this question, and 

Kube’s (1990, 1991) critique of it.  

7.2.2. Notation, Terminology and Problem Definition 

Let I denote an image, and let T denote a target. Both I and T are sets of pixels, with |I| = 

|T|. A pixel p is a 3-tuple p = (x, y, b). Here coordinates (x, y) represent the location of p 

in a Euclidean coordinate system that is the same for both I and T; and b is a non-negative 

integer representing the brightness level of p. For each pixel pi ∈  I, pi = (x, y, bi), there is 

a corresponding pt ∈  T, with pt = (x, y, bt). For each such pair of pixels, we define the 

function diff(pi) = |bi − bt| and the function corr(pi) = bibt. Then, the problem Bottom-up 

Matching is defined as follows: 

Bottom-up Visual Matching  

Input: An image I and a target T. Each pixel pi = (x, y, bi), pi ∈  I, with pt = (x, y, 

bt), pt ∈  T, has an associated value diff(pi) = |bi − bt| and an associated value 

corr(pi) = bibt. Two positive integers θ and φ. 

Question: Does there exist a subset of pixels I’ ⊆  I such that ∑ ∈ '
)(diff

Ip
p ≤ θ 

and ∑ ∈ '
)(corr

Ip
p ≥ φ? 

Note that, for each p ∈  I, the values diff(p) and corr(p) are part of the input, and need not 

be computed anymore. This assumption is made to simplify the discussion and is adopted 

from Tsotsos (1989, 1990).  

                                                 
73 Tsotsos explicitly allows I’ to be a subset of pixels that are not spatially contiguous 
(see e.g. Tsotsos, 1990, p. 429). 
74 Compute the functions ∑ ∈ '

)(diff
Ip

p and ∑ ∈ '
)(corr

Ip
p for all of the 2|I| possible 

subsets I’ ⊆  I and compare them to φ and θ respectively. 



 171

7.2.3. Classical and Parameterized Complexity 

The problem Bottom-Up Visual Matching has been shown to be NP-hard (Tsotsos, 

1989). 

Theorem 7.2. (Tsotsos, 1989) Bottom-Up Visual Matching is NP-hard 

The proof by Tsotsos (1989) involves a reduction from the known NP-hard problem 

Knapsack. The decision version of this problem is as follows. 

Knapsack  

Input: A finite set U. Each u ∈  U has a size s(u) ∈  Z+ and a value v(u) ∈  Z+. 

Positive integers B and K.  

Question: Does there exist a subset U’ ⊆  U such that ∑
∈

≤
'

)(
Uu

Bus  and 

∑
∈

≥
'

)(
Uu

Kuv ? 

The problems Bottom-up Visual Matching and Knapsack are clearly very related. The 

only difference between the two problems is the following. In Knapsack, for each u ∈  U, 

s(u) and v(u) can take arbitrary integer values, while in Bottom-up Visual Matching, for 

any pi ∈  I, the value that corr(pi) can take is constrained by diff(pi), and vice versa. 

Consider, for example, corr(pi) =12. Then we can have at most 3 different values for 

diff(pi). We can have diff(pi) = 1 (if bi = 3, bt = 4, or vice versa), or diff(pi) = 4 (if bi = 2, 

bt = 6, or vice versa), or diff(pi) = 11 (if bi = 1, bt = 12, or vice versa). This means that we 

cannot have arbitrary integer values for diff(pi) go with arbitrary integer values for 

corr(pi), as in Knapsack. As a consequence of this difference, Bottom-up Visual 

Matching is a special case of Knapsack, and thus the NP-hardness of Knapsack does not 

directly imply that Bottom-up Visual Matching is NP-hard. Nevertheless, Tsotsos has 

shown that there exists a polynomial-time reduction from Knapsack to Bottom-up Visual 

Matching, hence proving Theorem 7.2. Because the proof is quite elaborate I will not 

repeat it here. The interested reader is referred to Tsotsos (1989) for the proof.  

In his 1990 paper, Tsotsos wrote that Theorem 7.2 implies that the complexity of 

Bottom-up Visual Matching is inherently exponential in the number of pixels in the 

image, i.e., O(2|I|). In a commentary, Kube (1990; see also Kube, 1991) replied that 

Tsotsos claim is incorrect because Bottom-up Visual Matching is not NP-hard “in the 



 172

strong sense.” To explain we consider the strategy for solving Bottom-up Visual 

Matching described by Kube (1991). 

The strategy used by Kube (1991) is generally known as dynamic programming 

(e.g. Goodrich & Tamassia, 2002). The basic idea of dynamic programming is that the 

optimal solution to a problem contains an optimal sub-solution. Using the known 

optimality of the sub-solutions within sub-solutions the algorithm recursively builds an 

optimal solution. I sketch the algorithm by Kube (1991) below: 

Kube’s Algorithm  

Input: An instance (I, T), with I = {p1, p2, …, pn}, for Bottom-up Visual Matching 

Output: “yes” if (I, T) is a yes-instance for Bottom-up Visual Matching, and “no” 

otherwise. 

[Description of algorithm:] Let BEST(i, j) be a function that outputs the 

maximum value of corr(I’) over all subsets I’ ⊆  I with I’ = {p1, p2, …., pk}, k ≤ i, 

and diff(I’) ≤ j. Note that, if we know the value of BEST(|I|, θ), then we have 

solved Bottom-up Visual Matching. Namely, if BEST(|I|, θ) ≥ φ then we know 

that the answer is “yes” (there exists a subset I’ ⊆  I with corr(I’) ≥ φ and diff(I’) ≤ 

θ), and if BEST(|I|, θ) ≥ φ  the answer is “no.” We compute BEST(|I|, θ) as 

follows:  

(1) We define BEST(i, j) = −∞ for all i ≤ 0 and j ≤ 0. 

(2) For j = 1, 2, …, θ we do the following: If diff(p1) ≤ j then we define 

BEST(1, j) = corr(p1), else we define BEST(1, j) = 0. 

(3) We set i = |I| and j = θ. 

(4) We recursively apply the rule BEST(i, j) = MAX(BEST(i−1, j), corr(pi) + 

BEST(i−1, j −diff(pi))).75 

                                                 
75 To see that the rule is valid consider the following: Let I’ be a subset of pixels such that 
corr(I’) is maximum and diff(I’) ≤ j. In other words, BEST(i, j) = corr(I’). We distinguish 
two cases: 
(1) Let pi ∉  I’. Then corr(I’) = BEST(i, j) = BEST(i−1, j), since BEST(i−1, j) outputs the 

maximum value of corr(I*) over all subsets I* ⊆  I, with I = {p1, p2, …., pi−1}, and 
diff(I’) ≤ j.  



 173

If the computed value BEST(|I|, θ) is such that BEST(|I|, θ) ≥ φ, then we output 

“yes,” else we output “no.” [End of description] 

In the recursion sketched above we compute BEST(i, j) only for values 0 < i ≤ |I| and 0 ≤ 

j ≤ θ. Hence Kube’s algorithm computes BEST(|I|, θ) in time O(|I| θ). This function is not 

exponential in |I|, so indeed the statement by Tsotsos that the time-complexity of Bottom-

up Visual Matching is inherently exponential in |I| is hereby refuted. 76 Kube (1991) goes 

on to argue that Bottom-up Visual Matching is only hard if brightness values are very 

large. Let λ denote the largest brightness value (i.e., for all pi ∈  I, we have bi ≤ λ). Then 

∑ ∈ Ip
p)(diff  ≤ λ|I|. Now observe that, if ∑ ∈ Ip

p)(diff  ≤  λ|I|  ≤ θ, then the problem 

Bottom-up Visual Matching is trivial.77 Thus we conclude that for any non-trivial 

instance we have θ ≤ λ|I|, and thus Bottom-up Visual Matching is solvable in time 

O(|I|2λ). In sum, if λ or θ is small, then Bottom-up Visual Matching is practically 

feasible. 

Although running times like O(|I|θ) and O(|I|2λ) may look like polynomial 

running times, it is important to realize that they are not.78 Recall from Chapter 2 (page 

28) that the complexity of an algorithm is measured in terms of the length of the input 

when encoded in a reasonable way. Since θ and λ are numbers, a reasonable encoding of 

them would be in n-ary with n ≥ 2. Then the size of the encoding of θ is O(lognθ), and 

O(|I|θ) is not bounded by any polynomial of O(|I| lognθ), n ≥ 2. Similarly, the size of the 

encoding of λ is O(lognλ), and O(|I|2λ) is not bounded by any polynomial of O(|I|2 lognλ), 

n ≥ 2 (see also Garey & Johnson, 1979).  
                                                                                                                                                 
(2) Let pi ∈  I’. Then corr(I’) = BEST(i, j) = corr(pi) + BEST(i −1, θ −diff(pi)), since 

BEST(i −1, θ −diff(pi)) outputs the maximum value of corr(I*) over all subsets I* ⊆  I 
= {p1, p2, …., pi−1} with diff(I*) ≤ θ −diff(pi).  

Since corr(I’) is maximum we conclude that BEST(i, j) = MAX(BEST(i−1, j), corr(pi) + 
BEST(i −1, θ −diff(pi))). 
76 In his response to Kube (1991), Tsotsos (1991, p. 770) wrote that he “thought this was 
a good way of making the point for a noncomputational audience,” even though it 
“sweeps much under the rug.”  Although I understand Tsotsos’ motivation, in the present 
context I will have to go with Kube’s criticism. 
77 Then we set I’ = I, and if ∑ ∈ '

)(corr
Ip

p ≥ φ we return “yes,” and otherwise “no.” 
78 Note that if they were, then Kube’s algorithm, together with Theorem 7.2, would have 
proven P = NP. 



 174

However, if we were to place some bound on θ or λ, then O(|I|θ) and O(|I|2λ) 

would be polynomial-time functions. Importantly, this would even be the case if the 

bound were a polynomial function of |I|. For this reason, algorithms with this type of 

running time are called pseudo-polynomial time algorithms (Garey & Johnson, 1979). 

NP-hard problems that are not solvable by any pseudo-polynomial time algorithm (unless 

P = NP) are called strong NP-hard.79 

I would like to bring to the reader’s attention that a pseudo-polynomial time 

algorithm is a special case of an fpt-algorithm, viz. one in which the function f(κ) is a 

polynomial function the parameter κ (although κ itself can be a non-polynomial in the 

size of the input).  In other words, the pseudo-polynomial time algorithm described by 

Kube shows that θ-Bottom-up Visual Matching ∈  FPT and λ-Bottom-up Visual 

Matching ∈  FPT. Also note that Kube’s arguments discussed above, mirror the FPT-

Cognition thesis introduced in Chapter 3 (page 46): NP-hard problems may still be 

tractable, as long as their inherent exponential-time complexity can be captured by input 

parameters that are small.  

 

7.3. Conclusion 

In this chapter we have considered two problems, Min-Incomp-Lex (Martignon & 

Schmitt, 1999) and Bottom-up Visual Matching (Tsotsos, 1990). Both problems are very 

different from the problems discussed in Chapters 4−6, and they are very different from 

each other. I have illustrated how the techniques for complexity analysis used in previous 

chapters also apply to these problems. For example, I have presented a reduction rule to 

show that |A|-Min-Incomp-Lex is in FPT, and I showed how to construct a branching 

algorithm solving Min-Incomp-Lex in time 







−

22

)!(
! mn
kn

nO . For the problem Bottom-

up Visual Matching we have discussed Kube’s (1991) pseudo-polynomial time 

algorithm, and I have explained that this algorithm is an fpt-algorithm.  

The sole purpose of this chapter was to show how the techniques, discussed in 

detail in previous chapters, generalize to problems of very different character. As a result 
                                                 
79 All NP-hard problems considered in this work (except for the number problems 
Knapsack and Bottom-up Visual Matching) are strong NP-hard.  



 175

the discussion has been relatively brief and superficial. Many parameters and questions 

remain unexplored. For example, we have seen that n-Min-Incomp-Lex ∈  FPT and {n, 

k}-Min-Incomp-Lex ∈  FPT. It would be very interesting to know if also k-Min-Incomp-

Lex is in FPT. Further, Kube’s pseudo-polynomial time algorithm does not use the fact 

that in Bottom-up Visual Matching there are strong restrictions on the types of values that 

diff(.) and corr(.) can take (see page 171). As a consequence, the algorithm also solves 

Knapsack in the same time. Is it possible to use the restrictions on Bottom-Up Visual 

Matching to derive faster fpt-algorithms for this problem than for Knapsack?  



 176

Chapter 8.  Synthesis and Potential Objections 
 

This chapter serves to synthesize the arguments and ideas pursued throughout this work. I 

start by recapitulating the main goal of this research and summarize how I have set out to 

attain that goal. As I anticipate that this research may give rise to objections by cognitive 

psychologists, I subsequently discuss a set of potential objections. For each objection I 

identify the theoretical perspective it reflects and I give a brief response.  

 

8.1. Synthesis  

The main aim of this research has been to make the theory of computational complexity 

tangible for the cognitive psychologist, such that s/he can study the a priori feasibility of 

computational level theories. Towards this end, I have presented a set of chapters—each 

chapter contributing to the main goal in its own way.  

Chapter 1 explained that, at the computational level, cognitive theories are 

mathematical functions. Once it is recognized that cognitive systems (are thought to) 

‘compute’ functions, the question “which functions can be computed by cognitive 

systems?” becomes a natural one to ask. The answer to this question can then serve as a 

guiding principle in the development of cognitive theories.  

In the above, the meaning of ‘compute’ is key. Many cognitive psychologists 

have an intuitive idea of computation and computability, but often they lack a formal 

understanding. This can lead to all kinds of preconceptions about what types of 

mechanisms are, and are not, computational (see also Section 8.2). Chapter 2 was 

intended to remedy this problem, by presenting a brief but accessible introduction to the 

theory of computation. Furthermore, the exposition in this chapter led to the formulation 

of the Tractable Cognition thesis: Cognitive functions are among the computationally 

tractable functions.  

