Tractable Cognition:

Complexity Theory in Cognitive Psychology

by

Iris van Rooij

M.A., Katholieke Universiteit Nijmegen, 1998

A Dissertation Submitted in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in the Department of Psychology

We accept this dissertation as conforming

to the required standard

Dr. H. Kadlec, Supervisor (Department of Psychology)

Dr. U. Stege, Supervisor (Department of Computer Science)

Dr. M. E. J. Masson, Departmental Member (Department of Psychology)

Dr. H. A. Miiller, Outside Member (Department of Computer Science)

Dr. M. R. Fellows, External Examiner (School of Electrical Engineering and Computer
Science, University of Newcastle)

© Iris van Rooij, 2003
University of Victoria

All rights reserved. This dissertation may not be reproduced in whole or in part, by

photocopying or other means, without the permission of the author.

ii

Supervisors: Dr. Helena Kadlec, Dr. Ulrike Stege

Abstract

This research investigates the import and utility of computational complexity theory in
cognitive psychology. A common conception in cognitive psychology is that a cognitive
system is to be understood in terms of the function that it computes. The recognition that
cognitive systems—being physical systems—are limited in space and time has led to the
Tractable Cognition thesis: only tractably computable functions describe cognitive
systems. This dissertation considers two possible formalizations of the Tractable
Cognition thesis. The first, called the P-Cognition thesis, defines tractability as
polynomial-time computability and is the dominant view in cognitive science today. The
second, called the FPT-Cognition thesis, is proposed by the author and defines tractability
as fixed-parameter tractability for some “small” input parameters. The FPT-Cognition
thesis is shown to provide a useful relaxation of the P-Cognition thesis. To illustrate how
the FPT-Cognition thesis can be put into practice, a set of simple but powerful tools for
complexity analyses is introduced. These tools are then used to analyze the complexity of
existing cognitive theories in the domains of coherence reasoning, subset choice, binary-
cue prediction and visual matching. Using psychologically motivated examples, a
sufficiently diverse set of functions, and simple proof techniques, this manuscript aims to
make the theory of classical and parameterized complexity tangible for cognitive
psychologists. With the tools of complexity theory in hand a cognitive psychologist can
study the a priori feasibility of cognitive theories and discover interesting and potentially
useful cognitive parameters. Possible criticisms of the Tractable Cognition thesis are

discussed and existing misconceptions are clarified.

Examiners:

Dr. H. Kadlec, Supervisor (Department of Psychology)

Dr. U. Stege, Supervisor (Department of Computer Science)

11

Dr. M. E. J. Masson, Departmental Member (Department of Psychology)

Dr. H. A. Miiller, Outside Member (Department of Computer Science)

Dr. M. R. Fellows, External Examiner (School of Electrical Engineering and Computer
Science, University of Newcastle)

v

Table of Contents

F N o1 1 T AU TSRUPPRTR i
TabIe OF CONENLS ..ottt ettt et e eaees v
LSt OF TaDIES.....eoeieiieie ettt ettt ettt viil
LSt OF FIGUIES ..euvieiiieiiieeie ettt et et et ettt e s e et e e aeeeabeenneas X
ACKNOWIESAZEIMENLSviiiiieiiieiiieiiete ettt ettt e et e sbeessaeesbeenseesnsaensneenne Xi
PrETACE ... ettt an 1
NOte t0 the REAAETeoeiiiiiiiee e 2
OVEIVIEW ...ttt ettt ettt sttt h ettt she et e e bt e sb e et e e et e sbe et e eatesbeentesanenaeens 3
Chapter 1. Psychological Theories as Mathematical Functions...........c.cceceveenerniennenn. 4
1.1. What is @ Cognitive TasK?cooriiiriiiiiiiieie et 4
1.2. Task-Oriented PSYChOLOZYcc.eiiiiiiiiiiieiieceece et 5
1.3. Levels of Psychological EXplanation...........ccccecevieneriiiniineniinieneeienecneeienens 7
1.4. Motivation and Research QUEStION...........cceeceviieiiieeiiie e 9
Chapter 2. Problems, Algorithms, Computability and Tractability............c.ccveeneeee. 10
2.1, Classes Of PrODICIMScocueeiiiiiiiiiiieiie ettt 10
2.1.1. Search, Decision and Optimization problems............cceceerveriieenieesieeneennnen. 10
2.1.2. Tllustrations in Cognitive Theoryccceevviieiiriiiieniieiieieceee e 12
2.2, Formalizing ComPULATIONcuieeuiieiieriiieieeeieeiee ettt eeeaee e esseeeereeaeeenbeeneees 14
2.2.1. The Intuitive Notion of a Computation.............cceeeeerieeriienreeneenieereenveenenen 14
2.2.2. The Turing Machine FormaliSmcccccceeviiiieiiieeiiieeiie e 15
2.2.3. Extensions of the Turing Machine Concept..........cccceveeevrieencrieeriieeenieeeenenn 17
2.3, The Church-Turing ThesiS.......c.cccieririiiienieeiieie ettt 18
2301, CIIHICISIIIS .euvientieiieriieieete ettt ettt ettt ettt ettt ettt s bt et et e saeebeennesaeenee 20

2.4, Computational CoOMPIEXItYcceieriiieeriieeiiieeiiieerieeerreeereeeeeeeeaeeeeeeesaeeeenes 21
2.4.1. Time-compleXity and Big-OM...........cccueeecuieeeiiieiieeeeieeeeieeeeeeeeeesvee e 21
2.4.2. Illustrating Algorithmic COmpleXity........ccccervuereeniiriiinieneiienieneeeeeneenee 23
2.4.3. Problem COmPIeXitycccveriiriiieiieiiieiie ettt sve e e b e eneees 27
2.4.4. The Invariance TRESISccccooiiiiiiiiiiiiiie e 28
2.5. The Tractable Cognition ThesSiS......ccceecuiieriiiieiiie et 29

Chapter 3. P-Cognition versus FPT-Cognition...........ccccceeeveriineenennicneenienicneeeae 31

3.1. Classical Complexity and Classical Tractabilitycccccoceevervienienenncnienennne. 31
3.2. The Theory of NP-COMPIELENESScoevviireiieiiiriieeiieeie ettt 33
3.2.1. Theclasses P and NP ..o 33
3.2.2. Illustrating polynomial-time reduction............ccccueeeviieeiieeeiieeeie e 35
3.3, The P-Cognition theSiS.........ccccuieiiiiriiiiieeieeiie ettt ettt 39
3.3.1. P-Cognition in Psychological Practice...........ccccccuvevieriiiiieniienieciieiieeine 40
3.3.2. A Comment on Psychological Practice...........cccovveriiieiiieniiieeieeeiie e 41
3.4. Parameterized Complexity and Fixed-Parameter Tractability...........c.ccccvveenneen. 42
34.1. Theclasses FPT and W1 ..ccoeioiiiiiiieeeeeee e 42
3.4.2. Ilustrating Fixed-parameter Tractabilitycccoevieriieiieniieenienieeieeees 45
3.5. The FPT-Cognition theSIScceeriuiieriiieeiiieeiieeerieeesiieeeeee e e enreeeaeeesreeesenee s 46
3.5.1. FPT-Cognition in Psychological Practicec..cceccuvevriieviienciieeieeeieeens 48
Chapter 4. Techniques in Parameterized Complexityc.ccecevvienirnieniineencnniennene 50
4.1, Reduction RUIEScc.cociiiiiiiiiiiieicceeece e 50
4.2. Reduction to Problem Kernel............ccccoviiiiiiiniiniiieeeeeceeeee 56
4.3. Bounded Search TTee.........ccooiiiiiiiiiiiieieeeee e 58
4.4, Alternative Parameterizations.........cc.eeeveeervieesiiieeeieeeireeereeesieeeeeeeesneeesnee e e 64
4.4.1. ImpPlicit PArameterscccieruieiiiieriie ettt et 64
4.4.2. Relational Parameterizationccccecueveerieeiienienieeienieneee e 65
4.4.3. Multiple-parameter Parameterizationsccceeeeveerueeeiveeneesiveeneesneenveennenn 69
4.5. Crucial Sources of COMPIEXILYcccvvireriieiiiieeiiie et eetee e e e 73
4.6. Parametric T@AUCTIONueeeiiieeiieeeiieeetee ettt e et e e e s eaeesteeesnsaeesaseeesaseeenenas 74
4.7. The Parametric Toolkit and Beyond.............cccceeviieiiiniiiiiiiiiieeeeeeee 78
Chapter 5. CORNGIENCE ...c.veeeeiieiieeiiieiie ettt steeebe e seeesbeees 79
5.1. Coherence as Constraint SatiSfaction..........cccceeveeriiiiiiiiiiiiiiiniceeeceeeeeeen 79
5.2. Coherence as Cognitive TheOTYccecuiieriiieiiieeieeeciee et e e 81
5.3. Coherence is NP-hardcccoceiiiiiiriiiiiiiiieeeeeee e 83
5.4. Reflections on the NP-hardness of Coherence...........cccoecueveenierieneencnieneeniennne. 85
5.4.1. Special Cases 0f CONEIENCEc.eevvuiieriiiieiiieeiie et 85
5.4.2. Generalizations 0f CONETENCEccceiriiiiiiiiiieiieeiee e 90

5.4.3. Variations 0N COREIEIICEeeeeee oot e e e e e e e e e eeeeaaens 91

Vi

5.5. c-Coherence 1S 1N FPT....ccooiiiiiiiiiiiiiicecc e 94
5.5.1. Double-Constraint COREIENCEcevueruierieriiniieieeiesiieieeerieeee e 94
5.5.2. Reduction RUIEScoceiiiiiiiiiiiiiie e 95
5.5.3. A Problem Kernel.........cccovieiiiiiiiiicieeceeceeeeeee e 102