Chapter 3 discussed how many cognitive psychologists subscribe to the P-

Cognition thesis as a formalization of the Tractable Cognition thesis. This choice is 

motivated by the exclusive use of classical complexity theory in present-day cognitive 

psychology. Based on parameterized complexity theory, and its accompanying notion of 

fixed-parameter tractability, I have proposed the FPT-Cognition thesis as an alternative 



 177

formalization of the Tractable Cognition thesis. I have explained that, despite its apparent 

plausibility, the P-Cognition thesis is overly restrictive and at risk of excluding veridical 

cognitive theories from empirical investigation. Unlike the P-Cognition thesis, the FPT-

Cognition thesis recognizes that different aspects of a problem’s input may contribute to 

its complexity in qualitatively different ways. As such, the FPT-Cognition thesis 

encourages the cognitive psychologist to engage in active investigation of problem 

parameters and their contribution to a problem’s complexity. Chapters 5−7 illustrated 

possible forms that such an investigation may take. 

What good is a tool if you do not know how to use it? To enable the reader to 

learn how to perform basic complexity analysis, I have tried to make the text as much 

self-contained as possible. Chapters 2 and 3 explained and illustrated basic notions and 

techniques in classical complexity theory. Furthermore, Chapter 4 presented a whole 

toolbox of basic techniques for parameterized complexity analysis. Chapters 2−4 have the 

added advantage that they can make the formal literature in computer science more 

accessible to the reader; hence facilitating searches for different tools in that literature. 

Chapters 5−7 demonstrated the power and generality of the presented toolbox, by 

illustrating its use in analyses for four different cognitive tasks: Coherence, Subset 

Choice, Min-Incomp-Lex, and Bottom-up Visual Matching. Notably, in each case the 

analysis led to fundamental insights into the nature of the task. I believe that, after having 

read and understood these analyses, the reader is more likely to agree that complexity 

theory has a role to play in cognitive theory. Also, after having read these analyses, the 

reader will be in a much better position to appreciate the difference between the P-

Cognition thesis and the FPT-Cognition thesis.  

 

8.2. Potential Objections  

It is my experience that the views and ideas expressed in this work give rise to questions 

and/or criticisms by cognitive psychologists. This section discusses a set of objections 

that I have encountered in discussions with colleagues. Each objection can be seen as 

arising from a particular theoretical perspective. Here I distinguish between three 

perspectives: The perspective of (A) a researcher who subscribes to the P-Cognition 

thesis, but who questions the FPT-Cognition thesis; (B) a researcher who subscribes to 



 178

the computational approach to cognition, but who questions the Tractable Cognition 

thesis; and (C) a researcher who does not subscribe to the computational approach to 

cognition. Because an argument is best understood if one knows who is making it, I will 

indicate for each objection the perspective from which (I believe) it arises.  

8.2.1. The Empiricist Argument.  

(Perspective B or C) Cognitive theories should be evaluated on how well they 

explain empirical data, not on a priori plausibility.  

The Tractable Cognition thesis is in no sense intended to replace empirical evaluation of 

cognitive theories. It is well understood that, in the end, all cognitive theories must stand 

the test of empirical scrutiny. What the Tractable Cognition thesis offers is a way of 

evaluating the a priori feasibility of cognitive theories on theoretical grounds. This way, 

the thesis helps constrain the vast space of possible computational level theories for any 

given cognitive task. Further, the Tractable Cognition thesis is useful for evaluating 

(aspects of) cognitive theories that cannot (yet) be evaluated (solely) on empirical 

grounds.  This seems particularly helpful since many cognitive theories are about 

unobservable, or only indirectly observable, cognitive processes.  

Of course, if one is a non-computationalist cognitive scientist then one may not 

recognize the tractability constraint on cognitive theories. In that case see my response to 

the Cognition-is-not-Computation Argument below.   

8.2.2. The Cognition-is-not-Computation Argument 

(Perspective C) Computational complexity theory has nothing to offer cognitive 

science, since cognition is not computation. 

What is meant with this objection depends crucially on the meaning of the phrase  

“cognition is not computation.” I believe the phrase is associated with a multitude of 

meanings. In my reactions below, I distinguish between four possible versions of the 

argument. 

Version 1: Complexity analysis does not apply to cognition because cognition is 

not symbolic computation. 

In cognitive science, the terms computation and computationalism have become 

associated with the symbolic tradition (also referred to as good-old-fashioned-artificial-



 179

intelligence or GOFAI), and sometimes even with particular models in this tradition (e.g. 

Anderson, 1987; Fodor, 1987; Pylyshyn, 1984, 1991; Newell & Simon, 1988a, 1988b). 

As explained in Chapters 1 and 2, to recognize the role of complexity theory in cognitive 

science all that is required is a commitment to computationalism in some form or 

another—not to any particular form of computationalism (cf. Chalmer’s, 1994, minimal 

computationalism). Many theories that are considered ‘non-computational’ may still fall 

under the heading of computationalism in this broad sense. For example, despite their 

presumed ‘non-computational’ status (e.g. Port & van Gelder, 1995; Thelen & Smith, 

1994; van Gelder, 1995, 1998, 1999), dynamical systems models can be subjected to 

computational complexity analysis (unless Version 2 applies).  

Version 2: Complexity theory does not apply to cognitive systems, because 

cognitive systems do not compute functions.  

The present work is based on the idea that cognitive systems are to be understood in 

terms of the input-output mappings that they realize; i.e., in terms of the functions that 

they compute (see Chapter 1). It may be, however, that the purpose of some (or all) 

cognitive systems is not to compute any functions at all. Instead, for example, their 

purpose may be to cycle through a set of states indefinitely, without ever halting and 

producing an output (cf. Levesque, 1988, p. 385). In such cases we can reasonably say 

that the system is computing (in the sense that each state leads to a different state in a 

deterministic way), but the system cannot be said to be computing a function (since it 

never produces an output). As should be clear, such cognitive systems are precluded from 

the type of analyses presented here (see also Version 4 of the Cognition-is-not-

Computation Argument).  

Version 3: Cognitive functions need not be computationally tractable, because 

cognitive systems realize their input-output mappings via non-computational 

means.  

Some non-computationalists do not question that the purpose of cognitive systems is to 

realize input-output mappings (i.e., they do not subscribe to Version 2), but they propose 

that cognitive systems realize such mappings in ‘non-computational’ ways (e.g. Horgan 

& Tienson, 1996; Krueger & Tsav, 1990; but see also my comment to Version 1). On this 

view, cognitive functions need not be computationally tractable. This may be so. But the 



 180

explanatory value of theories that propose that a (potentially intractable) cognitive 

function is realized in some non-computational way is questionable (see also Cherniak, 

1986; Levesque, 1988). As Tsotsos puts it:  

“Experimental scientists attempt to explain their data, not just describe it (…) 

There is no appeal to non-determinism or to oracles that guess the right answer or 

to undefined, unjustified, or “undreamed of” mechanisms that solve difficult 

components. Can you imagine theories that do have these characteristics passing a 

peer-review procedure?” (Tsotsos, 1990, p. 466).  

Version 4: Complexity theory does not apply to cognition, because computation is 

an altogether wrong way of thinking about cognition.  

Finally, Version 4 of the Cognition-is-not-Computation Argument represents the non-

computationalist that is not persuaded by any of my reactions to Versions 1−3. In my 

opinion, even this researcher should appreciate the contribution that the Tractable 

Cognition thesis makes to cognitive science. Namely, a non-computationalist can still 

recognize that tractability is a constraint on computational theories of cognition. Then the 

Tractable Cognition thesis offers the non-computationalist a way of evaluating the 

success of his/her competition. If, in the long run, human cognition systematically defies 

tractable computational description then this can be taken as empirical support for the 

idea that computation is the wrong way of thinking about cognition.  

8.2.3. The Super-Human Argument 

(Perspective B or C)  Humans are found to perform computationally intractable 

tasks. This goes to show that tractability is not a constraint on human 

computation. 

Some tasks that are performed effortlessly by humans are presently being modeled by 

computational intractable functions (e.g. Haselager, 1997; Oaksford & Chater, 1993, 

1998). Some researchers interpret this as evidence that people perform computationally 

intractable tasks (e.g. Siegel, 1990). In my view the argument is flawed. There are two 

possibilities: either one is a computationalist (Perspective B) or one is not (Perspective 

C). If one is, then one should concede that either the tasks are incorrectly modeled or that 

the wrong criterion for tractability has been adopted. If one is not, then one does not 



 181

recognize that the models truly capture the nature of the tasks in the first place, and thus 

their classification as ‘intractable’ is irrelevant the conceptualization of the tasks. (Unless 

Version 3 of the Cognition-is-not-Computation Argument applies. In that case see my 

response on page 179). 

8.2.4. The Heuristics Argument 

(Perspective B) Humans may approach intractable cognitive tasks by using 

heuristics/approximation algorithms. Then intractability is not an issue.  

This argument we already encountered in Chapter 3 (page 40), and my reaction still 

stands: Since heuristics do not solve the problem they are used for, they are 

unsatisfactory algorithmic level descriptions. If one wishes to maintain that a ‘heuristic’ 

M is a satisfactory algorithmic description of a cognitive system, then one has to concede 

that the task being solved at the computational level is the task solved by M, not some 

different task. The story is different for approximation algorithms, since in those cases 

there is a provable and lawful relationship between the behavior of the algorithm and the 

problem Π that it approximates. However, if indeed an approximate solution serves just 

as well, then the computational level theory should incorporate this aspect of the task, 

making the computational level theory Π an approximation problem Π’, and making the 

approximation algorithm for Π an exact algorithm for Π’.   

 One might counter that my argument makes sense for descriptive but not for 

normative cognitive theories. Indeed normative theories just need to be sound—not 

necessarily tractable. However, when evaluating how cognitive systems fare in 

comparison to normative models it may not make sense to compare them to standards 

that are physically unrealizable in the first place. For example, Oaksford and Chater 

(1998, p. 113), argue that expecting humans to behave rationally on intractable tasks is 

like expecting them to be able to “breath under water, even though [they] do not possess 

gills.” (cf. Cherniak, 1986; Frixione, 2001; Gigerenzer & Goldstein, 1996; Oaksford & 

Chater, 1993; Simon, 1990; Todd & Gigerenzer, 2000). 



 182

8.2.5. The Average-case Argument 

(Perspective B) A task that is classified as intractable on a worst-case analysis 

may still be tractable in practice. An average-case measure of complexity should 

be used instead. 

In this work we adopted a worst-case measure of complexity. The use of this measure is 

validated by the fact that the worst-case happens in practice  (if it would not, then we 

would be dealing with a restricted version of the problem, which would have a different 

worst-case). Furthermore, for the purpose of determining the complexity of a task, worst-

case and average-case analysis often leads to the same conclusion (see also Totsos, 

1990). Consider, for example, the task of finding a particular number, s, in a list of n 

numbers. Assume that s occurs exactly once in any given list and that numbers in a list 

appear in any arbitrary order. Then, in the worst-case we consider n numbers in the list 

before we find s. If we perform this task many times, each time for a new list, then on 

average we consider 
2
n numbers before we find s. Note that 

2
n is on the same order of 

magnitude as n—thus both are polynomial. Similarly, to find a particular subset among 

all possible subsets on n elements, we need to consider 2n subsets in the worst case, and 

2n−1 subsets on average—both are exponential.  

 This is not to say that worst-case analysis and average-case analysis cannot lead 

to different conclusions about complexity. This may happen, for example, if certain 

inputs are much more likely to occur than others. Not only is it often difficult (or even 

impossible) to know the probability distribution on inputs, but the introduction of 

probability distributions makes complexity analysis much more difficult. In those cases, 

worst-case analysis of the problem with restricted inputs (excluding inputs with very low 

probability of occurrence) may provide a reasonable alternative to average-case analysis.  

8.2.6. The Parallelism Argument 

(Perspective B) Cognitive computation is (to a large extent) parallel, not serial. A 

task that is intractable for a serial machine need not be intractable for a parallel 

machine.  

We have worked with the serial Turing machine model here. Nonetheless, the arguments 

for a Tractable Cognition thesis can be extended to include parallel computation (see also 



 183

Frixione, 2001). From a complexity perspective the difference between serial and parallel 

computation may be quite insubstantial, depending on the particular parallel machine 

model used. To illustrate, let us first consider a parallel machine M with S processing 

channels, such that M computes a given serial computation by performing S steps in 

parallel (i.e. simultaneously). Further, let Π be a function with time-complexity O(f(n)). 

Then M computes Π at best in time O(
S
nf )( ).80 Note that, if S is a constant, then the speed-

up due to parallelization is by a constant factor only (see also Chapter 3, page 32), and 

O(
S
nf )( ) = O(f(n)). The speed-up factor S can of course be taken into account in the 

analysis—there is nothing inherent in complexity theory that prevents one from doing so. 

Importantly though, if f(n) is a non-polynomial function then the speed-up due to S 

becomes negligibly small very fast as n grows (see also Table 2.1 on page 32). The same 

is true if S is bounded by some polynomial function of n. Of course, if S grows non-

polynomially as a function of n, then O(
S
nf )( ) may be a polynomial running-time. In that 

case indeed time would no longer be a limiting factor, but the space required for 

implementing the astronomical number of processors would be (cf. Frixione, 2001).   

In other models of parallel computation the speed-up due to S need not be 

constant, but may grow with n.81 Importantly, though, the Invariance thesis, as discussed 

in Section 2.4.4 on page 28, includes both serial and parallel computation: It is widely 

believed that for any reasonable parallel machine the speed-up due to S will be by at most 

a polynomial amount (Frixione, 2001; Tsotsos, 1990; Parberry, 1994). In other words, if 

the Invariance thesis is true, then parallel machines cannot compute functions outside P in 

polynomial-time nor compute parameterized functions outside FPT in fpt-time. 

                                                 
80 Here we are assuming that Π is parallelizable in this way. This may not be possible for 
all functions.  
81 This is the case, for example, in the parallel random access machine (P-RAM) model, 
where M is assumed to have available S processors that can all communicate to each 
other in constant time (e.g. Gibbons & Rytter, 1988; cf. the extensions of the Turing 
machine concept discussed on page 17). 



 184

8.2.7. The Non-Determinism Argument 

(Perspective B or C) Cognitive systems are not deterministic machines, and thus 

functions that are intractable for deterministic machines may still be tractable for 

cognitive systems.  

The approach we have taken here assumes a deterministic worldview, and not, for 

example, a probabilistic worldview. In Chapter 3 we have seen how some functions that 

cannot be computed in polynomial-time by any deterministic Turing machine (unless P = 

NP), can be computed in polynomial-time by a non-deterministic Turing machine. 

Because a reader may mistakenly assume that non-deterministic computation—as defined 

in computer science—is the same as “non-deterministic” computation in the sense of 

stochastic computation (see e.g. Martignon & Hoffrage, 2002), I will clarify the 

important difference below. 

Let M be a non-deterministic Turing machine. Recall from Chapter 2, that M is 

said to “compute” a function Π if, for every possible input i, there exists at least one 

possible sequence of state transitions in M that leads to output o = Π(i). The number of 

possible different outputs that M can generate for any fixed i is ignored in this definition, 

and may be arbitrarily large. In other words, M can be seen as operating like an oracle 

that always “guesses” the right output for any given input. We now define a stochastic 

interpretation of M, called M’, as follows: The transition relation for M’ is the same as for 

M, but in M’ each possible transition has an associated probability that it occurs. Now it 

becomes clear that, if M has an arbitrarily large number of possible outputs, then the 

probability that M’ “guesses” the right output for any given function may be arbitrarily 

small. In other words, if M “computes” a function Π(i) for a given i, its stochastic version 

M’ may “compute” Π(i) with only arbitrarily small probability.  

This is not to say that stochastic computational models of cognitive systems are 

impractical or useless. On the contrary, they may very well provide better models of 

certain cognitive systems than deterministic models. But one should not be fooled into 

thinking that stochastic machines have the same abilities as non-deterministic machines. 

Even if it turns out that stochastic machines have different abilities than deterministic 

machines, this does not obviate complexity analyses in cognitive psychology. Tractability 

is as much a requirement on stochastic computation, as it is on deterministic computation. 



 185

8.2.8. The Small-Inputs Argument 

(Perspective B) For some cognitive tasks, the size of the input is small in practice. 

In those cases intractability is not an issue. 

Correct. This reasoning is also naturally captured by the FPT-Cognition thesis. As 

explained in Chapter 2 (page 47) and Chapter 4 (page 64), all problems are in FPT when 

parameterized by their input size. Thus, if the input size is small then, on the FPT-

Cognition thesis, the problem is classified as tractable. It should be noted that also no one 

who subscribes to the P-Cognition thesis would claim that tractability is an issue if input 

size is small. The problem is, of course, that for many cognitive tasks the size of the input 

as a whole is not small (or at least not small enough). It is then that the P-Cognition thesis 

and the FPT-Cognition thesis diverge. 

8.2.9. The Nothing-New Argument 

(Perspective A) The requirement that a problem be in FPT for some “small” 

input parameters is not essentially different from the requirement that a special 

case of the problem is in P.   

The claim reflects a misunderstanding about the relationship between P and FPT. 

Parameterization is not the same as problem restriction; it just determines how we 

analyze the complexity of a problem. If a problem Π, with input parameter κ, can be 

solved by an algorithm that runs in time O(f(κ)nα), where α is a constant and f(κ) is a 

function depending only on κ, not on |i|, then we say that the parameterization κ-Π is in 

FPT. It is important to realize that in this analysis the value of κ is not fixed82—it remains 

a variable just like |i|. It is true that if we were to fix κ then O(f(κ)nα) would be O(nα), and 

thus polynomial time, but the same is true also for some fixed-parameter intractable 

problems; e.g., a running time O(nκ) is not fpt-time for parameter κ but is polynomial-

time if κ is a constant. In this respect, the requirement that a problem be in FPT for some 

parameter κ is more stringent than the requirement that a problem is in P for constant κ. 

However, the requirement that the problem be in FPT for parameter κ is more lenient 

than the requirement that the problem be in P. 

                                                 
82 In this respect, the name ‘fixed-parameter tractable’ may be somewhat misleading. 



 186

 

8.2.10. The P-is-not-strict-enough Argument 

(Perspective A) Polynomial-time computability is already a too liberal constraint 

on cognitive functions. Thus the FPT-cognition thesis only makes matters worse. 

Some researchers subscribe to the idea that most, if not all, (higher-order) cognitive 

functions are of extremely low complexity (e.g. Gigerenzer & Goldstein, 1996; 

Martignon & Hoffrage, 1999, 2002; Martignon & Schmitt, 1999; Todd & Gigerenzer, 

2000).  For example, cognitive tasks “requiring more than a quadratically growing 

number of computation steps already appear to be excessively complicated” to Martignon 

and Schmitt (1999, p. 566). To such researchers, the proposal that cognitive systems 

perform non-polynomial fpt-time computations may seem outrageous.    

Figure 8.1. Polynomial time versus fpt-time. 

The figure compares polynomial time )( 2nO and fpt-time )2( nO +
κ

 for 
parameter κ. In this example κ = 10. Increasing the value of κ will cause 
the curve for the function )2( nO +

κ
 to translate upwards. 

 

First, I comment that quadratic running times are associated with even relatively simple 

(heuristic) strategies (see e.g. the Greedy Vertex Cover algorithm in Chapter 2; and the 

LEX algorithm in Chapter 7). Second, and more importantly, a non-polynomial time 

algorithm need not be slower than a polynomial time algorithm—all depends on the size 

of the parameters. Figure 8.1 illustrates that, for example, an algorithm that runs in non-

 

0

100

200

300

400

0 5 10 15 20

)( 2nO  

)2(
κ

nO +  

n 



 187

polynomial fpt-time )2( nO +
κ

 can be much faster than an algorithm that runs in 

polynomial time )( 2nO , provided only that the parameter κ is small. 



 188

Chapter 9.  Summary and Conclusions 

 
This research contributes to cognitive psychological theory on two different levels: At the 

metatheoretical level this dissertation explicates and clarifies existing arguments, as well 

as adds new arguments, for the role of complexity theory in cognitive psychology. 

Second, at the level of specific cognitive theories, this research has led to (1) a set of new 

complexity results and (2) the identification of some open problems that can guide and 

motivate new research on these theories. Sections 9.1 and 9.2 review these contributions 

respectively. I close, in Section 9.3, with ideas about future directions. 

 

9.1. Metatheoretical Contributions 

The main contributions of this research are to be found at the metatheoretical level: By 

adopting, adapting and synthesizing both new and existing ideas this research adds to the 

continuing discussion among cognitive scientists about the nature of cognition—how best 

to characterize it and how best to study it. To explicate this contribution I present here a 

list of what are the core metatheoretical contributions of this research: 

•  I have explicated and clarified existing arguments for the thesis that cognitive 

functions are constrained by tractability requirements: the Tractable Cognition 

thesis (Chapters 1−3 and 8). 

•  The Tractable Cognition thesis is traditionally seen as equivalent to the P-

Cognition thesis. I have reformulated the Tractable Cognition thesis as an 

informal thesis (Chapter 2), and I have explicated that the P-Cognition thesis is 

but one possible formalization of the Tractable Cognition thesis (Chapter 3). 

•  Classical complexity theory has influenced cognitive psychology for some time 

now, but parameterized complexity theory has so far remained unknown in 

cognitive psychology. I have shown how parameterized complexity theory 

naturally extends the application of complexity theory in cognitive psychology 

(Chapters 3, 5−8). 

•  I have explained how parameterized complexity theory, and its accompanying 

notion of fixed-parameter tractability, challenges the P-Cognition thesis (Chapters 

3, 5−8). 



 189

•  I have proposed and defended the FPT-Cognition thesis as an alternative 

formalization of the Tractable Cognition thesis (Chapter 3).   

•  By introducing techniques from the theory of parameterized complexity (Chapter 

4) and illustrating their use in the analysis of several existing cognitive theories 

(Chapters 5−7), I have illustrated how the FPT-Cognition thesis may be put into 

practice. 

•  I have reviewed a set of potential objections of the Tractable Cognition thesis, the 

FPT-Cognition thesis and the use of complexity theory in cognitive psychology in 

general (Chapters 8). For each objection I have presented a brief reply to either 

rebut or qualify the objection. 

 

9.2. Theory Specific Contributions 

In Chapters 5−7, I have presented detailed analyses of four cognitive tasks and their 

variants: Coherence, Subset Choice, Min-Incomp-Lex, and Bottom-up Visual Matching. 

The aim of these analyses was to illustrate how to perform complexity analyses of 

cognitive theories. As a consequence, we have also obtained new insights into the 

complexity of these specific tasks, demonstrated by the list of new complexity results 

summarized in Table 8.1. Furthermore, the investigations naturally lead to the 

identification of open problems that may guide and motivate further research on these 

tasks. In the following I discuss 16 open problems. For each open problem I give a brief 

motivation, always assuming P ≠ NP and FPT ≠ W[1]. 

Is Single-Element Coherence easier than Coherence? 

Thagard (2000) proposed that the problem Coherence can be used to model, for example, 

jury decision-making. In Section 5.4.3, we have considered two possible ways in which 

Coherence may model jury decision-making (cf. Thagard, 1989, 2000). This led to the 

formulation of two new problems: Single-Element Discriminating Coherence and Single-

Element Foundational Coherence. We have found that—unlike Coherence—Single-

Element Discriminating Coherence and Single-Element Foundational Coherence are in P 

for inputs with D = ∅ . The classical complexity of these two problems on general inputs 

remains unknown however.  



 190

Table 9.1. Overview of complexity results 

Coherence and Related Problems 
Coherence on networks with C+ = ∅  and w(e) = 1  

for all e ∈  E is NP-hard  Corollary 5.3, page 84 
Coherence on consistent networks is in P  Theorem 5.1, page 86 
Coherence on trees is in P  Lemma 5.4, page 89 
Discriminating Coherence is NP-hard Corollary 5.6, page 91 
Foundational Coherence is NP-hard Corollary 5.7, page 91 
Single-Element Discriminating Coherence with  
 D = ∅  is in P Corollary 5.8, page 93 
Single-Element Foundational Coherence with  
 D = ∅  is in P Corollary 5.9, page 93 
c-Double-Constraint Coherence ∈  FPT  Theorem 5.2, page 103 
c-Coherence ∈  FPT  Corollary 5.10, page 103 
Pos-Annotated Coherence ∈  P Lemma 5.11, page 113 
|P−|-Annotated Coherence ∈  FPT  Theorem 5.3, page 114 
|C−|-Annotated Coherence ∈  FPT  Corollary 5.12, page 114 
|C−|-Coherence ∈  FPT  Corollary 5.13, page 114 
|P−|- Coherence ∈  FPT  Corollary 5.14, page 114 

Subset Choice and Related Problems 
Subset Choice is NP-hard    Theorem 6.1, page 122 
UCG Subset Choice is NP-hard  Corollary 6.1, page 124 
p-UCG Subset Choice is W[1]-hard  Theorem 6.2, page 128 
q-UCG Subset Choice ∈  FPT  Theorem 6.3, page 130 
q-ECG Subset Choice ∈  FPT  Corollary 6.7, page 137 
q-VCG Subset Choice is W[1]-hard  Lemma 6.5, page 138 
{q, ΩV}-CG Subset Choice ∈  FPT  Theorem 6.5, page 139 
{∆, q}-CG Subset Choice ∈  FPT  Lemma 6.6, page 141 
{q, ε, ΩV}-CH Subset Choice ∈  FPT  Theorem 6.6, page 144 
{q, θ}-CH Subset Choice ∈  FPT  Lemma 6.8, page 145 
{q, ε, ∆}-CH Subset Choice ∈  FPT  Corollary 6.11, page 146 
USG Subset Choice ∈  P Theorem 6.7, page 149 
USG Exact-bound Subset Choice is NP-hard  Theorem 6.8, page 151 
{p, k}-USG Exact-bound Subset Choice is W[1]-hard   Corollary 6.15, page 153 

Min-Incomp-Lex 
|A|-Min-Incomp-Lex ∈  FPT  Sketched on page 163 
|F|-Min-Incomp-Lex ∈  FPT  Sketched on page 166 

Bottom-up Visual Matching 
θ-Bottom-up Visual Matching ∈  FPT  Sketched on page 174 
λ-Bottom-up Visual Matching ∈  FPT Sketched on page 174 

 

 



 191

Open Problem 1. Is Single-Element Discriminating Coherence in P?  

Open Problem 2. Is Single-Element Foundational Coherence in P? 

Can we solve c-Coherence faster? 

We have shown that the NP-hard problem Coherence is in FPT for parameter c. Section 

5.5 described a non-constructive algorithm for c-Coherence that runs in time O(2c + |P|) 

and Section 5.6 described a constructive algorithm that runs in time O(2.52c + |P|2). It is 

of interest to know if these running times can be improved. 

Open problem 3. Do there exist faster non-constructive and/or constructive fpt-

algorithms for c-Coherence? 

Is ι -Coherence in FPT? 

We have shown that the natural parameterization of Coherence, c-Coherence, is in FPT. 

But what about the relational parameterization ι -Coherence, with ι  =∑ ∈
−

Cqp
cqpw

),(
),( ?  

Open problem 4. Is ι -Coherence in FPT?  