5.6. A Constructive fpt-Algorithm for c-Coherence...........coocceeveieiiiiniiiiienieeenne, 103
5.6.1. A Problem Kernel for Connected Networkscccceevevieniininiieninnennne 104
5.6.2. A General Problem Kernel...........ccooiiiiiiiiiiieecee 104

5.7. |C|-Coherence i i FPT.......ccccooiiiiiiiiiieiiicieeeeeeee e 106
5.7.1. Annotated CONETENCEcoouuiiiiiiriiiiiiiieeiieee e 107
5.7.2. Branching into Pos-Annotated Coherence...........cceccveeecvieercieeencrieeeeeeenenn 108
5.7.3. Pos-Annotated Coherence iS in P.........cocccoiiiiiiiiniininiiniieieccee 109
5.7.4. An fpt-algorithm for |C |-Annotated Coherencecccoeverereeveieneennenn 113

5.8, CONCIUSION ..ottt sttt et et sb et s e e ens 114

Chapter 6. SUDSEt CROICE.ccuiiiiieiieciieiieeie ettt et aeereesnee e 116

6.1. Subset Choice as Hypergraph Problem...........ccccoooviieiiiiniiiiniieecee e 116
6.1.1. Notation and Terminologyccccereeiiiiiiiiiiieie e 117

6.2. Subset Choice as Cognitive Theory........cccoevieriieiieniiiieeieeeee e 119

6.3. Subset Choice is NP-hardccooeeiiiiiiiiiiiiieceeeeeeeee e 122

6.4. Subset Choice on Unit-weighted Conflict Graphs.........ccccceevveeeviieeiieencieeene, 128
6.4.1. p-UCG Subset Choice is W[1]-hard.........cccovviiiiiniiiiiiieeee 128
6.4.2. Subset Rejection and Parameter @cceeeveeciienieeiiieniieiieieceeee e 129
6.4.3. ¢-UCG Subset Choice 1S in FPTcccccoviiiiiiiiieieeieeeecieee e 130
6.4.4. Improved Results for g-UCG Subset Choice..........cccvvveiieriienireriieniieienne 135

6.5. Generalizing g-UCG Subset ChOiCecceeeviieeriieeiiieeiieeieeeee e 136
6.5.1. ¢g-ECG Subset Choice is in FPT......ccccooiiiiiiiieieeeeeeeece e 137
6.5.2. g-VCG Subset Choice is W[1]-hard.........cccoviiiiiiniiiiiieeceeeee 137
6.5.3. {gq, Qv}-CG Subset Choice is in FPTcccccoeoiiriiiiiiiieieieceeeee 139
6.5.4. {q, Qv, €}-CH Subset Choice is in FPT.........c.ccccceiiiiiiiniiiiieeeeee, 143

6.6. Crucial Sources 0of COMPIEXItYceevuiriiriiiiiniiniieieeereeeeeeeee e 146

6.7. Surplus SUbSEt ChOICEccueeiiiiiieiiieieeeie ettt et 149

6.8. Subset Choice WHhen SiZ€ MatterS . .. oo eeeeeeeeeeeeeee e e e eeeeeeeeeeeeeeeeeeeeaeeaaaaaans 151

vii

0.9, CONCIUSION ...ttt sttt et nae e 153
Chapter 7. Cue Ordering and Visual Matchingccccccoeviieiiieniieniienieeieenie e 155
7.1, MIN-INCOMP-LEXuiiiiiiiieiiie ettt e et e e e e e e 155
7.1.1. Motivation: Binary-Cue Prediction...........ccccveeveiiiencieeeciie e 155
7.1.2. Notation, Terminology and Problem Definitionccceveeverienienennens 158
7.1.3. Classical and Parameterized Complexity........c.ccocveeviieriieriieniieenieeieeieenns 161

7.2. Bottom-up Visual MatChingcccccoovieiiiiieiiieeiie e 167
7.2.1. Motivation: Visual Search...........ccccoevviiiiiiiiiiiiieeceecee e 167
7.2.2. Notation, Terminology and Problem Definitioncccevveevervierienennens 170
7.2.3. Classical and Parameterized Complexity........ccccocervieriierieniieeniienieeieenns 171

7.3, CONCIUSION ...ttt sttt st e b e s 174
Chapter 8. Synthesis and Potential Objections...........c.ccecveeeviieecieeeiieeeie e 176
8.1, SYNTRESIS ..ttt et 176
8.2. Potential ODJECIONSc.eeeiuieriiieiieiie ettt ettt ettt sre et saaeebeeseaeennees 177
8.2.1. The EMPIricist ATGUMENL........c.ccovieriierieeiieiieeieeeieeree e eieeeveereeeneeeees 178
8.2.2. The Cognition-is-not-Computation Argument............cccceerevveererveeriuveennnnnn 178
8.2.3. The Super-Human Argumentccccecuereererienienieeieneenenreseenreeee e 180
8.2.4. The HeuriStics ATZUMENTccueeriieiiieriieeiieeite et eeeeieeereeieeeeeeeveesneenees 181
8.2.5. The Average-case ATGUMENL........cccccieriiieriienieeriienieeieeeeeeieeeeeereesaeeaeeas 182
8.2.6. The ParallelisSm ATgUMENtccceeevvierieeiiienieeiieeieeieesee e eee e e sneennees 182
8.2.7. The Non-DeterminiSm ATGUMENTcceevvueeeeiuieeeiiieeriieeeireesreeesveeenneees 184
8.2.8. The Small-Inputs ATgUMENt..........ccccvrieiiieeiiie e e 185
8.2.9. The Nothing-New Argumentccceecueerieriienieiieeieeeieeiee e 185
8.2.10. The P-is-not-strict-enough Argumentccccccvevvieerieniiienienieeneeeveeeen 186
Chapter 9. Summary and CONCIUSIONSccccvieeriieieiiiieeiieeeiee e erree e e 188
9.1. Metatheoretical CoNtribULIONSc..eevviieiiiieiiieeiee e e 188
9.2. Theory Specific CONtriDULIONScccueetiruiiiieriiniiiieeiierteeiest et 189
9.3, Musings on the FULUIEccocoiiiiiiiiiiiii e 193
RETEIEIICES ...ttt st s 195
Appendix A: Notation and Terminology for Graphsccccceeeerieeiiieinciieeciee e, 204

Appendix B: A Compendium of Problemscoceeveriiniiiininiiiineccenienceeeen 209

viii

List of Tables
Table 2.1. Classical tractability and intractability...........cccoeevieeriiieeriieeiee e 32
Table 2.2. Fixed-parameter tractability and intractability............ccccoceeieviieeiiieniieeeieens 46
Table 6.1. Overview of special value-structures.cceeveeeriieriieiiienie e 118
Table 6.2. Overview of input parameters for Subset Choice.ccceeeveerieriieniienneenen. 119

Table 9.1. Overview of compleXity TeSUILScovvuiieriiiiiiiieeiieeee e 190

Figure 2.1.
Figure 2.2.
Figure 2.3.
Figure 2.4.
Figure 3.1.
Figure 3.2.
Figure 3.3.
Figure 3.4.
Figure 3.5.
Figure 3.6.
Figure 4.1.
Figure 4.2.
Figure 4.3.
Figure 4.4.
Figure 4.5.
Figure 5.1.
Figure 5.2.
Figure 5.3.
Figure 6.1.
Figure 6.2.
Figure 6.3.
Figure 6.4.
Figure 6.5.
Figure 7.1.
Figure 7.2.
Figure 7.3.
Figure 7.4.
Figure 8.1.
Figure Al.

iX

List of Figures
[lustration of @ Turing Machine.c.ccceeeiiieeiiieeiieeee e 16
[lustration of the Church-Turing Thesis.cccvveviiieiiiieeciee e 19
[lustration of the Exhaustive Vertex Cover algorithm..............cccccoeveennnnen. 26
[lustration of the Tractable Cognition thesis.cccceeveeriienieniieiieeieenee. 30
The view of NP on the assumption that P £ NP.cccooviiiiiiiniie, 35
[lustration of the reduction in Lemma 3.1.ccccoooiiiiiiiiiiiiieeceee, 37
[Nustration of the P-Cognition Thesis........ccccecuereeniriiinienieienienecieeeeeeene 39
The view of W[1] on the assumption that FPT # W[1]......cccoovviviinninnnnnnnen. 43
[lustration of the relationship between classes W[1], FPT, P and NP........... 44
[lustration of the FPT-Cognition thesis.cccccvveeviieeciieeiieecieecee e 47
[lustration of reduction rules (VC 1) — (VC 5) for Vertex Cover.................. 51
[lustration of rule (VC 6) and the intuition behind its proof..............c........... 57
[lustration of branching rules (VC 7) and (VC 8)....ccceeevvvevveeciienieeieeiieenen. 60
[lustration of branching rule (IS 1). ...ccoveveiiiiiiiieee e 72
[lustration of the reduction in Lemma 4.2.ccccceeiiiiiiiiiiniiiieeeeeee, 75
Example of a Coherence poblem............ccceviriiriiniiiiinieniieiecceeee 83
[lustration of the reduction rules for Double-Constraint Coherence. 97
[lustration of reduction rules (AC 2) and (AC 3). c.ooecvvevieeciieiecieeieeeeene, 111
Example of a Subset Choice problem.c.cccooiiiiiiiiiiiiiniiiiieieeeeee 121
[lustration of the reduction in Lemma 6.3.ccoccoiiiiiiiiiiieee, 126
[lustration of branching rule (UCG 1) for UCG Subset Choice. 133
[Nlustration of the reduction in Lemma 6.5.coceviiviiiiniininienieeeee 138
[lustration of branching rule (CG 1). ...cccveeiiiiiiiieiieeieeeeeceeee e, 143
[llustration of a binary-cue prediction task.ccccceeevvieeiieeeiieeeieeeiieens 156
[Nustration of a visual search task..........ccccoeceviiiiniiniiniieee 167
[lustration of a visual matching task...........ccccoeoieiiiieniiniiienieecee s 168
[lustration of Top-down or Bottom-up Visual Matchingccccceeeeeeen. 169
Polynomial time versus fpt-time.cccoveeeiiiieeiiiiecieeceeeee e 186
An illustration of @ graph.cccooieeiiiiiiiii e 204