Note that if ι -Coherence ∈  FPT then that means that Coherence is computationally 

tractable both for small and large c (since large c correspond to small ι ).  

Can we solve |P−|-Coherence and |C−|-Coherence faster? 

In Section 5.7 we have shown that |P−|-Coherence is in FPT with a running time of O(2|P−| 

|P|3), and |C−|-Coherence is in FPT with a running time O(2|C−| |P|3). It is of interest to 

study if these running times can be improved. 

Open problem 5. Do faster fpt-algorithms for |P−|-Coherence exist? 

Open problem 6. Do faster fpt-algorithms for |C−|-Coherence exist? 

Is {q, ε, ΩV} a crucial source of complexity in Subset Choice? 

In Section 6.6 we have shown that κ-CH Subset Choice ∉  FPT (unless FPT = W[1]), for 

κ = {q}, κ = {ε}, κ = {ΩV}, κ = {q, ε}, and κ = {ε, ΩV}. For the parameter set κ = {q, 

ΩV} it remains unknown whether or not κ-CH Subset Choice is in FPT. Hence, we have 

the following open problem: 

Open problem 7. Is {q, ε, ΩV} or {q, ΩV} a crucial source of complexity in CH 

Subset Choice? 



 192

Is Subset Choice computationally easy on surplus (hyper)graphs? 

We have shown that Subset Choice on unit-weighted surplus graphs is in P, but the 

classical complexity of Subset Choice on general surplus graphs and hypergraphs 

remains unknown: 

Open problem 8. Is SG Subset Choice in P? 

Open problem 9. Is SH Subset Choice in P? 

Which results generalize to Subset Choice with size restrictions? 

In Chapter 6 we studied mostly Subset Choice problems without restrictions on the size of 

the chosen subset. In many practical settings subset size restrictions may apply, and thus 

it is of interest to also study the complexity of Subset Choice problems with various types 

of size restrictions (e.g. upper bound, lower bound or exact bound). As an example, we 

have considered the problem Exact-bound Subset Choice. Interestingly, we found that 

although Subset Choice is in P on unit-weighted surplus graphs, Exact-bound Subset 

Choice is NP-hard on unit-weighted surplus graphs. This shows that complexity results 

obtained for Subset Choice problems without subset size restrictions may no longer hold 

when subset size restrictions are imposed. 

Open problem 10. Which of the complexity results obtained for Subset Choice, 

and its special cases, generalize to Exact-bound Subset Choice? 

Open problem 11. Which of the complexity results obtained for Subset Choice, 

and its special cases, generalize to Lower-bound Subset Choice?  

Open problem 12. Which of the complexity results obtained for Subset Choice, 

and its special cases, generalize to Upper-bound Subset Choice? 

Can we solve m-Min-Incomp-Lex faster? 

In Section 7.1.3 we have shown that m-Min-Incomp-Lex is in FPT with a running time of 

O(2m! n2m2). This running time is impractical even for relatively small m. 

Open problem 13. Do faster fpt-algorithms for m-Min-Incomp-Lex exist? 

Can we solve {n, k}-Min-Incomp-Lex faster? 

In Section 7.1.3 we presented two reduction rules and one branching rule for {n, k}-

Annotated Min-Incomp-Lex. Using these rules we derived an fpt-algorithm for {n, k}-



 193

Min-Incomp-Lex that runs in time 







−

22

)!(
! mn
kn

nO . Whenever k < n, this running time 

improves upon the running time O(n! nm2) for a naïve exhaustive search.  

Open problem 14. Is it possible to derive more reduction rules and branching rules 

for {n, k}-Annotated Min-Incomp-Lex so as to improve the running time for {n, 

k}-Min-Incomp-Lex even more? 

Is k-Min-Incomp-Lex in FPT? 

We know that {n, k}-Min-Incomp-Lex ∈  FPT and n-Min-Incomp-Lex ∈  FPT. However, 

the parameterized complexity of k-Min-Incomp-Lex remains unknown: 

Open problem 15. Is k-Min-Incomp-Lex in FPT? 

Can we solve Bottom-up Visual Matching faster? 

In Section 7.2.3 we have discussed how Kube’s (1991) pseudo-polynomial time 

algorithm solves the problem Bottom-up Visual Matching in time O(|I|θ) and O(|I|2λ). 

Kube’s algorithm can also be used to solve the more general problem Knapsack in the 

same time. We have seen that in Bottom-up Visual Matching there is a strong 

relationship between the corr(p) and the diff(p) for any pixel p ∈  I, while in Knapsack for 

an element u ∈  U, size s(u) and value v(u) are unrelated. 

Open problem 16. Is it possible to exploit the relationship between corr(p) and 

diff(p) to build faster and/or different fpt-algorithms for Bottom-up Visual 

Matching than for Knapsack?   

 

9.3. Musings on the Future 

Computer scientists and AI researchers routinely analyze the complexity of their 

algorithms. As Tsotsos (1989, p. 1571) writes, “this is simply good computer science.” 

Hopefully, one day, cognitive scientists and psychologists will consider it simply good 

cognitive science to analyze the complexity of their cognitive theories.  

This work embodies one of several attempts to establish complexity theory as a 

standard analytic tool in cognitive psychology (see e.g. Frixione, 2001; Levesque, 1988; 

Tsotsos, 1990, for other attempts). Of course, large-scale utilization of this tool not only 

requires recognition of its value, but also the means to use it. For this reason, cognitive 



 194

science could greatly benefit from a database of complexity results on existing cognitive 

theories (cf. Downey & Fellows, 1999; Garey & Johnson, 1979; see also Appendix B). 

As demonstrated here, once complexity results are known for many different problems, 

proving results for new problems becomes much easier. 

I have argued that cognitive theories are constrained by tractability requirements. 

This does not mean, however, that we should be out to simply classify cognitive theories 

as either tractable or intractable. On the contrary, upon finding that a given cognitive 

theory is intractable, we should investigate all kinds of different versions and aspects of 

that theory in search of tractable special cases and/or parameterizations. This search can 

provide invaluable insights into the nature of a task, far beyond what a ‘tractable versus 

intractable’ classification has to offer (cf. Downey & Fellows, 1999; Garey & Johnson, 

1979; Nebel, 1996; Wareham, 1996). Also, using complexity analysis in this way, we can 

discover ways in which cognitive systems can cope with complexity in different types of 

problem environments (i.e. for different parameter ranges)—potentially leading to 

psychological hypotheses that can be empirically tested. As always, the proof of the 

pudding will be in the eating, but I suspect that in the end the contributions of complexity 

theory to cognitive science will far surpass what we can envision at this point.    



 195

References 
 
Alber, J., Fan, H., Fellows, M. R., Fernau, H., Niedermeier, R., Rosamond, F. & Stege, 

U. (2001). Refined search tree technique for dominating set on planar graphs. 
Proceedings of the 26th International Symposium on Mathematical Foundations 
of Computer Science, LNCS 2136 (pp. 111-122). Berlin: Springer-Verlag. 

Anderson, J. R. (1987). Methodologies for studying human knowledge. Behavioral and 
Brain Sciences, 10, 467-505. 

Anderson, J. R. (1990). The adaptive character of thought. Hillsdale, NJ: Lawrence 
Erlbaum Publishers. 

Balasubramanian, R., Fellows, M. R., & Raman, V. (1998). An improved fixed-
parameter algorithm for vertex cover. Information Processing Letters, 65, 163-
168. 

Barton, G. E., Berwick, R. C., & Ristad, E. S. (1987). Computational complexity and 
natural language. Cambridge, MA: MIT Press. 

Bechtel, W. (1988). Philosophy of mind: An overview for cognitive science. Hillsdale, 
NJ: Lawrence Erlbaum Associates. 

Block, N. (1980). Introduction: What is functionalism? In N. Block (Ed), Readings in 
philosophy of psychology (171-184). Cambridge, MA: Harvard University Press. 

Bossert, W. (1989). On The extensions of preferences over a set to the power set: An 
Axiomatic characterization of a quasi ordering.  Journal of Economic Theory, 49, 
84-92. 

Brandstädt, A., Le, V. B., & Spinrad, J. P. (1999). Graph classes: A survey. Philadelphia: 
SIAM. 

Chalmers, D. J. (1994). A Computational Foundation for the Study of Cognition. 
Technical report in Philosophy-Neuroscience-Psychology. Washington 
University. 

Chen, J., Kanj, I. A., & Jai, W. (2001). Vertex Cover: Further observations and further 
improvements. Journal of Algorithms, 41(2), 280-301. 

Cherniak, C. (1986). Minimal rationality. Cambridge, MA: MIT Press. 
Church, A. (1936). An unsolvable problem of elementary number theory. American 

Journal of Mathematics, 58(2), 345-363. 
Cleland, C. E. (1993). Is the Church-Turing thesis true? Minds and Machines, 3, 283-312. 
Cleland, C. E. (1995). Effective procedures and computable functions. Minds and 

Machines, 5, 9-23. 
Cook, S. (1971). The complexity of theorem-proving procedures. Proceedings of the 3rd 

Annual ACM Symposium on Theory of Computing, 151-158.  
Cooper, G. F. (1990). The computational complexity of probabilistic inference using 

Bayesian belief networks. Artificial Intelligence, 42, 393-405. 
Copeland, B. J. (2002). Accelerating Turing machines. Minds and Machines, 12, 281-

301. 
Cormen, T. H., Leiserson, C. E., & Rivest, R. L.(1990). Introduction to Algorithms. 

Cambridge, MA: MIT Press and McGraw-Hill. 
Deutsch, D. (1985). Quantum theory, the Church-Turing principle and the universal 

quantum computer. Proceedings of the Royal Society of London A, 400, 97-117. 



 196

Downey, R. G. & Fellows, M. R. (1999). Parameterized complexity. New York: 
Springer-Verlag. 

Downey, R. G., Fellows, M. R., & Stege, U. (1999a). Parameterized complexity: A 
framework for systematically confronting computational intractability. 
Contemporary trends in discrete mathematics: From DIMACS and DIMATIA to 
the future, 49, 49-99. 

Downey, R. G., Fellows, M. R., & Stege, U. (1999b). Computational tractability: The 
view from Mars. Bulletin of the European Association for Theoretical Computer 
Science, 69, 73-97. 

Dunn, J. C. (2003). The elusive dissociation. Cortex, 39(1), 177-179.  
Dunn, J. C. & Kirsner, K. (2003). What can we infer from double dissociations? Cortex, 

39(1), 1-7. 
Eliasmith, C. (2000). Is the brain analog or digital? The solution and its consequences for 

cognitive science. Cognitive Science Quarterly, 1(2), 147-170.  
Eliasmith, C. (2001). Attractive and in-discrete: A critique of two putative virtues of the 

dynamicist theory of mind. Minds and Machines, 11, 417-426. 
Eliasmith, C. & Thagard, P. (1997). Waves, particles, and explanatory coherence. British 

Journal for the Philosophy of Science, 48, 1-19. 
Eysenck, M. W. & Keane, M. T. (1994). Cognitive psychology: A student's handbook. 

Hillsdale, NJ: Lawrence Erlbaum Associates. 
Falmagne, J.-Cl. & Regenwetter, M. (1996). A random utility model for approval voting. 

Journal of Mathematical Psychology, 40, 152-159. 
Farquhar, P. H. & Rao, V. R. (1976). A balance model for evaluating subsets of 

multiattributed items. Management Science, 22(5), 528-539. 
Fellows, M. R. (2002). Parameterized complexity: The main ideas and connections to 

practical computing. In R. Fleischer, B. Moret, & E. Meineche Schmidt (Eds.), 
Experimental Algorithmics: From Algorithm Design to Robust and Efficient 
Software, LNCS 2547 (pp. 51-77). Berlin: Springer-Verlag. 

Fellows, M. R. & McCartin, C. (1999). Personal communication. 
Fellows, M. R., McCartin, C., Rosamond, F., & Stege, U. (2000). Coordinatized kernels 

and catalytic reductions: An improved FPT algorithm for Max Leaf Spanning 
Tree and other problems. In S. Kapoor & S. Prasad (Eds.), Foundations of 
Software Technology and Theoretical Computer Science, LNCS 1974 (pp. 240-
251). Berlin: Springer-Verlag. 

Fishburn, P. C. & LaValle, I. H. (1993). Subset preferences in linear and nonlinear utility 
theory. Journal of Mathematical Psychology, 37,  611-623. 

Fishburn, P. C. & LaValle, I. H. (1996). Binary interactions and subset choice. European 
Journal of Operational Research, 92, 182-192. 

Fodor, J. A. (1987). Psychosemantics: The problem of meaning in the philosophy of 
mind. Cambridge, MA: MIT Press. 

Foulds, L.R. (1992). Graph theory applications. New York: Springer-Verlag. 
Frixione, M. (2001). Tractable competence. Minds and Machines, 11, 379-397. 
Gandy, R. (1988). The confluence of ideas in 1936. In R. Herken (Ed.), The universal 

Turing machine: A half-century survey (pp. 55-111). New York: Oxford 
University Press. 



 197

Garey, M. R. & Johnson, D. S. (1979). Computers and intractability: A guide to the 
theory of NP-completeness. New York: Freeman. 

Gibbons, A. & Rytter, W. (1988). Efficient parallel algorithms. Cambridge, UK: 
Cambridge University Press. 

Gigerenzer, G. & Goldstein, D. G. (1996). Reasoning the fast and frugal way: Models of 
bounded rationality. Psychological Review, 103(4), 650-669. 

Glenberg, A. M. (1997). What memory is for. Behavioral and Brain Sciences, 20,1-55. 
Goodrich, M. T. & Tamassia, R. (2002). Algorithm design: Foundations, analysis, and 

internet examples. New York: John Wiley & Sons, Inc. 
Gottlob, G., Scarcello, F., & Sideri, M. (2002). Fixed-parameter complexity in AI and 

nonmonotonic reasoning. Artificial Intelligence, 138(1-2), 55-86. 
Gould, R. (1988). Graph theory. Menlo Park, CA: The Benjamin/Cummings Publishing 

Company, Inc. 
Graham, S. M., Joshi, A., & Pizlo, Z. (2000). The traveling salesman problem: A 

hierarchical model. Memory & Cognition, 28(7), 1191-1204.  
Green, D. M. & Swets, J. A. (1966). Signal detection theory and psychophysics. New 

York:  John Wiley & Sons, Inc. 
Gross, J. & Yellen, J. (1999). Graph theory and its applications. New York: CRC Press. 
Haselager, W. F. G. (1997). Cognitive science and folk psychology: The right frame of 

mind. London: Sage. 
Haselager, W. F. G., Bongers, R. M. & van Rooij, I. (forthcoming). Cognitive science, 

representations and dynamical systems theory. In W. Tschacher and J-P. 
Dauwalder (Eds.), Dynamical Systems Approaches to Embodied Cognition. 

Haselager, W. F. G., de Groot, A. D., & van Rappard, J. F. H. (2003). 
Representationalism vs. anti-representationalism: A debate for the sake of 
appearance. Philosophical Psychology, 16(1), 5-23. 

Haugeland, J. (1991). Representational genera. In W. Ramsey, S. P. Stich, and D. E. 
Rumelhart (Eds.), Philosophy and connectionist theory (pp.61-89). Hillsdale, NJ: 
Lawrence Erlbaum Associates. 

Haynes, T. W., Hedetniemi, S. T., & Slater, P. J. (1998). Fundamentals of domination in 
graphs. New York: Marcel Dekker, Inc. 

Herken, R. (Ed.) (1988). The universal Turing machine: A half-century survey. New 
York: Oxford University Press. 

Hopcroft, J., Motwani, R., & Ullman, J. D. (2001). Introduction to Automata Theory, 
Languages, and Computation. Reading, MA: Addison-Wesley. 

Horgan, T. & Tienson, J. (1996). Connectionism and the philosophy of psychology. 
Cambridge, MA: MIT Press. 

Horsten, L. & Roelants, H. (1995). The Church-Turing thesis and effective mundane 
procedures. Minds and Machines, 5, 1-8. 

Humphreys, M. S., Wiles, J., & Dennis, S. (1994). Toward a theory of human memory: 
Data structures and access processes. Behavioral and Brain Sciences, 17, 655-
692. 

Inhelder, B. & Piaget, J. (1958). The growth of logical thinking from childhood to 
adolescence. New York: Basic Books. 

Israel, D. (2002). Reflections on Gödel's and Gandy's reflections on Turing's thesis. 
Minds and Machines, 12, 181-201. 



 198

Jagota, A. (1997). Optimization by a Hopfield-style network. In D. S. Levine & W. R. 
Elsberry (Eds.), Optimality in biological and artificial networks? (pp. 203-226). 
Hillsdale, NJ: Lawrence Erlbaum Publishers. 

Judd, J. S. (1990). Neural network design and the complexity of learning. Cambridge, 
MA: MIT Press. 

Kadlec, H., & Townsend, J. T. (1992). Signal detection analyses of dimensional 
interactions. In F. G. Ashby (Ed.), Multidimensional models of perception and 
cognition (pp. 181-227). Hillsdale, NJ: Lawrence Erlbaum Associates. 

Kadlec, H. & van Rooij, I. (2003). Beyond existence: Inferences about mental processes 
from reversed associations. Cortex, 39(1), 183-187. 

Kannai, Y. & Peleg, B. (1984). A note on the extension of an order to the power set.  
Journal of Economical Theory, 32, 172-175. 

Karp, R. M. (1972). Reducibility among combinatorial problems. In R. Miller and J. 
Thatcher (Eds.), Complexity of computer computations (pp.85-104). New York: 
Plenum Press. 

Khot, S. & Raman, V. (2000). Parameterized complexity of finding subgraphs with 
hereditary properties. In D.Z. Du, P. Eades, V. Estivill-Castro, X. Lin, & A. 
Sharma (Eds.), Computing and Combinatorics, LNCS 1858 (pp.137-147). New 
York: Springer-Verlag,. 

Kleene, S. C. (1936). General recursive functions of natural numbers. Mathematische 
Annelen, 112, 727-742. 

Kleene, S. C. (1988). Turing's analysis of computability, and major applications of it. In 
R. Herken (Ed.). The universal Turing machine: A half-century survey (pp. 17-
54). New York: Oxford University Press. 

Kolb, B. & Whishaw, I. Q. (1996). Fundamentals of human neuropsychology. New York: 
W.H. Freeman. 

Krueger, L. E. & Tsav, C.-Y. (1990). Analyzing vision at the complexity level: 
Misplaced complexity? Behavioral and Brain Sciences, 13(3), 449-450. 

Kube, P. R. (1990). Complexity is complicated. Behavioral and Brain Science, 13(3), 
450-451. 

Kube, P. R. (1991). Unbounded visual search is not both biologically plausible and NP-
complete. Behavioral and Brain Sciences, 14(4), 768-773. 

Levesque, H. J. (1988). Logic and the complexity of reasoning. Journal of Philosophical 
Logic, 17, 355-389. 

Lewis, H. R. & Papadimitrou, C. H. (1998). Elements of the theory of computation. 
Upper Saddle River, NJ: Prentice-Hall. 

Li, M. & Vitányi, P. (1997). An introduction to Kolmogorov complexity and its 
applications. New York: Springer-Verlag 

Luce, R. D. & Raiffa, H. (1957). Games and decisions: Introduction and critical survey. 
New York: John Wiley & Sons, Inc. 

Luce, R. D., Raiffa, H. (1990) Utility theory. In P. K. Moser (Ed.), Rationality in action: 
Contemporary approaches (pp. 19-40). New York: Cambridge University Press.  

MacGregor, J. N. & Ormerod, T. C. (1996). Human performance of the traveling 
salesman problem. Perception & Psychophysics, 58(4), 527-539. 



 199

MacGregor, J. N., Ormerod, T. C., & Chronicle, E. P. (1999). Spatial and contextual 
factors in human performance on the traveling salesperson problem. Perception, 
28, 1417-1427. 

MacGregor, J. N., Ormerod, T. C., & Chronicle, E. P. (2000). A model of human 
performance on the traveling salesperson problem. Memory & Cognition, 28(7), 
1183-1190. 

Margolis, H. (1987). Patterns, thinking, and cognition: A theory of judgment. Chicago: 
The University of Chicago Press. 

Marr, D. (1977). Artificial intelligence - A personal view. Artificial Intelligence, 9, 37-
48. 

Marr, D. (1982). Vision: A computational investigation into the human representation 
and processing of visual information. San Francisco: W.H. Freeman and 
Company. 

Martignon, L. & Hoffrage, U. (1999). Why does one-reason decision making work? A 
case study in ecological rationality. In G. Gigerenzer, P. M. Todd, & the ABC 
Research Group (Eds.). Simple heuristics that make us smart (pp. 119-140). New 
York: Oxford University Press. 

Martignon, L. & Hoffrage, U. (2002). Fast, frugal, and fit: Simple heuristics for paired 
comparison. Theory and Decision, 52, 29–71. 

Martignon, L. & Schmitt, M. (1999). Simplicity and robustness of fast and frugal 
heuristics. Minds and Machines, 9, 565-593. 

Massaro, D. W. & Cowan, N. (1993). Information processing models: Microscopes of the 
mind. Annual Review of Psychology, 44, 383-425. 

McClamrock, R. (1991). Marr's three levels: A re-evaluation. Minds and Machines, 1(2), 
185-196. 

Milllgram, E. (2000). Coherence: The price of the ticket. Journal of Philosophy, 97(2), 
82-93. 

Nebel, B. (1996). Artificial intelligence: A computational perspective. In G. Brewka 
(Ed.), Principles of knowledge representation (pp.237-266). Stanford, CA: CSLI 
Publications 

Newell, A. (1982). The knowledge level. Artificial Intelligence, 18, 87-127. 
Newell, A. & Simon, H. A. (1988a). The theory of human problem solving. In A. M.  

Collins & E. E. Smith (Eds.), Readings in cognitive science: A perspective from 
psychology and artificial intelligence (pp. 33-51). San Mateo: Morgan Kaufmann, 
Inc. 

Newell, A. & Simon, H. A. (1988b). GPS, a program that simulates human thought. In A. 
M. Collins & E. E. Smith (Eds.), Readings in cognitive science: A perspective 
from psychology and artificial intelligence (pp. 453-460). San Mateo: Morgan 
Kaufmann, Inc. 

Niedermeier, R. (2002). Invitation to fixed-parameter algorithms. Habilitationsschrift, 
University of Tübingen. 

Niedermeier, R. & Rossmanith, P. (1999). Upper bounds for Vertex cover further 
improved. In C. Meinel and S. Tison (Eds.), 16th Annual Symposium on 
Theoretical Aspects of Computer Science LNCS 1563 (pp. 561-570). Berlin: 
Springer-Verlag. 



 200

Niedermeier, R. & Rossmanith, P. (2000). A general method to speed up fixed-
parameter-tractable algorithms. Information Processing Letters, 73(3-4), 125-129. 

Oaksford, M. & Chater, N. (1993). Reasoning theories and bounded rationality. In K. I. 
Manktelow & D.E. Over (Eds.), Rationality: Psychological and philosophical 
perspectives (pp. 31-60). London: Routledge. 

Oaksford, M. & Chater, N. (1998). Rationality in an uncertain world: Essays on the 
cognitive science of human reasoning. Hove, UK: Psychology Press. 

O'Laughlin, C., & Thagard, P. (2000). Autism and coherence: A computational model. 
Mind and Language, 15, 375-392. 

Papadimitriou, C. H. & Steiglitz, K. (1988).  Combinatorial optimization: Algorithms and 
complexity. New York: Dover Publications. 

Parberry, I. (1994). Circuit complexity and neural networks. Cambridge, MA: MIT Press. 
Parberry, I. (1997). Knowledge, understanding, and computational complexity. In D. S. 

Levine & W. R. Elsberry (Eds.), Optimality in biological and artificial networks? 
(pp. 125-144). Hillsdale, NJ: Lawrence Erlbaum Publishers. 

Parkin, M. & Bade, R. (1997). Microeconomics. Don Mills, Ont: Addison-Wesley 
Publishers Limited. 

Payne, J. W., Bettman, J. R., & Johnson, E. J. (1993). The adaptive decision maker. New 
York: Cambridge University Press. 

Port, R. F. & van Gelder, T. (Eds.) (1995). Mind as motion: Explorations in the dynamics 
of cognition. Cambridge, MA: MIT Press. 

Post, E. L. (1936). Finite combinatory processes-formulation I. Journal Symbolic Logic, 
1, 103-105. 

Prieto, E. & Sloper, C. (forthcoming). Either/Or: Using Vertex Cover Structure in 
designing FPT-algorithms -- the case of k-Internal Spanning Tree. Proceedings of 
Workshop on Algorithms and Data Structures. 

Putnam, H. (1975). Mind, language and reality. Cambridge, MA: Cambridge University 
Press. 

Putnam, H. (1988). Representation and reality. Cambridge, MA: MIT Press. 
Putnam, H. (1994). Words and life. Cambridge, MA: Harvard University Press. 
Pylyshyn, Z. W. (1984). Computation and Cognition: Towards a Foundation for 

Cognitive Science. Cambridge, MA: MIT Press. 
Pylyshyn, Z. (1991). The role of Cognitive Architectures in the Theory of Cognition. In 

K. VanLehn (Ed.), Architectures for Intelligence (pp. 189-223). Hillsdale, NJ: 
Lawrence Erlbaum Associates. 

Regenwetter, M.,  Marley, A. A. J., & Joe, H. (1998). Random utility threshold models of 
subset choice. Australian Journal of Psychology, 50(3), 175-185. 

Ristad, E. S. (1993). The language complexity game. Cambridge, MA: MIT Press. 
Ristad, E. S. (1995). Computational complexity of syntactic agreement and lexical 

ambiguity. Journal of Mathematical Psychology, 39(3), 275-284. 
Ristad, E. S. & Berwick, R.C. (1989). Computational consequences of agreement and 

ambiguity in natural language.  Journal of Mathematical Psychology, 33(4), 379-
396. 

Rosch, E. (1973). Natural categories. Cognitive Psychology, 4, 328-350. 



 201

Rumelhart, D. E., McClelland, J. L., & the PDP Research Group (1986). Parallel 
distributed processing. Explorations in the microstructure of cognition. Volume 1: 
Foundations. Cambridge, MA: MIT Press. 

Schmitt, M. (2003). Personal communication. 
Schoch, D. (2000). A fuzzy measure for explanatory coherence. Synthese, 122, 291-311. 
Searle, J. R. (1980). Minds, Brains and Programs. Behavioral and Brain Sciences, 3, 417-

424. 
Siegel, R. M. (1990). Is it really that complex? After all, there are no green elephants. 

Behavioral and Brain Science, 13(3), 453. 
Siegelmann, H. & Sontag, E. (1994). Analog computation via neural networks. 

Theoretical Computer Science, 131, 331-360. 
Simon, H. A. (1957). Models of man: Social and rational. New York: John Wiley & 

Sons, Inc. 
Simon, H. A. (1988). Rationality as process and as product of thought. In  D. E. Bell, H. 

Raiffa, & A. Tversky (Eds.), Decision making: Descriptive, normative, and 
prescriptive interactions (pp. 58-77). Cambridge, UK: Cambridge University 
Press.  

Simon, H. A. (1990). Invariants of human behavior. Annual Review of Psychology, 41(1), 
1-19. 

Stege, U. (2000). Resolving conflicts from problems in computational biology. Ph.D. 
thesis, No. 13364, ETH Zürich. 