Figure A2. An illustration of a connected graph.ccoecveeiieniiiiiiniiiieeeeeeee, 207
Figure A3. An illustration of @ fOrest.coceevueriiriiiiiieneeeeee e 207
Figure A4. An illustration of @ tree.coc.eeiuieiiiiiiiiie e 208

xi

Acknowledgements

Four years ago I decided to leave the Netherlands and come to Canada to complete my
education and to embark upon an interdisciplinary research project at the intersection of
cognitive psychology and theoretical computer science. This decision was unexpected, to
say the least—not only because I was never much of a traveler, but also because at the
time I knew little or nothing about theoretical computer science. It turns out that it was
one of the best decisions I ever made. With joy I look back upon my experiences here at
the University of Victoria and I am grateful for every day I got to spend in the beautiful
city of Victoria. My stay here has resulted in, among other things, the dissertation that
lies before you. I could not have realized this work without the intellectual, practical, and
emotional support of many others.

First and foremost I would like to thank my two Ph.D. supervisors Helena Kadlec
and Ulrike Stege. I am grateful to Helena for her continued support of my unorthodox
ideas about and methods for cognitive psychological research. Being my most critical
audience, Helena has contributed to this research in invaluable ways. I have enjoyed our
discussions through the years and I believe that this dissertation is the better for it. Ulrike
has taught me most (if not all) I now know about theoretical computer science. I owe to
her training an appreciation for rigor in mathematical analysis and a new understanding
of the role of mathematics in science. Ulrike’s enthusiasm for interdisciplinary research
continues to be a source of inspiration for me.

I am indebted to Mike Fellows for introducing me to the fascinating field of
computational complexity and for being the one who made it possible for me to come to
Victoria in the first place. Thank you, Mike, for your vision and confidence in my
potential as a student and as a researcher.

I thank Mike Masson and Hausi Miiller for their service as committee members
and their constructive comments on my work.

My intellectual development over the years has been shaped by and profited from
interactions with many other researchers. In particular, I thank: Pim Haselager and Raoul
Bongers (my M.A. supervisors at the University of Nijmegen), Jelle van Dijk, Piet Smit,
Gert-Jan Bleeker and Andre de Groot (members of Pim’s EEC group), Michelle Arnold

xii

and Cindy Bukach (my fellow students and dear friends), Allan Scott, Parissa Agah, and
Fei Zhang (members of Ulrike’s research group), Steve Lindsay, Mike Masson, Dan Bub,
David Mandel, Mandeep Dhami and the other members of the Cognitive group at the
University of Victoria.

I also thank Steve Lindsay for coordinating the weekly Cognitive Seminar at the
University of Victoria: It has (further) opened my eyes to the beauty and variety of
cognitive research. On several occasions I have had the opportunity to present my own
research in this seminar and I have found the consistent enthusiasm and interest with
which my work has been received truly rewarding.

I thank my brother and ultimate role model, Tibor, for bringing me to Victoria. |
thank him and his wife Andrea for making a foreign country feel like home. This
dissertation is dedicated to their children: my nephew Ronan and my niece Somerset.

I am grateful to my parents, Peter and Emdke, for their unwavering confidence in
me. [am sure they are proud and, above all, happy that I am returning to the Netherlands.

So too will be my all-time comrade Judith. I owe to her, and our friend Nique, a
sense of history that I lacked for too long. The distance between us during the last four
years has disrupted the regularity of our philosophical discussions, but importantly, not
our friendship.

Last, but certainly not least, I thank my wife Denise for her endless love and
support. There are no words to express my gratitude for the last 7 years with her and the

many more years to come.

Xiii

To Ronan and Somerset, whom I miss very much

Preface

Cognitive systems are often thought of as information-processing or computational
systems, i.e., cognitive processes serve to transform inputs into outputs. On this view, the
psychologist’s job is to single out the (mathematical) function that captures the input-
output behavior of the system under study. The question driving the present study is:
What kinds of functions can (not) be computed by cognitive systems? This question is of
great importance for all computational approaches to cognition, because its answer will
ultimately determine which psychological theories are realistic from a computational
perspective and, more importantly, which are not.

In order to answer the question raised, a precise definition of computation is
required. In 1936, Alan Turing provided a now widely accepted formalization of the
notion of computation. Turing believed that, with his formalization, he had discovered
the theoretical boundaries on the ability of humans to compute functions. Following
Turing, the early cognitive scientists considered computability the only real theoretical
constraint on cognitive theories.

Later an appreciation arose in computer science for the difference between
‘computable in principle’ and ‘computable in practice,” leading to the development of
computational complexity theory in the 1970s. Complexity theorists have argued that
functions that are computable, in Turing’s sense, may not be tractably computable;
meaning that no realistic physical machine can be expected to compute those functions in
a reasonable amount of time.

In recent years, cognitive scientists have started to use computational complexity
theory in analyzing psychological theories and many of them (explicitly or implicitly)
view computational tractability as a real constraint on human computation. It is this latter
development that motivates this work. This work sets out to critically analyze the notion
of computational tractability and its role in cognitive theory.

The general purpose of this research is threefold. The first purpose is to motivate
a theoretical discussion on computational tractability in cognitive theory and to make this

discussion accessible for the interested cognitive psychologist. The second purpose is to

expose and clarify the dominant view of tractability in present-day cognitive science'
based on classical complexity theory, and to propose and defend an alternative view of
tractability based on parameterized complexity theory. The third purpose is to present
cognitive psychologists with formal tools for analyzing the classical and parameterized
complexity of their theories and to illustrate the use of these tools in different cognitive

domains.

Note to the Reader

This research is inherently interdisciplinary—being situated at the crossroads of
theoretical computer science and cognitive psychology. Nevertheless I will pitch my
discussion particularly towards cognitive psychologists and other psychologically
interested cognitive scientists. This is partly because I, myself, am a cognitive
psychologist, and thus my interest in computational complexity is primarily motivated by
psychological considerations; but also because I think that psychologists, as opposed to,
say, artificial intelligence researchers or philosophers, have been most ignorant of
computational complexity theory and its application to cognitive theory.

In an attempt to give the reader a firm grip on computational complexity theory I
will cover many more details of the mathematical theory of computation than is common
in the psychological literature. I believe that a proper application of complexity theory in
psychology, and a full appreciation of its unique contribution, demands more than a
superficial understanding of this theory. For the mathematician and computer scientist
reader I note that I will assume an introductory level knowledge of cognitive psychology,
as well as some familiarity with computational modeling as it is practiced in cognitive
science (see e.g. Eysenck & Keane, 1994; Stillings, Feinstein, Garfield, Rissland,
Rosenbaum, Weisler, & Baker-Ward, 1987, for accessible introductions). Some
awareness of philosophical issues with respect to the computational theory of mind,

though not necessary to understand the material, may help to appreciate the wider

1 With the term cognitive science I mean the interdisciplinary study of cognition,
including fields such as cognitive psychology, artificial intelligence, and philosophy of
mind.

implications of the ideas pursued here (see e.g. Bechtel, 1988; Chalmers, 1994; Putnam,
1975, 1994).

Overview

Chapter 1 situates the present discussion by explaining the role of cognitive function in
psychological theory. Chapter 2 presents preliminaries of the formal theory of
computability and complexity, and traces the development from the Church-Turing thesis
to a first, informal formulation of the Tractable Cognition thesis. Then Chapter 3
discusses two possible formal instantiations of the Tractable Cognition Thesis. The first
is called the P-Cognition thesis. This thesis maintains that cognitive functions are (and
must be) computable in polynomial time. I will show that the P-Cognition thesis is the
dominant version of the Tractable Cognition thesis in cognitive science today. Further, |
will argue that the P-Cognition thesis poses too strict constraints on the set of cognitive
functions, with the risk of excluding potentially veridical cognitive theories from
psychological investigation. As an alternative I propose and defend the FPT-Cognition
thesis. Towards this end I introduce a new branch of complexity theory to cognitive
psychology, called parameterized complexity theory.

Chapter 4 presents a primer on strategies and techniques for parameterized
complexity analysis. The following three chapters, Chapters 5, 6, and 7, each discuss
existing cognitive theories, and subject them to critical complexity analyses using the
techniques explained in Chapter 4. These chapters are not intended to have a final say on
“the” complexity of the respective theories, but instead are meant to motivate healthy and
critical discussion among cognitive scientists on how best to pursue complexity analysis
of this type of theories. Furthermore, these chapters illustrate how rigorous complexity
analysis of cognitive theories is possible and informative.

Chapter 8 sets out to synthesize and evaluate the ideas and arguments expressed
in the preceding chapters. Toward this end, I identify a set of potential objections and
present a response to each. The final chapter, Chapter 9, summarizes the main
contributions of this research—both at the metatheoretical level and at the level of

specific cognitive theories—and proposes future work on the topic.