Stege, U. & van Rooij, I. (2003). On practical fixed-parameter-tractable algorithms for 
dominating set. Manuscript under revision.  

Stege, U. & van Rooij, I. (2001). Profit sets: Graph problems in human decision making. 
Unpublished manuscript. 

Stege, U., van Rooij, I., Hertel. A, & Hertel P. (2002). An O(pn + 1.151p) algorithm for 
p-Profit Cover and its practical implications for Vertex Cover. In P. Bose and P. 
Morin (Eds.), 13th International Symposium on Algorithms and Computation, 
LNCS 2518 (pp. 249-261). Berlin: Springer-Verlag. 

Steinhart, E. (2002). Logically possible machines. Minds and Machines, 12, 259-280. 
Stillings, N. A., Feinstein, M. H., Garfield, J. L., Rissland, E. L., Rosenbaum, D. A., 

Weisler, S. E., & Baker-Ward, L. (1987). Cognitive science: An Introduction. 
Cambridge, MA: MIT Press. 

Thagard, P. (1989). Explanatory coherence. Behavioral and Brain Sciences, 12, 435-502. 
Thagard, P. (1993). Computational tractability and conceptual coherence: Why do 

computer scientists believe that P≠NP? Canadian Journal of Philosophy, 23(3), 
349-364. 

Thagard, P. (2000). Coherence in thought and action. Cambridge, MA: MIT Press. 
Thagard, P., Eliasmith, C., Rusnock, P., & Shelley, C. P. (2002). Knowledge and 

coherence. In R. Elio (Ed.), Common sense, reasoning, and rationality, pp. 104-
131. New York: Oxford University Press. 

Thagard, P. & Kunda, Z. (1998). Making sense of people: Coherence mechanisms. In S. 
J. Read & L. C. Miller (Eds.), Connectionist models of social reasoning and 
social behavior (pp. 3-26). Mahwah, NJ: Lawrence Erlbaum Associates, Inc. 



 202

Thagard, P. & Shelley, C. P. (1997). Abductive reasoning: Logic, visual thinking, and 
coherence. In M.-L. D. Chiara, K. Doets, D. Mundici, & J. van Benthem (Eds.), 
Logic and scientific methods (pp. 413-427). Dordrecht: Kluwer. 

Thagard, P. & Verbeurgt, K.  (1998). Coherence as constraint satisfaction. Cognitive 
Science, 22(1), 1-24. 

Thelen, E. & Smith, L. B. (1994). A dynamic systems approach to the development of 
cognition and action. Cambridge, MA: MIT Press. 

Todd, P. M. & Gigerenzer, G. (2000). Précis of simple heuristics that make us smart. 
Behavioral and Brain Sciences, 23, 727-780. 

Tsotsos, J. K. (1988). A ‘complexity level’ analysis of immediate vision. International  
Journal of Computer Vision, Marr Prize Special Issue, 2(1), 303-320.  

Tsotsos, J. K. (1989). The complexity of perceptual search tasks. In N. S. Sridharan (Ed.), 
Proceedings International Joint Conference on Artificial Intelligence, San 
Francisco: Morgan Kaufmann Publishers. 

Tsotsos, J. K. (1990). Analyzing vision at the complexity level. Behavioral and Brain 
Sciences, 13(3), 423-469. 

Tsotsos, J. K. (1991). Is complexity theory appropriate for analyzing biological systems. 
Behavioral and Brain Sciences, 14(4), 770-773. 

Turing, A. M. (1936). On computable numbers, with an application to the 
Entscheidungsproblem. Proceedings of the London Mathematical Society,42, 230-
265. 

van Gelder, T. (1995). What might cognition be if not computation? The Journal of 
Philosophy, 7, 345-381. 

van Gelder, T. (1998). The dynamical hypothesis in cognitive science. Behavioral and 
Brain Sciences, 21, 615-665. 

van Gelder, T. J. (1999). Defending the dynamical hypothesis. In W. Tschacher & J.-P. 
Dauwalder (Eds.), Dynamics, Synergetics, Autonomous Agents: Nonlinear 
Systems Approaches to Cognitive Psychology and Cognitive Science (pp. 13-28). 
Singapore: World Scientific. 

Van Orden, G. C. & Kloos, H. (2003). The module mistake. Cortex, 39(1), 164-166. 
van Rooij, I., Bongers, R. M., & Haselager, W. F. G. (2000). The dynamics of simple 

prediction: Judging reachability. In L. R. Gleitman & A. K. Joshi (Eds.), 
Proceedings of the Twenty Second Annual Conference of the Cognitive Science 
Society (pp. 535-540). Mahwah, NJ: Lawrence Erlbaum Associates, Publishers. 

van Rooij, I., Bongers, R. M., & Haselager, W. F. G. (2002). A non-representational 
approach to imagined action. Cognitive Science, 26(3), 345-375. 

van Rooij, I., Schactman, A., Kadlec, H., & Stege, U. (2003). Children’s Performance on 
the Euclidean Traveling Salesperson Problem. Manuscript under revision. 

van Rooij, I., Stege, U., & Kadlec, H. (2003). Sources of complexity in subset choice. 
Manuscript under review. 

van Rooij, I., Stege, U., & Schactman, A. (2003). Convex hull and tour crossings in the 
Euclidean Traveling Salesperson problem: Implications for human performance 
studies. Memory & Cognition, 31(2), 215-220.   

Vickers, D., Butavicius, M., Lee, M., & Medvedev, A. (2001). Human performance on 
visually presented traveling salesman problems. Psychological Research, 65, 34-
45. 



 203

Wareham, H. T. (1996). The role of parameterized computational complexity theory in 
cognitive modeling. AAAI-96 Workshop Working Notes: Computational Cognitive 
Modeling: Source of the Power. [On-line]. Available: 
http://web.cs.mun.ca/~harold/papers.html. 

Wareham, H. T. (1998). Systematic parameterized complexity analysis in computational 
phonology. Ph.D. thesis. University of Victoria.  

Wells, A. J. (1996). Situated action, symbol systems and universal computation. Minds 
and Machines, 6, 33-46. 

Wells, A. J. (1998). Turing's analysis of computation and theories of cognitive 
architecture. Cognitive Science, 22(3), 269-294. 

Wiedemann, U. (1999). Michael Williams’ concepts of systematical and relational 
coherence. [On-line]. Available: http://www.pyrrhon.de/cohere/williams.htm. 



 204

Appendix A: Notation and Terminology for Graphs 
 

Many problems considered in this research are (or can be formulated as) graph problems. 

This appendix presents a basic introduction to graphs and defines the graph theoretic 

notation and terminology used throughout the manuscript. For more information on 

graphs and graph theory see e.g. Foulds (1992), Gould (1988), and Gross & Yellen 

(1990). 

A graph G = (V, E) is a pair of sets, V and E. The set V is called the vertex set of G 

and its elements are called vertices. The set E is called the edge set and is a subset of the 

Cartesian product V × V (we also write E ⊆  V2, where V2 denotes the 2-fold product of V). 

The elements of E are called edges. A graph can be thought of as a network consisting of 

nodes (vertices) and lines connecting some pairs of nodes (edges). Figure A1 gives an 

illustration of a graph G = (V, E). The nodes in the figure represent the vertices in V and 

the lines connecting nodes represent edges in E. In other words, the graph in Figure A1 

has vertex set V = {a, b, c, …, z} and edge set E ⊆  V × V, with E = {(a, b), (a, d), (a, e), 

(b, i), …, (z, y)}.  

The number of elements in a set S is called the size of S and is denoted by |S|. 

Note that, for the graph in Figure A1, |V| = 26 and |E| = 31. The size of the set V is often 

denoted by the letter n = |V|, and the size of the set E is often denoted by the letter m = |E|.   

 

g

b
d

c
a

i

j

h

f

e

t

u

w

s

v

m

y

l

k

r

n

p
q

o

x

z

 
Figure A1. An illustration of a graph. 

 



 205

Note that in the graph in Figure A1 there are no connections from any vertex to 

itself (called a self-loop) and each pair of vertices is connected by at most one edge (i.e., 

there are no multi-edges). Graphs without self-loops and without multi-edges are called 

simple graphs. All graphs considered in this manuscript are simple unless otherwise 

noted. Further, note that there is no particular order associated with the vertices in an 

edge, i.e. (u, v) = (v, u). Graphs of this type are called undirected. All graphs considered 

in this manuscript are undirected. 

We define additional terminology for graphs. Let G = (V, E) be a graph. We say a 

vertex v1 ∈  V is incident to edge (v2, v3) and, conversely, (v2, v3) is incident to v1, if (v2, 

v3) ∈  E and v1 = v2 or v1 = v3. If an edge (v1, v2) ∈  E we also call v1 and v2 the endpoints of 

the edge (v1, v2) and we say that v1 and v2 are neighbors. For example, in Figure A1, edge 

(e, f) is incident to vertex e, and e is an endpoint of (e, f). Further, e and f are neighbors, 

while, for example, m and f are not.  

The set of vertices that are neighbors of vertex v in graph G is called the (open) 

neighborhood of v, denoted by NG(v) = {u ∈  V : u is a neighbor of v}. Note that v itself is 

not a member of NG(v). We call NG[v] = NG(v) ∪  {v} the closed neighborhood of v. For 

example, in Figure A1, vertex d has neighbors a, c, i, and e. Thus we have NG(d) = {a, c, 

i, e} and NG[d] = {a, c, i, e, d}. The number of edges incident to a vertex v is called the 

degree of v and is denoted by degG(v).  For example, in Figure A1, vertex d had degree 

degG(d) = 4. Note that, for any vertex v in a graph G, we have degG(v) = |NG(v)|. If a 

vertex has degG(v) = k we also say that v is a k-degree vertex. We call degree-0 vertices 

singletons, and we call degree-1 vertices pendant vertices. For example, in Figure A1, 

vertices r and s are singletons, and vertices c, k, l, m, x, y, and z are all pendant vertices.  

Let G = (V, E) be a graph and let V’ ⊆  V be a subset of vertices. Then NG(V’) =  

{v ∈  V : there is a neighbor u of v with u ∈  V’} is called the (open) neighborhood of V’ 

and NG[V’] =  {v ∈  V : v ∈  V’ or there is a neighbor u of v with u ∈  V’}, is called the 

closed neighborhood of set V’. In other words, NG[V’] =  NG(V’) ∪  V’. For example, in 

Figure A1, NG({b, h, i}) = {a, e, d, j, g} and NG[{b, h, i}] = {a, e, d, j, g, b, h, i}. Further, 

EG(V’) = {(u, v) ∈  E : u ∈  V’ and v ∈  V’) denotes the set of edges that have both 

endpoints in V’, and RG(V’) = {(u, v) ∈  E : u ∈  V’ or v ∈  V’) denotes the set of edges that 



 206

have at least one of their endpoints in V’. For example, in Figure A1, we have EG({b, d, 

h, i, l, m}) = {(b, h), (d, i), (h, i), (d, h), (l, m)} and RG({e, f, l}) = {(e, f), (e, h), (e, a), (f, 

j), (f, g), (l, m)}.  

The set difference of two sets S1 and S2 is denoted by S1\S2 = {v ∈  S1 : v ∉  S2}. 

Whenever we delete a vertex from a graph we also have to remove its incident edges 

(otherwise the remaining vertex and edge sets would not form a graph anymore). Hence, 

the set RG(V’) is the set of edges that gets removed from G when we delete the vertices in 

V’ from V. That is, if we remove V’ from V the resulting graph G* = (V*, E*) will have 

vertex set V* = V\V’ and edge set E* = E\RG(V’). 

Let G = (V, E) be a graph. Then a graph G’ = (V’, E’) with V’ ⊆  V and E’ ⊆  E is 

called a subgraph of G. We also call G a supergraph of G’. Let V’ ⊆  V be a subset of 

vertices in G. Then we call the subgraph G’ = (V’, E’) with V’ = V and E’ = EG(V’) the 

subgraph of G induced by V’. For example, for the graph G = (V, E) in Figure A1, G’ = 

(V’, E’), with V’ = {a, b, d, h, i} and E’ =  {(a, b), (b, h), (a, d), (h, i)}, is a subgraph of 

G, and G” = (V”, E”) with V”= {a, b, d, h, i} and E”= EG({a, b, d, h, i}) = {(a, b), (b, h), 

(a, d), (d, i), (h, i), (d, h)} is the subgraph of G induced by {a, b, d, h, i}. 

A sequence < v1, v2, ..., vk > of pairwise distinct vertices with (v1, v2), (v2, v3),  ..., 

(vk–1, vk) ∈  E is called a path in G. If v1 =  vk and k ≥ 3 then < v1, v2, ..., vk >  is called a 

cycle in G. For example, in Figure A1, <k, g, i, b, h> is a path, while <g, i, b, h, i> is not. 

Further, in the graph in Figure A1, <a, b, i, h, e, a> is a cycle. We may also denote a path 

and a cycle by its edges instead of its vertices, as follows: <(v1, v2), (v2, v3),  ..., (vk–1, vk)>. 

For example, we may denote the path <k, g, i, b, h> in Figure A1 by <(k, g), (g, i), (i, b), 

(b, h)> instead. The length of a path is the number of edges visited when traversing the 

path. Thus, path <k, g, i, b, h> in Figure A1 has length 4.  

A graph is connected if for every pair of vertices u, v ∈  V there is a path in G 

from u to v. Note that the graph in Figure A1 is not connected (e.g., there is no path from 

t to g). However the graph in Figure A2 is connected. 

 



 207

g

e
d

b
a

i

h

f

c

j

k

l

 
 

Figure A2. An illustration of a connected graph. 
 

Let G’ = (V’, E’) be a subgraph of G. We say G’ is a component of G if (1) G’ is 

connected, and (2) there does not exist a subgraph G* of G, G* ≠ G’, such that G* is 

connected and G* is a supergaph of G’. For example, the graph in Figure A1 consist of 7 

components: viz., the components induced by vertex sets {l, m}, {o, n, p, q}, {e, a, f, j, d, 

c, b, h, i}, {t, u, v, x, w}, {y, z}, {r}, and {s}. Note that, for example, the subgraph of G 

induced by {t, u, v, x} is not a component of G. To see why this is so, consider the 

subgraph G’ = (V’, E’) of G induced by {t, u, v, x} and the subgraph G* = (V*, E*) of G 

induced by {t, u, v, x, w}. Note that G* is connected and G* is a supergraph of G’. We 

conclude that G’ is not a component of G. Also note that since the graph in Figure A2 is 

connected it has only one component.  

 

a

d

i

c

j

h

b

e
k

g

f

l

m
n  

Figure A3. An illustration of a forest. 
 



 208

A graph without any cycles is called a forest and a connected forest is called a 

tree. Figure A3 shows a graph that is a forest and Figure A4 shows a graph that is a tree. 

A rooted tree is a tree with a designated vertex called the root. Let T = (VT, ET) be a 

rooted tree, with root r ∈  VT.  A pendant vertex in a tree is called a leaf. For two vertices 

u, v ∈  VT , with (u,v) ∈  ET, we say u is parent of v, and v is child of u, if < r, ..., u, v> is a 

path in T. The depth of T is the length of the longest path from root r to a leaf in T. For 

example, for the tree T = (VT, ET) in Figure A4 we may call vertex a the root of T. Then 

vertices b, d, h, f, i, k are leaves in T. For example, e is a child of a, and e is parent of g. 

Further, T in Figure A4 has depth 4. 

 

a

d

i

c

j

h

b

e
k

g

f  
Figure A4. An illustration of a tree. 

 

In the text also generalizations of the graph concept are used. Specifically, we discuss 

weighted graphs, multigraphs, and hypergraphs. A weighted graph G = (V, E) is a graph 

in which each vertex v ∈  V has an associated vertex-weight wV(v) and each edge e ∈  E 

has an associated edge-weight wE(e). A multigraph M = (V, E) is a generalization of a 

graph in which more than one edge may connect any two vertices in G (i.e., the edge set 

E is a multiset). A hypergraph H = (V, E) is a generalization of a graph in which a 

hyperegde (v1, v2, …, vh) ∈  E, h ≥ 2, can be incident to more than two vertices. Specific 

properties of these types of graphs will be detailed in the text where they are first used.   

 

 

 
 

 



 209

Appendix B: A Compendium of Problems  

 

This appendix presents an overview of decision problems that appear in the text. 

Problems are listed in alphabetical order. For each problem a page number is given, 

indicating where the problem first appears in the text. Where possible also a literature 

reference is given. Each problem entry lists basic complexity results and/or other relevant 

information. For some problems, special cases appear as a part of the entry of the general 

problem. 

Annotated Coherence [page 107] 

Input: A network N = (P, C), with (P’ ∪  A’ ∪  R’)P and (C+ ∪  C−)C. For each (p, 

q) ∈  C there is an associated positive integer weight w(p, q). A positive integer c. 

Question: Does there exist a partition of P into A and R such that A’ ⊆  A, R’ ⊆  R, 

and CohN(A, R) ≥ c?  

We have shown Annotated Coherence to be in FPT for parameter |P−|, denoting the 

number of elements in P that are incident to a negative edge, (Theorem 5.3, page 114) 

and for parameter |C−| (denoting the number of negative constraints in the network; 

Corollary 5.12, page 114). (see Coherence; Foundational Coherence) 

Annotated Min-Incomp-Lex [page 163] 

Input: A set of objects A = {a1, a2, …, am} and a set of features F = {f1, f2, …, fn}. 

Here F partitions into F1 = { f1, f2, …, fn1} and F2 = {f n1+1,  f n1+2, …, fn}. Each a ∈  

A has an associated value bi(a) ∈  {0, 1}, i = 1, 2, …, n, denoting the value that a 

takes on feature fi ∈  F. A complete ordering S(A), with a1 > a2 > …> am, and a 

permutation of the features in F1, π(F1). An integer k ≥ 0. 

Question: Does there exist a permutation of the features in F2, π(F2), such that 

ErrorLEX(A, S(A), F, P, π(F2)) ≤ k? Here P ⊆  A × A denotes the set of pairs of 

distinct objects in A that are not distinguished by any feature in F1. 



 210

Annotated Min-Incomp-Lex is a generalization of the problem Min-Incomp-Lex. We 

have shown that Annotated Min-Incomp-Lex is solvable in time 







−

22

)!(
! mn
kn

nO , for 

|A| = m and |F| = n (page 166).  

Bottom-up Visual Matching [page 170] (e.g. Tsotsos, 1990) 

Input: An image I and a target T. Each pixel pi = (x, y, bi), pi ∈  I, with pt = (x, y, 

bt), pt ∈  T, has an associated value diff(pi) = |bi − bt| and an associated value 

corr(pi) = bibt. Two positive integers θ and φ. 

Question: Does there exist a subset of pixels I’ ⊆  I such that ∑ ∈ '
)(diff

Ip
p ≤ θ 

and ∑ ∈ '
)(corr

Ip
p ≥ φ? 

Bottom-up Visual Matching is known to be NP-hard by reduction from Knapsack 

(Tsotsos, 1989). The problem is solvable in pseudo-polynomial time O(θ|I|) (Kube, 1991) 

and in pseudo-polynomial time O(λ|I|2) (page 173) (see also Knapsack, Top-down Visual 

Matching).  

Clique [page 151] (e.g. Garey & Johnson, 1979) 

Input: A graph G = (V, E) and a positive integer k. 

Question: Does there exist a clique V’ ⊆  V for G with |V’| ≥ k? (Here a vertex set 

V’ is called a clique if for every two vertices u, v ∈  V’, (u, v) ∈  E.) 

Clique is known to be NP-complete (Garey & Johnson, 1979), and W[1]-complete for 

parameter k (Downey & Fellows, 1999). A graph G = (V, E) has a clique of size k if and 

only if its complement G’ = (V’, E’), V’ = V and E’ = V2\E, has an independent set of size 

k (see Independent Set).  

Coherence  [page 80] (e.g. Thagard & Verbeurgt, 1998) 

Input: A network N = (P, C), with (C+ ∪  C−)C. For each (p, q) ∈  C there is an 

associated positive integer weight w(p, q). A positive integer c. 

Question: Does there exist a partition of P into A and R such that CohN(A, R) ≥ c? 

Here CohN(A, R) = ∑
∈ ),(S )(

),(w
RAp,q N

qp , with SN(A, R) = {(p, q) ∈  C+ : (p ∈  A and q ∈  



 211

A) or (p ∈  R and q ∈  R)} ∪  {(p, q) ∈  C− : (p ∈  A and q ∈  R) or (p ∈  R and q ∈  

A)}. 

Coherence is known to be NP-complete, by reduction from Max-Cut (Thagard & 

Verbeurgt, 1998; see also Lemma 5.1, page 84). It follows that Coherence is NP-hard 

even for inputs without positive constraints (see also Corollary 5.2, page 84). Further, 

Coherence remains NP-complete if all constraints are negative and all weights are ‘1’ 

(Corollary 5.3, page 84). (see also Annotated Coherence, Discriminating Coherence, 

Foundational Coherence) 

Conflict Graph (CG) Subset Choice [page 136] (e.g. van Rooij et al., 2003) 

Input: An conflict graph G = (V, E). For v ∈  V, wV(v) ∈   and for e ∈  E, wE(e) ∈  
−. A positive integer p.  

Question: Does there exist a subset V’ ⊆  V such that valueG(V’) ≥ p? 

We have shown that CG Subset Choice is in FPT for parameter set {q, ΩV}, where q = p 

− valueG(V) and ΩV denotes the maximum vertex weight (Theorem 6.5, page 139). (see 

also VCG Subset Choice, Subset Choice, Subset Rejection). 

Conflict Hypergraph (CH) Subset Choice [page 136] (van Rooij et al., 2003) 

Input: A conflict hypergraph H = (V, E). For every v ∈  V, wV(v) ∈   and for 

every e ∈  E, wE(e) ∈  −. A positive integer p.  

Question: Does there exist a subset V’ ⊆  V such that valueH(V’) ≥ p? 

We have shown that CH Subset Choice is in FPT for parameter set {q, ε, ΩV}, where  q = 

p − valueG(V), ε denotes the maximum span, and ΩV denotes the maximum vertex weight 

(Theorem 6.6, page 144). (see also Subset Choice, Subset Rejection). 

Discriminating Coherence [page  90] (e.g. Thagard, 2000) 

Input: A network N = (P, C), with C ⊆  P × P. Here P = H ∪  D, and C = C+ ∪  C− 

(with H, D being disjoint, and C+, C− being disjoint). For each d ∈  D there is an 

associated positive integer weight wD(d), and for each (p, q) ∈  C there is an 

associated positive integer weight wC(p, q). A positive integer c. 



 212

Question: Does there exist a partition of P into A and R such that DCohN(A, R) ≥ 

c? Here DCohN(A, R) = ∑
∈ ),(S)( N

),(w
RAp,q
C qp + ∑

∈∈ AdDd
D d

,
)(w . 

Discriminating Coherence is a generalization of Coherence. (see Coherence). 

Dominating Set [page 35] (e.g. Garey & Johnson, 1979) 

Input: A graph G = (V, E) and a positive integer k.  

Question: Does there exist a dominating set V’ for G with |V’| ≤ k? 

Dominating Set is known to be NP-complete (Garey & Johnson, 1979), and W[1]-hard 

for parameter k (Downey & Fellows, 1999). A graph G = (V, E) has a dominating set of 

size k if and only if G has a non-blocking set of size |V| − k (see Non-Blocker). 

Double-Constraint Coherence [page 94] 

Input: A double-constraint network N = (P, C+ ∪  C−), with C+ ⊆  P × P and C− ⊆  

P × P. For each (p, q)+ ∈  C+ there is an associated positive integer weight w(p, 

q)+, and for each (p, q)− ∈  C−  there is an associated positive integer weight w(p, 

q)−. A positive integer c. 

Question: Does there exist a partition of E into A ∪  R such that CohN(A, R) ≥ c? 

Double-Constraint Coherence is a generalization of Coherence. We have shown that 

Double-Constraint Coherence is in FPT for parameter c (Theorem 5.2, page 103). (see 

also Coherence).  

Edge-weighted Conflict Graph (ECG) Subset Choice [page 136] (e.g. van 

Rooij et al., 2003) 

Input: An edge-weighted conflict graph G = (V, E). For every v ∈  V, wV(v) ∈    

and for every e ∈  E, wE(e) ∈  −. A positive integer p.  

Question: Does there exist a subset V’ ⊆  V such that valueG(V’) ≥ p? 

We have shown that ECG Subset Choice is in FPT for relational parameter q = p − 

valueG(V) (Corollary 6.7, page 137). (see also Subset Choice; Subset Rejection).  

Exact-bound Subset Choice [page 151] (e.g. van Rooij et al., 2003) 

Input: A weighted hypergraph H = (V, E). For every v ∈  V, wV(v) ∈   and for 

every e ∈  E, wE(e) ∈   \{0}. Positive integers p and k. 



 213

Question: Does there exist a subset V’⊆  V such that valueH(V’) ≥ p and |V’| = k? 

We have shown that Exact-bound Subset Choice is NP-complete (Theorem 6.8, page 

151), and W[1]-hard for parameter set {p, k} (Corollary 6.15, page 153), even for unit-

weighted surplus graphs. (see also Upper-bound Subset Choice, Lower-bound Subset 

Choice). 

Foundational Coherence [page 90] (e.g. Thagard, 2000) 

Input: A network N = (P, C), with C ⊆  P × P. Here P = H ∪  D, and C = C+ ∪  C− 

(with H, D being disjoint, and C+, C− being disjoint). For each (p, q) ∈  C there is 

an associated positive integer weight w(p, q). A positive integer c. 

Question: Does there exist a partition of P into A and R such that D ⊆  A and 

CohN(A, R) ≥ c? 

Foundational Coherence is a generalization of Coherence, and a special case of 

Annotated Coherence. (see Annotated Coherence; Coherence; Discriminating 

Coherence). 

Halting problem [page 17] (e.g. Turing, 1936). 

Input: A Turing machine M and an input i for M.  

Question: Does M halt on i? 

The Halting problem is known to be undecidable (Turing, 1936).  

Inclusive Profit Domination [page 68] (e.g. Stege & van Rooij, 2001) 

Input: A graph G = (V, E) and a positive integer p.  

Question: Does there exist a vertex set V’ ⊆  V such that profitIPD,G(V’) ≥ p? Here 

profitIPD,G(V’) = |NG[V’]| − |V’| = |NG(V’)|. 

Inclusive Profit Domination is known to be NP-complete, and W[1]-hard for parameter p 

(Stege & van Rooij, 2001; see also Stege & van Rooij, 2003). 

Independent Set [page 66] (e.g. Garey & Johnson, 1979) 

Input: A graph G = (V, E) and a positive integer k.  

Question: Does there exist an independent set V’ for G with |V’| ≥ k? 

Independent Set is known to be NP-complete (Garey & Johnson, 1979), and W[1]-

complete for parameter k (Downey & Fellows, 1999). A graph G = (V, E) has an 



 214

independent of size k if and only if G = (V, E) has a vertex cover of size |V| − k (see 

Vertex Cover).  

Knapsack [page 171] (e.g. Garey & Johnson, 1979).  

Input: A finite set U. Each u ∈  U has a size s(u) ∈  Z+ and a value v(u) ∈  Z+. 

Positive integers B and K.  

Question: Does there exist a subset U’ ⊆  U such that ∑
∈

≤
'

)(
Uu

Bus  and 

∑
∈

≥
'

)(
Uu

Kuv ? 