Chapter 1. Psychological Theories as Mathematical Functions

Cognitive psychologists are interested in understanding how humans perform cognitive
tasks (e.g. reading words, recognizing faces, inferring conclusions from a set of premises,
predicting future events, remembering past events). This chapter describes how cognitive
psychologists tend to conceive of such tasks. From this we conclude that, generally, a
cognitive task can be modeled by a function, and that a cognitive process can be
understood as the computation of that function. I will discuss the motivation and
generality of this conceptualization, and conclude with the question that ultimately

motivates this work: “Which functions can be computed by cognitive processes?’

1.1. What is a Cognitive Task?
Cognitive tasks come in many kinds and flavors. A cognitive task may be viewed as
prescriptive (e.g. when an experimenter instructs a participant to perform a certain task,
or when a normative theory defines a certain goal as ‘rational’) or descriptive (e.g. when
we view human memory as performing the task of storing information about the world,
or when we view human perception as performing the task of constructing internal
representations of the external world). Cognitive tasks may be high-level and/or
knowledge rich (e.g. reasoning, language production and understanding, decision-
making) or low-level and/or knowledge poor (e.g. sensation, locomotion). Cognitive
tasks may be subtasks (e.g. letter recognition) or supertasks (e.g. sentence reading) of
other cognitive tasks (e.g. word reading). Finally, a cognitive task may be a task
performed by a whole organism (e.g. a human), a part of an organism (e.g. a brain, a
neuronal group), a group of organisms (e.g. a social group, a society), an organism-tool
complex (e.g. a human-computer combination), or even an altogether artificial device
(e.g. a computer).

Typically cognitive psychologists conceive of cognitive tasks as information-

processing or computational tasks.” Generally, such tasks can be characterized as follows:

? The terms information-processing and computational system have the connotation that
cognitive systems are assumed to be representational (e.g. Massaro & Cowan, 1993).
Even though many (computational and non-computational) approaches to cognition

Given a state of the world 7 (the initial or input state), the goal is to transform state i into
state o (the final or output state). Since, psychologists are interested in cognitive tasks
qua generic tasks, an input state is usually seen as a particular input state (e.g. a particular
tone, a particular word, a particular pattern of neuronal firing) belonging to a general
class of possible input states (e.g. all perceivable tones, all English words, all possible
patterns of neuronal firing). Further, any non-trivial task has at least two output states. If /
= {iy, ip,} denotes the set of possible input states and O = {01, 02,} denotes the set
of possible output states for a given task, then we can describe the task by a function I1: /
— O that maps input states / to output states O. In other words, a cognitive task is
modeled by a mathematical function.

A system that performs a cognitive task we call a cognitive system, the mapping
M: 7 — O we call a cognitive function, and the mechanism by which the transformation
from an input i [J I to output o = I(7) is realized we call a cognitive process. We say that
a cognitive system/process ‘computes’ a cognitive function, and we say a cognitive
process is the ‘computation’ of the respective function. (For now the words ‘compute’
and ‘computation’ will be informally used. In Chapter 2 these terms will be formally

defined).

1.2. Task-Oriented Psychology
The conceptualization of cognitive systems in terms of the tasks they perform is very
useful and pervades psychological practice (see e.g. Eysenck & Keane, 1994, or any
other textbook of cognitive psychology for an impression). This task-oriented approach
makes sense both historically and methodologically.

First of all, theories in experimental psychology tend to be naturally task-oriented,
because participants are typically studied in the context of specific experimental tasks.

Furthermore, since the birth of cognitive psychology the information-processing

indeed assume some form of representationalism (whether symbolic, distributed, or
otherwise; e.g. Haugeland, 1991; but see also Haselager, de Groot, van Rappard, 2003;
Wells, 1996, 1998), no such assumption is necessary for an application of computability
and complexity theory to psychological theories, and therefore, no such assumption is
made here. Whether input and output states (or any intervening states) bear any
representational content is irrelevant for analyzing the functional form of a task.

approach to explaining human task performance has been dominant. This approach views
human cognition as a form of information processing—i.e., as the transformation of
stimuli into mental representations, of mental representations into other mental
representations, and of mental representations into responses (e.g. Massaro & Cowan,
1993). To explain how a participant performs a cognitive task, the cognitive psychologist
hypothesizes the existence of several cognitive systems and sub-systems, each of them
responsible for performing a particular information-processing (sub-)task. Then the task,
as a whole, is seen as the conglomeration of the hypothesized set of sub-tasks.

Consider, for example, the task of detecting a tone among noise. According to
Signal Detection Theory (SDT; Green & Swets, 1966) this task is performed by two
cognitive sub-systems: a perceptual system and a decisional system. The perceptual
system transduces the stimulus (e.g. either a tone among noise or noise alone) into an
internally represented perceptual impression. This perceptual impression is usually
modeled by a point in a one-dimensional space (but see e.g. Kadlec & Townsend, 1992,
for extensions of SDT to multiple dimensions). The decisional system serves to make a
decision about whether the perceptual impression provides sufficient evidence that the
tone was present in the stimulus. It does so by defining a criterion (modeled by a critical
point in perceptual space), and output “yes, tone is present” if the perceptual impression
exceeds the criterion, and output “no, tone is absent” otherwise.

The idea that cognitive systems and sub-systems serve particular purposes fits
with both evolutionary and developmental perspectives of cognition (Anderson, 1990;
Glenberg, 1997; Inhelder & Piaget, 1958; Margolis, 1987). This conceptualization of
cognition has also proven useful in the area of cognitive neuropsychology, where double
dissociation® methodology is being used to “carve-up” the human brain into modules,
each module presumably responsible for a particular mental function (Kolb & Whishaw,
1996). Finally, cognitive psychology’s focus on the functioning of cognitive sub-systems
follows from its philosophical commitment to functionalism. Functionalism postulates

that cognitive processes are defined by their functionality (i.e., how cognitive states

3 For recent discussions on the notion of ‘mental modules’ and ‘double dissociation
methodology’ see e.g. Dunn (2003), Dunn and Kirsner (2003), Kadlec and van Rooij
(2003), van Orden and Kloos (2003).

functionally relate to other cognitive states), as opposed to, say, the “stuff” they are made
of (e.g. Block, 1980; Putnam, 1975; but see also Putnam, 1988; Searle, 1980). It is also
functionalism that fuels the cognitive psychologist’s belief that s/he can understand
human cognition in terms of its functional properties, more or less independently from
the physical properties of human cognitive systems. The next section further discusses

this view of psychological explanation.

1.3. Levels of Psychological Explanation

On the very general view presented here, a psychological theory of a cognitive task
should minimally specify the function (or set of functions) that the system is believed to
compute when performing the task. Such a functional level description answers the
“what”-question; i.e., what is the task as construed by the system under study? Once such
a description is successfully formulated, the psychologist may be interested in addressing
the “how”-question; i.e., how is the computation of the function (physically) realized?
This distinction between “what is being computed” (the cognitive function) and “how it
is computed” (the cognitive process) is also reflected in a well-known framework
proposed by David Marr (1982).

Marr (1982) proposed that, ideally, a cognitive theory should describe a cognitive
system on three different levels. The first level, called the computational level, specifies
what needs to be computed in order to perform a certain task. The second level, the
algorithmic level, specifies how the computation described at the first level is performed
(i.e., a description of the exact representations and algorithms used to compute the goal).
The third and final level, the implementation level, specifies how the representations and
algorithms defined at the second level are physically implemented by the “hardware”
system performing the computation.

Hence, in Marr’s terminology, the description of a cognitive system in terms of

the function it computes is a computational level theory.” Since one and the same

* Note that many theories in cognitive psychology referred to as ‘computational’ are in
fact algorithmic level theories (cf. Humphreys, Wiles, & Dennis, 1994). Because a
computational level description of a cognitive system does not specify the algorithmic
procedures employed to compute the system’s function, some people have found the
name ‘computational level’ misleading or confusing. Alternative names proposed for the

function can be computed by many different algorithms (e.g. serial or parallel), we can
describe a cognitive system at the computational level more or less independently of the
algorithmic level. Similarly, since an algorithm can be implemented in many different
physical systems (e.g. carbon or silicon), we can describe the algorithmic level more or
less independently from physical considerations.” Marr argued for the priority of
computational level descriptions in psychological theories.’ He believed this was the best
way to make progress in cognitive theory, because “an algorithm is likely to be
understood more readily by understanding the nature of the problem being solved than by
examining the mechanism (and the hardware) in which it is embodied” (Marr, 1982, p.
27; see also Marr, 1977). Marr’s view is succinctly summarized by Frixione (2001, p.
381) as follows:

“The aim of a computational theory is to single out a function that models the

cognitive phenomenon to be studied. Within the framework of a computational

approach, such a function must be effectively computable. However, at the level

of the computational theory, no assumption is made about the nature of the

algorithms and their implementation” (Frixione, 2001, p. 381).’

Marr’s ideas have been very influential in cognitive psychology and artificial
intelligence alike. Although his approach has not been without criticism (e.g.
McClamrock, 1991), his general framework has found wide application in cognitive

science and psychology (albeit often in adjusted form), both among symbolists

computational or comparable level include: the semantic level (Pylyshyn, 1984), the level
of cognitive state transitions (Horgan & Thienson, 1996), the knowledge level (Newell,
1982), and the rational level (Anderson, 1990). Since all these names have connotations
that I do not intend, I will avoid usage of these terms.

> Few present-day psychological theories include descriptions at the implementation
level. Exceptions are probably best found in the literature on low-level cognitive
processes (e.g. sensation and perception). Cognitive psychology neglects the
implementational level because, in line with functionalism, it regards implementation
details to a large extent irrelevant to cognitive theory and psychologically uninteresting.

6 ¢f. Anderson’s (1990) arguments for the priority of his rational level.

7 Probably Marr had a bit more in mind when he proposed his computational level. For
example, on his view a computational level theory also needed to include a rationale for
why the proposed function is the right function to solve the task at hand. This added
information, however, does not contradict the interpretation of the computational level by
Frixione and myself.

(Pylyshyn, 1984; Newell, 1982) and connectionists (Rumelhart, McClelland, & the PDP
Research Group, 1986), and interestingly, even among dynamicists (Horgan & Tienson,

1996).

1.4. Motivation and Research Question
The present study pertains to cognitive theories that are formulated at the computational
level; meaning, they minimally specify a function hypothesized to be computed by the
system under study. The question on which the discussion will center is: ‘Which
functions can be computed by cognitive processes?’ The answer to this question is
invaluable for any computational approach to cognition, as it directly answers the
question ‘Which functions can serve as computational level theories?’ In this
investigation we make two assumptions:
Assumption 1. (computationalism) The cognitive process is believed to be a
mechanical process in the sense that it can be described by an algorithm.
Assumption 2. (materialism) The cognitive process is believed to be a physical
process occurring in space and time; i.e., no cognitive step is instantaneous and
the physical space in which the process unfolds is limited.
Like functionalism, these assumptions are part of the philosophical foundations of all

computational approaches to cognition.’

® Even theories that are often seen as being formulated at the algorithmic level—such as
connectionist or neural network models (e.g. Rumelhart, McClelland, & the PDP
Research Group, 1986)—are not free from computational level considerations. Also for
neural networks it is of interest to study which functions they can and cannot compute
(Parberry, 1994). For example, neural network learning is a computational task: A neural
network is assumed to learn a mapping from inputs to outputs by adjusting its connection
weights. Here the input of the learning task is given by (/) all network inputs in the
training set plus the required network output for each such network input, and the output
is given by (O) a setting of connection weights such that the input-output mapping
produced by the trained network is satisfactory. This learning task, like any other task in
the more symbolic tradition, can be analyzed at the computational level (Judd, 1990;
Parberry, 1994).

? This work is written completely from the perspective of computationalism (see e.g.
Chalmers, 1994). For information on non-computationalist (or anti-computationalist)
approaches to cognition see e.g. Haselager, Bongers, and van Rooij (forthcoming), Port
and van Gelder (1995), Thelen and Smith (1994), van Gelder (1995, 1998, 1999), van
Rooij, Bongers and Haselager (2000, 2002).

10

Chapter 2. Problems, Algorithms, Computability and Tractability

While the previous chapter situated the present work in cognitive psychology, this
chapter situates it in theoretical computer science. Here I present some preliminaries of
the theory of computation. I start by discussing three different classes of computational
problems. Then I introduce the Turing machine formalism of computation, and discuss its
application in cognitive theory in the form of the Church-Turing thesis. Finally, I
introduce preliminaries of computational complexity theory and close with an open-

ended formulation of the Tractable Cognition thesis.

2.1. Classes of Problems

In the theory of computation, functions are often also referred to as problems. The only
difference between the use of the words ‘problem’ and ‘function’ is a matter of
perspective; the word ‘problem’ has a more prescriptive connotation of an input-output
mapping that is fo be realized (i.e., a problem is to be solved), while the word ‘function’
has a more descriptive connotation of an input-output that is being realized (i.e., a
function is computed). Since the words ‘function’ and ‘problem’ refer to the same type of
mathematical object (an input-output mapping) we can use the terms interchangeably
(e.g. a ‘cognitive function’ can be called a ‘cognitive problem,” depending on the
perspective taken). Section 2.1.1 formally introduces three classes of problems. To
support psychological intuition, Section 2.1.2 briefly illustrates examples of these classes

in cognitive theory.

2.1.1. Search, Decision and Optimization problems

We will denote a problem (function) by I'l. Each problem [1 is specified as follows.
First we specify the name of the problem, 1. Then we specify:
Input: Here we describe an instance i in terms of the general class / to which it
belongs.
Output: Here we describe the output (7) required for any given instance i.

This type of description is called the problem definition of T1.

11

We consider the problem Vertex Cover as an example. Let G = (V, E) be a
graph.'’ Then a set of vertices V'’ [V is called a vertex cover for G if every edge in E is
incident to a vertex in V"’ (i.e., for each edge (1, v) U V, u [0 V"’ or v I V’). The problem
definition of Vertex Cover is as follows: !

Vertex Cover (search version)

Input: A graph G = (V, E) and a positive integer k.

Output: A vertex cover V'’ for G with |V~

< k(i.e., V’ contains at most k vertices),
if such a vertex set exists, else output “no”.

Traditionally, a distinction is made between different classes of problems. We
consider three classes: search problems, decision problems and optimization problems. A
search problem asks for an object that satisfies some criterion, called a solution to the
problem. The problem Vertex Cover as defined above is a search problem: It asks for a
vertex cover of size at most k (if such a vertex cover does not exist the problem outputs
“no” to indicate this fact). Alternatively, a decision problem just asks whether or not a
solution exists. Hence, the output for a decision problem is either “yes” or “no.”
Conventionally the output specification for a decision problem is formulated as a
question. For example, the decision version of Vertex Cover is defined as follows:

Vertex Cover (decision version)

Input: A graph G = (V, E) and a positive integer k.

1% All graph theoretic terminology and notation used throughout the text is defined in
Appendix A. The appendix also provides a brief introduction to graph theory for readers
unfamiliar with this branch of mathematics.

! The problem Vertex Cover will be used as a running example. The problem is widely
studied in computer science and operations research (e.g. Garey & Johnson, 1979),
including computational biology (Stege, 2000) and cognitive science (Jagota, 1997;
Stege, van Rooij, Hertel, & Hertel, 2002; van Rooij, Stege, & Kadlec, 2003). It finds
application, among other things, as a model of scheduling tasks. For example, one can
view the graph as a representation of a conflict situation, with the vertices representing
activities that one wishes to undertake and each edge (u, v) indicating that activity u and v
cannot be performed simultaneously. The problem Vertex Cover then asks for a set /' of
at most k& activities such that, after removal of the activities in J”’ from the set V, all
remaining activities in Y\V’ can be simultaneously performed (Here V' = {v U V| v U
J’} denotes the set difference between V and V7); or, in other words, Vertex Cover asks

for a selection of at least |V] — k activities that can be simultaneously performed (cf. Stege
et al., 2002).

12

Question: Does there exist a vertex cover V' for G with |V’| < k?

Solving a decision problem (also called deciding a decision problem) consists of correctly
answering the question by either “yes” or “no.” An input (or instance) i for a decision
problem 1 is called a yes-instance for I1 if the answer to the question posed by I is
“yes” for i. Otherwise, i is called a no-instance. If an algorithm that solves a decision
problem also solves its corresponding search problem, we say the algorithm is
constructive. Unless otherwise stated, all algorithms that we consider are constructive.
Finally, some problems are called optimization problems, because they ask for a
solution that is optimized (either maximized or minimized) on some dimension. Vertex
Cover naturally allows for a reformulation as an optimization problem, in this case a

minimization problem:

Vertex Cover (optimization version)
Input: A graph G = (V, E) and a positive integer k.

Output: A minimum vertex cover V” for G (i.e., a vertex cover V'’ such that |V] is

minimized over all possible vertex covers for G).

Note that an optimization problem is a special type of search problem, and that it always
has a solution. The optimization version of Vertex Cover is often also called Minimum
Vertex Cover.

As we have seen, one and the same “problem” (e.g. Vertex Cover)'? can be
formulated as a search problem, as a decision problem, and as an optimization problem.
Following convention in computer science, we will typically work with decision
problems. This will not overly restrict computational analysis, because results obtained
for decision problems often generalize directly to results for their respective search

versions and, if applicable, optimization versions.

2.1.2. Illustrations in Cognitive Theory

It is not hard to find examples of the different types of computational problems in

cognitive theory. For example, on page 6 in Chapter 1, we already encountered a decision

2 Note that Vertex Cover takes discrete inputs (graphs and integers) and gives discrete
outputs (a vertex set, and e.g. ‘1’ for “yes” and ‘0’ for “no”). In the literature, problems
like this are also called combinatorial problems. This work is concerned with
combinatorial problems only.

13

problem: viz., the task performed by the decision system in Signal Detection Theory
(Green & Swets, 1966). For an example of a search problem we consider Prototype
Theory (e.g. Rosh, 1973). This cognitive theory assumes that an object (e.g. an animal),
called an exemplar, is classified as belonging to a certain category (e.g. the category
dogs) if it is sufficiently similar to the prototype of that category. Both the exemplar and
prototype are defined by sets of features, and the similarity between an exemplar e and a
prototype p is measured by some function s(e, p). The following search problem captures
this computational level description:

Prototype Categorization

Input: A set of categories C. For each category ¢; [J C an associated prototype p;.

An exemplar e and a threshold A.

Output: A category ¢; [1 C such that s(e, p;) = A, if such a category exist, else

output “no.”
Here the output “no,” can be read as meaning that the exemplar is seen as unclassifiable.

Lastly, as an example of an optimization problem we consider Utility Theory
(Luce & Raiffa, 1957; 1990). This (normative) cognitive theory assumes that, when
presented with a set of alternatives with uncertain outcomes, people (should) choose the
alternative with maximum expected utility. The following optimization problem captures
this computational level description.

Maximum Expected Utility

Input: A set of alternatives 4 and a set of outcomes O. For each a [J 4 and each o

[O, P(ola) denotes the probability that o occurs if a is chosen. Further, each

outcome o has an associated utility, u(0)."