Knapsack is known to be NP-complete, and solvable in pseudo-polynomial time (e.g. 

Garey & Johnson, 1979). 

Lower-bound Subset Choice [page 192]  

Input: A weighted hypergraph H = (V, E). For every v ∈  V, wV(v) ∈   and for 

every e ∈  E, wE(e) ∈   \{0}. Positive integers p and k. 

Question: Does there exist a subset V’⊆  V such that valueH(V’) ≥ p and |V’| ≥ k? 

Lower-bound Subset Choice has not been studied in this work, but it appears in the list of 

open problems on page 192 (see also Exact-bound Subset Choice, Upper-bound Subset 

Choice).  

Max-Cut [page 83] (e.g. Garey & Johnson, 1979) 

Input: An edge weighted graph G = (V, E). For each edge (u, v) ∈  E there is an 

associated positive integer weight w(u, v). A positive integer k.   

Question: Does there exist a partition of V into sets A and R such that WG(A, R) = 

∑
∈ ),(Cut )(

),(w
RAu,v G

vu  ≥ k? Here CutG(R, A)= {(u, v) ∈  E : u ∈  A and v ∈  R}. 

Max-Cut is known to NP-complete (Garey & Johnson, 1979). The problem remains NP-

complete even if all edges have weight ‘1’ (called the Simple Max-Cut problem; Garey & 

Johnson, 1979).  

Maximum Matching [page 55] (e.g. Gross & Yellen, 1999) 

Input: A graph G = (V, E) and a positive integer k. 



 215

Question: Does there exist a matching E’ ⊆  E for G with |V’| ≥ k? (Here E’ is 

called a matching if for every two edges (u, v), (x, y) ∈  E’, if vertices u, v, x, and y 

are all distinct.  

Maximum Matching is known to be solvable in O(|V|2) (e.g. Gross & Yellen, 1999). 

Min-Cut [page 110] (e.g. Cormen, et al. 1990) 

Input: An edge weighted graph G = (V, E). A source s ∈  V and a sink t ∈  V. For 

each edge (u,v) ∈  E there is an associated positive integer weight w(u, v). A 

positive integer k.   

Question: Does there exist a partition of V into disjoint sets A and R such that, s ∈  

A, t ∈  R, and WG(A, R) = ∑
∈ ),(Cut )(

),(w
RAu,v G

vu  ≤ k? Here CutG(R, A)= {(u, v) ∈  E : u ∈  

A and v ∈  R}. 

Min-Cut is known to be solvable in time O(|V|3) (e.g. Cormen et al., 1990).  

Min-Incomp-Lex [page 155] (e.g. Martignon & Schmitt, 1999)  

Input: A set of objects A = {a1, a2, …, am} and a set of features F = {f1, f2, …, fn}. 

Each a ∈  A has an associated value bi(a) ∈  {0, 1}, i = 1, 2, …, n, denoting the 

value that a takes on feature fi ∈  F. A complete ordering S(A), with a1 > a2 > …> 

am. An integer k ≥ 0. 

Question: Does there exist a permutation π(F) =  <fπ1, fπ2, …, fπn>, such that 

ErrorLEX(A, S(A), F, P, π(F)) ≤ k? Here P ⊆  A × A denotes the set of all pairs of 

distinct objects in A. 

Min-Incomp-Lex is known to be NP-hard by reduction from Vertex Cover (e.g. 

Martignon & Schmitt, 1999; see also Theorem 7.1, page 161). We have shown that Min-

Incomp-Lex is in FPT for parameter m = |A| (page 163). (see also Annotated Min-

Incomp-Lex) 

Non-Blocker [page 66] (e.g. Stege & van Rooij, 2003).  

Input: A graph G = (V, E) and a positive integer k.  

Question: Does there exist a non-blocking set V’ for G with |V’| ≥ k? 



 216

Non-Blocker is known to be NP-complete and in FPT for parameter k (unpublished result 

by Fellows & McCartin, 1999). A graph G = (V, E) has a non-blocking set of size k if and 

only if G = (V, E) has a dominating set of size |V| − k (see Dominating Set). A G = (V, E) 

has non-blocking set of size k = p if and only if there exists a subset V’ ⊆  V with 

profitIPD,G(V’) = p = k (see Inclusive Profit Domination). 

Pos-Annotated Coherence [page 108] 

Input: A network N = (P, C), with (P’ ∪  A’ ∪  R’)P and (C+ ∪  C−)C. For every (p, 

q) ∈  C−, p, q ∈  A’ ∪  R’. For each (p, q) ∈  C there is an associated positive integer 

weight w(p, q). A positive integer c. 

Question: Does there exist a partition of P’ into A and R such that A’ ⊆  A, R’ ⊆  R, 

and CohN(A, R) ≥ c?  

We have shown that Pos-Annotated Coherence is solvable in time O(|P|3) by reduction to 

Min-Cut (Lemma 5.11, page 113). (see also Min-Cut) 

Profit Cover [page 67] (e.g. Stege et al., 2002) 

Input: A graph G = (V, E) and a positive integer p.  

Question: Does there exist a vertex set V’ ⊆  V such that profitPC,G(V’) ≥ p? Here 

profitPC,G(V’) = |RG(V’)| − |V’|. 

Profit Cover is known to be NP-complete, and in FPT for parameter p (Stege, et al., 

2002). For a graph G = (V, E), there exists a subset V’ ⊆  V with profitPC,G(V’) = p if and 

only if G = (V, E) has a vertex cover of size k = |E| − p (see Vertex Cover). Further, Profit 

Cover is equivalent UCG Subset Rejection (see UCG Subset Choice; Subset Rejection).  

Profit Independence [page 68] (e.g. Stege & van Rooij, 2001) 

Input: A graph G = (V, E) and a positive integer p.  

Question: Does there exist a vertex set V’ ⊆  V such that profitPI,G(V’) ≥ p? Here 

profitPI,G(V’) = |V’| − |EG(V’)|. 

Profit Independence is known to be NP-complete, and W[1]-hard for parameter p (Stege 

& van Rooij, 2001; see also Lemma 4.3, page 77). For a graph G = (V, E), there exists a 

subset V’ ⊆  V with profitPI,G(V’) = p if and only if G = (V, E) has an independent set of 



 217

size k = p (see Independent Set). Further, Profit Independence is equivalent to UCG 

Subset Choice (see UCG Subset Choice).  

Satisfiability (SAT) [page 35] (e.g. Garey & Johnson, 1979). 

Input: A set of variables U and a collection of clauses C over U. Each variable u 

∈  U has two associated literal u and u (the latter representing the negation of u). 

Each clause (u1, u2, …, ul) in C contains represents the disjunction of the literals 

u1, u2, …, ul. Each variable in U can be assigned the truth-value T or F, and a 

clause is satisfied if the disjunction of the literals in the clause yields the truth-

value T.  

Question: Does there exists a truth assignment to variables in U such that all 

clauses in C are satisfied? 

Satisfiability is known to be NP-complete (Cook, 1971). The special case, 3-SAT, with at 

most three literals per clause, remains NP-complete; the special case, 2-SAT, with at 

most two literals per clause, is known to be in P (e.g. Garey & Johnson, 1979).  

Single-Element Discriminating Coherence [page 92] 

Input: A network N = (P, C), with C ⊆  P × P. Here P = H ∪  D, and C = C+ ∪  C− 

(with H, D being disjoint, and C+, C− being disjoint). For each d ∈  D there is an 

associated positive integer weight wD(d), and for each (p, q) ∈  C there is an 

associated positive integer weight wC(p, q). A special element s ∈  H and a 

positive integer c. 

Question: Does there exist a partition of P into A and R such that DCohN(A, R) is 

maximum and s ∈  A?  

We have shown that if D = ∅  then Single-Element Discriminating Coherence is in P 

(Corollary 5.8, page 93). The classical complexity of the general problem remains 

unknown (see also Single-Element Foundational Coherence). 

Single-Element Foundational Coherence [page 92] 

Input: A network N = (P, C), with C ⊆  P × P. Here P = H ∪  D, and C = C+ ∪  C− 

(with H, D being disjoint, and C+, C− being disjoint). For each (p, q) ∈  C there is 



 218

an associated positive integer weight w(p, q). A special element s ∈  H and a 

positive integer c. 

Question: Does there exist a partition of P into A and R such that CohN(A, R) is 

maximum and such that D ∪  s ⊆  A? 

We have shown that Single-Element Foundational Coherence with D = ∅  is in P 

(Corollary 5.9, page 93). The classical complexity of the general problem remains 

unknown (see also Single-Element Discriminating Coherence). 

Subset Choice [page 117] (e.g. van Rooij et al., 2003) 

Input: A weighted hypergraph H = (V, E), E ⊆  U
||2 Vh

hV
≤≤

. For every v ∈  V there is a 

weight wV(v) ∈   and for every e ∈  E there is a weight wE(e) ∈   \{0}. A positive 

integer p.  

Question: Does there exist a subset V’ ⊆  V such that valueH(V’) ≥ p? Here 

valueH(V’) =  ∑∑
∈∈

+
)'(E

E
'

V )(w)(w
VeVv H

ev , with EH(V’) = {(v1, v2, ..., vh) ∈  E | v1, v2, 

..., vh ∈  V’}.  

We have shown that Subset Choice is NP-hard by several independent reductions from 

Independent Set (Lemma 6.1 on page 123, Lemma 6.2 on page 125, and Lemma 6.5 on 

page 138; see also Fishburn & LaValle, 1996), as well as by reduction from Coherence 

(Lemma 6.3, page 126). Further, Subset Choice is not to be in FPT (unless FPT = W[1]) 

for parameter set {p, ε, ωV, ΩV, ωE, ΩE} (Corollary 6.13, page 148) and for parameter set 

{q, ε, ωV, ωE, ΩE} (Corollary 6.14, page 148). For more results on Subset Choice refer to 

Chapter 6 and van Rooij et al. (2003). (see also UCG Subset Choice; ECG Subset 

Choice; VCG Subset Choice; CG Subset Choice; CH Subset Choice; SH Subset Choice; 

Exact-Bound Subset Choice; Subset Rejection) 

Subset Rejection [page 129] (e.g. van Rooij et al., 2003) 

Input: A weighted hypergraph H = (V, E), E ⊆  U
||2 Vh

hV
≤≤

, for every v ∈  V a weight 

wV(v) ∈  , for every e ∈  E a weight wE(e) ∈   \{0}, and a positive integer q.  



 219

Question: Does there exist a subset V’ ⊆  V such that rejectH(V’) ≥ q? Here 

rejectH(V’) = valueH(V/V’) – valueH(V) = ∑∑
∈∈

−−
)'(R
EV )(w)(w

VeRv H

ev , with RH(V’) 

= {(v1, v2, ..., vh) ∈  E | v1 or v2 or ... or vh ∈  V’}.  

The problem Subset Rejection is equivalent to Subset Choice with p = valueH(V’) + q. 

(see Subset Choice) 

Top-down Visual Matching [page 169] (e.g. Tsotsos, 1990) 

Input: An image I and a target T. Each pixel pi = (x, y, bi), pi ∈  I, with pt = (x, y, 

bt), pt ∈  T, has an associated value diff(pi) = |bi − bt| and an associated value 

corr(pi) = bibt. Two positive integers θ and φ. 

Question: Is ∑ ∈ Ip
p)(diff ≤ θ and ∑ ∈ Ip

p)(corr ≥ φ? 

Top-down visual matching is solvable in time O(|I|) = O(|T|) (e.g. Tsotsos, 1990; see also 

page 169).  

Unit-weighted Conflict Graph (UCG) Subset Choice [page 124] (e.g. van Rooij 

et al., 2003) 

Input: A unit-weighted conflict graph G = (V, E). For every v ∈  V, wV(v) = 1 and 

for every e ∈  E, wE(e) = −1. A positive integer p.  

Question: Does there exist a subset V’ ⊆  V such that valueG(V’) ≥ p? 

We have shown that UCG Subset Choice is in FPT for relational parameter q = p − 

valueG(V) (Theorem 6.3, page 130). (see also Subset Choice; Subset Rejection)  

Upper-bound Subset Choice [page 192]  

Input: A weighted hypergraph H = (V, E). For every v ∈  V, wV(v) ∈   and for 

every e ∈  E, wE(e) ∈   \{0}. Positive integers p and k. 

Question: Does there exist a subset V’⊆  V such that valueH(V’) ≥ p and |V’| ≤ k? 

Upper-bound Subset Choice has not been studied in this work, but it appears in the list of 

open problems in Appendix D on page 192 (see also Exact-bound Subset Choice, Lower-

bound Subset Choice). 

Vertex Cover [page 11] (e.g. Garey & Johnson, 1979) 

Input: A graph G = (V, E) and a positive integer k.  



 220

Question: Does there exist a vertex cover V’ for G with |V’| ≤ k? 

Vertex Cover is known to be NP-complete (Garey & Johnson, 1979), and in FPT for 

parameter k (Downey & Fellows, 1999). Vertex Cover remains NP-complete on graphs 

of maximum degree 4 (Garey & Johnson, 1979). A graph G = (V, E) has a vertex cover of 

size k if and only if G = (V, E) has an independent set of size |V| − k (see Independent 

Set).  

Vertex-weighted Conflict Graph (VCG) Subset Choice [page 136] (e.g. van 

Rooij et al., 2003) 

Input: A vertex-weighted conflict graph G = (V, E). For every v ∈  V, wV(v) ∈    

and for every e ∈  E, wE(e) = −1. A positive integer p.  

Question: Does there exist a subset V’ ⊆  V such that valueG(V’) ≥ p? 

We have shown that VCG Subset Choice is W[1]-hard for parameter ΩV (Lemma 6.5, 

page 138). (see also CG Subset Choice, Subset Choice, Subset Rejection). 

 

  