Output: An alternative a [J 4 with maximum expected utility (i.e., an alternative a

such that Z u(0)P(o|a) is maximized over all possible a).
oo

1 Because we limit inputs to discrete objects it is assumed that the values P(o|a) and u(a)
are rational numbers.

14

2.2. Formalizing Computation

Up to now we have been using the terms ‘computation’ and ‘algorithm’ informally. To
have a solid theory of computability we need a formal definition of these terms. This
section introduces the Turing machine formalization of computation. For more
information on computability and Turing machines the reader is referred to Herken
(1988), Hopcroft, Motwani, and Ullman (2001) and Lewis and Papadimitriou (1998).
Also, Li and Vitanyi (1997) give a brief but accessible introduction to the Turing
machine formalization. Further, psychologists and cognitive scientists may find
treatments by Frixione (2001), Putnam (1975; 1994), and Wells (1998) particularly
illustrative. Readers familiar with computability theory may skip this section without loss

of continuity.

2.2.1. The Intuitive Notion of a Computation

Informally, when we say a system computes a function or solves a problem, 1: / - O,
we mean to say that the system reliably transforms every i [J / into () [J O in a way that
can be described by an algorithm.'* An algorithm is a step-by-step finite procedure that
can be performed, by a human or machine, without the need for any insight, just by
following the steps as specified by the algorithm. The notion of an algorithm, so
described, is an intuitive notion. Mathematicians and computer scientists have pursued
several formalizations (e.g. Church, 1936; Kleene, 1936; Post, 1936). Probably the best-
known formalization, in particular among cognitive scientists and psychologists, is the
one by Alan Turing (1936). One of the strengths of Turing’s formalization is its intuitive
appeal and its simplicity.

Turing motivated his formalization by considering a paradigmatic example of
computation: The situation in which a human sets out to compute a number using pen and
paper (see Turing, 1936, pp. 249-252). Turing argued that a human computer can be in at
most a finite number of different “states of mind,” because if “we admitted an infinity of
states of mind, some of them will be ‘arbitrarily close’ and will be confused” (p. 250).

Similarly, Turing argued a human computer can read and write only a finite number of

' In the literature an algorithm is also sometimes referred to as mechanical procedure,
effective procedure, or computation procedure.

15

different symbols, because if “we were to allow an infinity of symbols, then there would
be symbols different to an arbitrarily small extent” (p. 249). On the other hand, Turing
allowed for a potentially infinite paper resource. He assumed that the paper is divided
into squares (like an arithmetic note book) and that symbols are written in these squares.
With respect to the reading of symbols Turing wrote: “We may suppose that there is a
bound B on the number of symbols or squares that the computer can observe at one
moment. If [s/he] wishes to observe more [s/he] must use successive operations” (p. 250).
This restriction was motivated by the observation that for long lists of symbols we cannot
tell them apart in “one look.” Compare, for example, the numbers 96785959943 and
96785959943. Are they the same or different?

According to Turing, the behavior of a human computer at any moment in time is
completely determined by his/her state of mind and the symbol(s) s/he is observing. The
computer’s behavior can be understood as a sequence of operations, with each operation
“so elementary that it is not easy to imagine [it] further divided” (p. 250). Turing
distinguished the following two elementary operations:

(a) A possible change of a symbol on an observed square.

(b) A possible change in observed square.
Each operation is followed by a possible change in state of mind. With this
characterization of computation Turing could define a machine to do the work of a

human computer. Figure 2.1 illustrates this machine.

2.2.2. The Turing Machine Formalism

A Turing machine M is a machine that at any moment in time is in one of a finite number
of machine states (analogue to “states of mind”). The set of possible machine states is
denoted by O = {q0, 91, 92, ..., ¢»}. One machine state g is designated the initial state;
this is the state that M is in at the beginning of the computation. There is also a non-
empty set H U Q of halting states; whenever the machine goes into a state g; [H then the
machine Aalts and the computation is terminated.

The machine has a read/write head that gives it access to an external memory,
represented by a one-dimensional fape (analogue to the paper). The tape is divided in

discrete regions called tape squares. Each tape square may contain one or more symbols.

16

The machine can move the read/write head from one square to a different square, always
moving the read/write head to the right or left at most one square at a time. The
read/write head is always positioned on one (and at most one) square, which it is said to
scan. If a square is scanned then the machine can read a symbol from and/or write a
symbol to that square. At most one symbol can be read and/or written at a time.

The set of possible symbols is denoted by S, and is called the alphabet of M. S is a
finite set. Often it is assumed that S = {0, 1, B}, where B is called the blank. Time is
discrete for M and time instants are ordered 0, 1, 2, At time 0 the machine is in its
initial state g,, the read/write head is in a starting square, and all squares contain Bs
except for a finite sequence of adjacent squares, each containing either 1 or 0. The
sequence of 1s and Os on the tape at time O is a called the input.

The Turing machine can perform two types of basic operations:

(a’) it can write an element from S in the square it scans; and

(b) it can shift the head one square left (L) or right (R).

After performing an operation of either type (a”) or (b’) the machine takes on a state in Q.
At any one time, which operation is performed and which state is entered is completely
determined by the present state of the machine and the symbol presently scanned. In
other words, the behavior of a Turing Machine can be understood as being governed by a
function 7 that maps a subset of O x S into Q x 4, where 4 = {0, 1, B, L, R} denotes the

set of possible operations.

- [BBlofi]i]o]i]ofB]B[B]

A

Figure 2.1. Illustration of a Turing machine.

The tape extends left and right into infinity. Each square on the tape contains a symbol in
the set {1, 0, B}. The machine can read and write symbols with a read/write head, and
can be in a finite number of different machine states {qo, g1, g2, .-., qn}-

17

We call T the transition function of M. A transition 7(p, s) = (a, q) is interpreted
as follows: If p [J Q is the current state and s [] S is the current scanned symbol, then the
machine performs operation a [1 4 of type (a’) or (b’), and the machine enters the state g
U Q. For example, T(p, 0) = (1, g) means that if M is in state p and read symbol 0 then M
is to write symbol 1 and go into state g; 7(p, 1) = (L, ¢) means that if M is in state p and
read symbol 1 then M is to move its read/write head one square to the left and go into
state g. Note that O, S, and A4 are finite sets. Thus we can also represent the transition
function T as a finite list of transitions. Such a list is often called the machine table and
transitions are then called machine instructions.

Under the governance of 7" the machine M performs a uniquely determined
sequence of operations, which may or may not terminate in a finite number of steps. If
the machine does halt then the sequence of symbols on the tape is called its output. A
Turing machine is said to compute a function I if for every possible input i it outputs
(7). A function is called computable (or Turing-computable) if there exists a Turing
machine that computes it. Turing (1936) proved that there exist (infinitely many)
problems that are not computable. For example, he showed that the Halting problem is
not computable. This decision problem is formulated as follows:

Halting problem

Input: A Turing machine M and an input i for M.

Question: Does M halt on i?

2.2.3. Extensions of the Turing Machine Concept

The reader may wonder to what extent the particular limitations placed by Turing on his
machine are crucial for the limitations on computability. Therefore, a few notes should be
made on the computational power of the Turing machine with certain extensions. It has
been shown that several seemingly powerful adjustments to Turing’s machine do not
increase its computational power (see e.g. Lewis & Papadimitriou, 1998, for an
overview). For example, the set of functions computable by the Turing machine
described above is the same as the set of functions computable by Turing machines with
one or more of the following extensions:

(1) Turing machines with multiple tapes and multiple read/write heads

18

(2) Turing machines with any finite alphabets (i.e., not necessarily 4 = {0, 1, B})

(3) Turing machines with random access: These are Turing machines that can
access any square on the tape in a single step.

(4) Non-deterministic Turing machines: These are Turing machines that, instead
of being governed by a transition function, are governed by a transition
relation, mapping some elements in Q x S to possibly more than one element
in 4 x Q. Such a non-deterministic machine is said to “compute” a function Il
if for every input i there exist one possible sequence of operations that, when
performed, would lead to output (7).

It should be noted that machines of type (4) are not considered to really compute
in the sense that Turing meant to capture with his formalism. Namely, in non-
deterministic machines not every step of the computation is uniquely determined and
thus, a human wishing to follow the set of instructions defined by the machine table
would not be able to unambiguously determine how to proceed at each step. It will
become clear in Chapter 3 that even though non-deterministic machines are purely
theoretical constructs they do serve a special purpose in theories of computational
intractability.

The extensions (1) — (3), on the other hand, are considered reasonable extensions
(see also Section 2.4.2). Hereafter, the term Turing machine will be used to refer to

Turing machines with and without such extensions.

2.3. The Church-Turing Thesis

Turing (1936) presented his machine formalization as a way of making the intuitive
notions of “computation” and “algorithm” precise. He proposed that every function' for
which there is an algorithm—which is intuitively computable—is computable by a Turing
machine. In other words, functions that are not computable by a Turing machine are not
computable in principle by any machine. In support of his thesis, Turing showed that

Turing-computability is equivalent to a different formalization independently proposed

' To be precise, Turing (1936) made the claim specifically for number theoretic
functions; but the notion of Turing computability is naturally extended to functions
involving other discrete mathematical objects.

19

by Church (1936). The thesis by both Turing and Church that their respective
formalizations capture the intuitive notion of algorithm is now known as the Church-
Turing thesis. Further, Turing’s and Church’s formalizations have also been shown
equivalent to all other accepted formalizations of computation, by which the thesis gained
further support (see e.g. Israel, 2002; Gandy, 1988; Kleene, 1988, for discussions).

The Church-Turing thesis has a direct implication for the type of cognitive
theories described in Chapter 1. Namely, consider the situation in Figure 2.2. This figure
illustrates that, assuming that the Church-Turing thesis is true, the set of functions
computable by cognitive systems (the cognitive functions) is a subset of the set of
functions computable by a Turing machine (the computable functions). On this view, a
computational level theory that assumes that the cognitive system under study computes

an uncomputable function can be rejected on theoretical grounds.

All functions Computable Cognitive

functions functions

Figure 2.2. Illustration of the Church-Turing Thesis.
On the Church-Turing thesis cognitive functions are a subset of the
computable functions.

Note that the Church-Turing thesis is not a mathematical conjecture that can be
proven right or wrong. Instead the Church-Turing thesis is a hypothesis about the state of
the world. Even though we cannot prove the thesis, it would be in principle possible to
falsify it; this would happen, for example, if one day a formalization of computation were
developed that (a) is not equivalent to Turing computability, and that, at the same time,
(b) would be accepted by (most of) the scientific community. For now the situation is as
follows: Most mathematicians and computer scientists accept the Church-Turing thesis,

either as plainly true or as a reasonable working-hypothesis. The same is true for many

20

cognitive scientists and cognitive psychologists—at least, for those who are familiar with

the thesis.

2.3.1. Criticisms

Despite its wide acceptance, the Church-Turing thesis, and its application to human
cognition, is not without its critics. The critics can be roughly divided into two camps:
Those who believe that cognitive systems can do “more” than Turing machines and those
who think they can do “less.”

Researchers in the first camp pursue arguments for the logical possibility of
machines with so-called super-Turing computing powers (e.g. Copeland, 2002; Steinhart,
2002)."® Much of this work is rather philosophical in nature, and is concerned more with
the notion of what is computable in principle by hypothetical machines and less so with
the notion of what is computable by real, physical machines (though some may agree to
disagree on this point; see e.g. Cleland, 1993, 1995; but see also Horsten & Roelants,
1995). The interested reader is referred to the relevant literature for more information
about the arguments in this camp (see also footnote 16 for references). Here, we will be
concerned only with the critics in the second camp.

Researchers in the second camp do not doubt the truth of the Church-Turing
thesis (i.e., they believe that the situation depicted in Figure 2.2 is veridical), but they
question its practical use for cognitive theory. Specifically, these researchers argue that
computability is a not a strict enough constraint on cognitive theories (e.g. Frixione,
2001; Oaksford & Chater, 1993, 1998; Parberry, 1994). Namely, cognitive systems,

being physical systems, perform their tasks under time- and space-constraints and thus

' Sometimes claims about super-Turing computing powers are made in the cognitive
science literature without any reasonable argument or even a reference (e.g. van Gelder,
1999), and very often the distinction between computability (as defined in Section 2.2)
and computational complexity (as discussed in Section 2.4 and Chapter 3) is muddled or
ignored (e.g. van Gelder, 1998). It is true that results about super-Turing computing can
be found in the theoretical computer science literature (e.g. Siegelmann & Sontag, 1994).
However, these results seem to depend crucially on the assumption of infinite precision
(or infinite speed-up; e.g. Copeland, 2002), and thus the practicality of these results can
be questioned. Furthermore, even if infinite precision is possible in some physical
systems, it may still not be possible in human cognitive systems (cf. Chalmers, 1994;
Eliasmith, 2000, 2001).

21

functions computed by cognitive systems need to be computable in a realistic amount of
time and with the use of a realistic amount of memory (cf. Simon, 1957, 1988, 1990).
The study of computational resource demands is called computational complexity theory.

It is to this theory that we turn now.

2.4. Computational Complexity

This section introduces the basic concepts and terminology of computational complexity
theory. For more details on computational complexity theory refer to Garey and Johnson
(1979), Karp (1972), and Papadimitriou and Steiglitz (1988). Cognitive psychologists
may find treatments by Frixione (2001), Parberry (1997), and Tsotsos (1990) particularly
illustrative. The reader familiar with computational complexity may skip this section

without loss of continuity.

2.4.1. Time-complexity and Big-Oh

Computational complexity theory, or complexity theory for short, studies the amount of
computational resources required during computation. In computational complexity
theory, the complexity of a problem is defined in terms of the demands on computational
resources as function of the size of the input. The expression of complexity in terms of a
function of the input size is very useful and natural. Namely, it is not the fact that demand
on computational resources increases with input size (this will be true for practically all
problems), but Zow it increases, that tells us something about the complexity of a
problem. The most common resources studied by complexity theorists are time (how
many steps does it take to solve a problem) and space (how much memory does it take to
solve a problem). Here we will be concerned with time complexity only.

We first introduce the Big-Oh notation, O(.), that we use to express input size and
time complexity. The O(.) notation is used to express an asymptotic upperbound. A
function f{x) is O(g(x)) if there are constants ¢ 2 0, x, = 1 such that f{x) < cg(x), for all x =2
xo.'" In other words, the O(.) notation serves to ignore constants and lower order

polynomials in the description of a functions. For this reason O(g(x)) is also called the

7 The definition of O(.) can be straightforwardly extended to functions with two or more
variables. For example, a function f{x, y) is O(g(x, y)) if there are constants ¢ = 0 and x,,
Vo 2 1 such that f(x, y) < cg(x, y), for all x =2 x, and y = y,,.

22

order of magnitude of f(x). For example, 1 +2 + ... +x=x(x + 1)/2 is on the order of x*,
or O(x%), and x* + x* + x> + x + 1 is O(xY).

The notions ‘input size’ and ‘time complexity’ are formalized as follows. Let M
be a Turing machine and let i be an input. Then the input size, denoted by |i|, is the
number of symbols on the tape of M used to represent i. Consider, for example, an input i
that is a graph G = (V, E). We can encode the graph in several ways. For example, we can
encode it as an adjacency matrix, with each row r (and column c) of the matrix
representing a vertex in V, and each cell (7, ¢) in the matrix coded ‘1’ if (r, ¢) U E, and ‘0’
otherwise. Alternatively, we can encode G as a list of vertices and edges, as follows: vy,
V2y vees Vo (V1, V2), (V2, v3), (VI, V3), ..., (Vu=1, V»). Let |V] =n and |E| = m. Since ann X n
matrix has n” cells, the size of the matrix encoding is O(n?). The size of the list encoding
is n+ m. Since m < n” and n + n” is O(n?), also n + m is O(n*)."*

We start by considering the time complexity of algorithms, i.e., of Turing
machines. Later we define the time complexity of problems in terms of algorithms that
solve them. Let M be a Turing machine. If for any input i, M halts in at most O(#(|i]))
steps, then we say M runs in time O(#(]i|)) and that M has time complexity O(«(|i|)). Note
that, since we require M to halt in time O(#(|i|)) for all possible inputs, O(#(|i|)) should be
interpreted as an asymptotic bound on M’s worst-case running time.

For purposes that will become clear later, we distinguish between algorithms with
polynomial-time complexity and algorithms with exponential-time complexity. A
polynomial-time algorithm runs in time O([i|”) for some constant o. On the other hand,
the running time of an exponential-time algorithm is unbounded by any polynomial and
is O(a “'), for some constant Q.

The exact form of O(#(|i|)) will depend, of course, on the particular encoding used
to represent the input i on M’s tape, the size of M’s alphabet, the number of tapes and
read/write heads that M has, etc. Although, the O(.) notation allows us to abstract away
from some of these machine details some arbitrary choices about the machine model need
to be made. For convenience we assume that we are dealing with Turing machines, with

any reasonable extensions as discussed in Section 2.2.3, that can perform basic arithmetic

18 2
Sometimes we express the size of a graph by #, instead of n + m, since m <n".

23

operations (e.g. add two numbers, compare two numbers) in a single time step. In Section

2.4.4 T will discuss the consequences of this particular choice of machine model.

2.4.2. lllustrating Algorithmic Complexity
To illustrate running-time analysis of algorithms we consider two algorithms; one a
polynomial-time algorithm and the other an exponential-time algorithm. The first
algorithm is called Greedy Vertex Cover algorithm. Here it is in pseudo-code:
Algorithm Greedy Vertex Cover

Input: a graph G = (V, E)

Output: A vertex cover V' UV

1. V=>0

2. while £# 0 do

3. find a vertex v [V' such that degg(v) is maximum

4. V=0 O

5. V=N
6. E:==ERs({v}) \Here Ro({v}) = {(x,») OE|v O {x, y}}
7. end while

8. return J’

This algorithm takes as input a graph G = (V, E) and builds a vertex cover V' [V as
follows. First it finds a vertex v of maximum degree (line 3). Then it includes v in the
vertex set V'’ (line 4) and removes v and all its incident edges from G (lines 5 and 6). The
algorithm repeats this loop until no edge is left in the graph. When finished, the algorithm
outputs V'’ (line 8).

We show this algorithm runs in time O(n?), where n = |V]. First to perform line 3,
the algorithm has to consider at most » vertices to determine which vertex has maximum
degree. We may assume that for each vertex its degree is explicitly encoded. Then we can
determine a vertex degree by simply reading it off in constant time O(1). We conclude
that line 3 can be performed in time O(n + n) = O(n). Both lines 4 and 5 take constant
time O(1). To delete each edge adjacent to v, in line 6, we consider at most n — 1 edges
and this can be done in time O(n). Note that we also need to update the vertex degrees of

vertices in G that lost an edge in line 6. Since there are at most » — 1 such vertices,

24

updating can be done in time O(n). In sum, a single run through the loop can be done in
time O(n + 1+ 1 +n+n)=0Bn)=0(n). How often do we go through the loop? At
most n times; since there are no more than » vertices in the graph. This allows us to
conclude a running time of O(n X n) = O(n®).

We now consider an exponential-time algorithm, called the Exhaustive Vertex

Cover algorithm. I give the algorithm below in pseudo-code and explain it using Figure

2.3.
Algorithm Exhaustive Vertex Cover
Input: a graph G = (V, E) and a positive integer k
Output: A vertex cover V' U V, with |V’| £ k, if one exists, and [J otherwise.
1. V=0
2. pick any vertex v [V such that degg(v) = 1
// If there does not exist a vertex v I V" with degs(v) 2 1, then v = null
3. if v # null then
4. V’:=Branch(G, V', k, v)
5. return V’
The algorithm Branch is recursively called, and is defined as follows:
Algorithm Branch(G, V', k, v):
Input: A graph G = (V, E), a vertex set V" I V' (V’ may be empty), a
positive integer k, a vertex v [J '
Output: A vertex cover V' U V, with |V’| 2 £, if one exists, and [J otherwise.
6. if £<0 then
7. V=0
8. return J’
/I Creating the left branch:
9. V=10 {v}
10. Gy := (V1, E)) with V, == {v} and E, .= E\Rg({v})
//Reminder: Ro({v})={(x,y) UE|v U {x, y}}
1.k :=k-1

12. pick any vertex v; [V' such that degg,(v1) = 1

25

13.if v; # null then
14. V1 .= Branch(Gy, V1, ki, v1)

15. else if k; < 0 then
16. V," =0

17.if V;” # [J then //answer “yes” is found
18. return V;’

/I Creating the right branch

19V =V’
20. Gy == (V,, Ep) with V, .= W{v} and E; .= E\Rg({v})
21. kz =k

22. pick any vertex v, [V' such that degg,(v2) = 1

23.if v, # null then
24. V, .= Branch(Gy, V>, ks, v2)

25. else //answer “yes” is found and// return V>’

26. return V’
The Exhaustive Vertex Cover algorithm can be seen as a procedure for deciding whether
a graph G has a vertex cover of size at most k. The algorithm performs an exhaustive
search that can be conceptualized as the building of a search tree T (see Figure 2.3 for
illustration). To avoid confusion, we refer to the vertices in this search tree as (search
tree) nodes. The root s of the search tree is labeled by the original input G and £, plus the
vertex set /7, which is initialized as empty (line 1). In line 2 an arbitrary vertex v with at
least one incident edge is chosen, and then, if such a vertex indeed exists (as checked by
line 3), line 4 calls the procedure Branch.

In lines 9—-11 of algorithm Branch, the possibility that v is in the vertex cover is
considered (called the /eft branch). That is, line 9 includes v in V’;, line 10 removes v and
its incident edges from G resulting in G, and in line 11, & is updated as k; to note that one
vertex has been included in the vertex cover so far. All this is represented by the creation
of a new node s in the search tree, which is labeled by (G, ki, V’1). Then, in line 12, a
new vertex v; 1s picked and the procedure Branch is called again; now taking G, ki, V',
and v; as input. Each time a left branch is created, the vertex set V'’ is extended (line 9)

by the vertex picked in line 12 (or in line 22; depending on whether the parent of the

26

present search tree node is on a left branch or on a right branch). Further, G and k are
updated to reflect the changes in V. Such left branches are terminated if (1) the graph has
no edges anymore (as checked in line 12) or (2) k& has become smaller than 0, in which
case |V’| has become larger than £ (as checked in line 15). If case (1) applies, but not case
(2), then, in line 18, it is noted that }’ is a vertex cover of size at most & and the set is
outputted in line 18, and the algorithm halts. If, on the other hand, a left branch

terminates without reaching line 18, then a right branch is created in lines 19-21.

A (G, k1)
(Gla klv Vl ’) (G2a k27 V2 ’)

(Gllﬁ kll’ Vll y) (Glzs k123 V12 ,) (GZI’ k21’ V21 ,) (G22’ k22’ V22 ’)

depth(T) < n

Y¢ >
size(T) is O(2")

Figure 2.3. Illustration of the Exhaustive Vertex Cover algorithm.

The behavior of the algorithm can be thought of as the construction of an exhaustive
search tree whose nodes are labeled by partial candidate solutions for Vertex Cover. If a
leaf in this tree is labeled by a vertex cover for G of size k then the algorithm returns the

answer “yes.”

Each right branch considers the possibility that the picked vertex is nof in the
vertex cover, in lines 19-21. This is represented by the creation of a new node s; _ » in the
search tree, which is labeled by (G, 2, k1.2, V'1..2), with vi_; O V' 5. Right branches
also terminate if no more edges are left in the graph. However, since k£ does not change in

a right branch an analogue to line 15 is not needed here (Note: at the start of the Branch

27

procedure, in line 6, it is always checked if £ is not yet exceeded). If a right branch is
terminated, without a solution found (as checked in line 24), then the algorithm goes back
to a previous node in the search tree, for which again a right branch is created. After that,
again left branches are created until no longer possible; and everything repeats itself until
either (a) a vertex cover of size at most k is found, or (b) no more branching is possible,
in which case the algorithm outputs the empty set in line 5, and we conclude that no
vertex cover of size k exists for G.

Note that this behavior of the algorithm corresponds to creating search tree nodes
in a particular order. To illustrate, assume that the length of each path from root to leaf in
T is, say, 4. Then the nodes in T are being created in the following order: sy, si1, Si11, Si111,
S1112, 8112, S1121, S1122, S12, 8121, S1211, 81212, S122, S1221, S1222, 82, S21, 8211, S2111, S2112, S212, S2121,
S2122, 822, S221, S2211, S2212, 8222, 82221, $2222.

In general, we denote the maximum number of children created per node in a
search tree by fan(7) and the maximum length of the path from root to any leaf in 7" by
depth(7). The total number of nodes in the search tree is denoted by size(7). Note that
size(T) is bounded by 2fan(7)**™™ — 1 which is O(fan(7)*P"™) .

In the particular search tree created by the Exhaustive Vertex Cover algorithm,
and illustrated in Figure 2.3, fan(7) = 2 and depth(7) < n (viz., there are never more than
n vertices to pick). Thus, size(7) is O(2"), which is exponential size. Even though we
spend polynomial time (i.e., O(n®) for some constant o) for creating each node in the
tree, the exponential function dominates the running time (i.e., 02" n%) is O(2")), and

hence Exhaustive Vertex Cover is an exponential-time algorithm that runs in time O(2").

2.4.3. Problem Complexity

In the previous section we defined time complexity for algorithms. Here, we consider the
time complexity of problems. A problem 1 is said to be solvable in time O(#(|i|)), if there
exists an algorithm that solves [and that runs in time O(#(|7|)). If the fastest algorithm
solving I runs in time in time O(#(]i])) then we say that 1 has time complexity O(#(]i])).
Often we do not know what the fastest algorithm for a problem is. In that case, we use the

running time of the fastest known algorithm for 1 as a measure of time complexity of 1.

28

To illustrate, we again consider the problem Vertex Cover. In the previous section
we have seen that the Exhaustive Vertex Cover algorithm solves Vertex Cover, and that
this algorithm runs in time O(2"). Hence, we can safely conclude that Vertex Cover is
solvable in time O(2"). However, before we use O(2") as a measure of the inherent
complexity of Vertex Cover, we will wish to ensure—or at least have reason to expect—
that there does not exist a faster algorithm that also solves Vertex Cover. Now consider,
for example, the much faster Greedy Vertex Cover algorithm, which runs in O(»n?). Does
the Greedy Vertex Cover algorithm solve the Vertex Cover problem? The answer is a

»19 Thus, for now we can conclude that Vertex Cover can be solved in time

definite “no.
0(2"), but we remain unsure about whether this is a tight upperbound. In Chapter 3 we
will see, however, that whatever the fastest algorithm for Vertex Cover is, it will unlikely

be a polynomial-time algorithm.

2.4.4. The Invariance Thesis

The previous sections introduced a notion of (worst-case) time complexity that attempts
to abstract away from particular machine details using the O(.) notation. But what does it
mean to abstract away from machine details? Not only will the running time depend on
the particulars of the Turing machine used for a computation, but also Turing machines
are just one class of possible computing machines.

In this context it is useful to mention the Invariance thesis.”” This thesis states
that, given a “reasonable encoding” of the input and two “reasonable machines” M; and
M,, the complexity of a given problem I for M, and M, will differ by at most a
polynomial amount (e.g. Garey & Johnson, 1979). Here, with “reasonable encoding” is
meant an encoding that does not contain unnecessary information and in which numbers
are represented in b-ary with b > 1 (e.g. binary, or decimal, or any fixed base other than

1). Further, with “reasonable machine” is meant any type of Turing machine (with

' The reader may want to verify this for him/herself.

2% Frixione (2001) uses the term ‘Invariance thesis’ to express both the Invariance thesis
itself and, what I will call, the Tractable Cognition thesis. Since I intend to investigate
two alternative formalizations of tractability in Chapter 3 (viz., classical and fixed-
parameter tractability), whereas Frixione (2001) only considers one option (classical
tractability), I purposely divorce the Invariance thesis from the Tractable Cognition
thesis.

29

possible extension as described in Section 2.2.3) or any other realistic computing
machine under a different formalization (including e.g. neural networks, cellular
automata). Note, however, that a machine capable of performing arbitrarily many
computations in parallel (cf. non-deterministic Turing machine or Quantum computer')
is not considered a “reasonable” machine (Garey & Johnson, 1979).

Like the Church-Turing thesis, the Invariance thesis is widely accepted among
computer scientists and cognitive scientists. The Invariance thesis, if true, implies that we
can analyze the worst-case complexity of problems, independent of the machine model,
up to a polynomial amount of precision. In other words, if a problem is of polynomial-
time complexity under one model it will be of polynomial-time complexity under any
other reasonable model. Similarly, if a problem is of exponential-time complexity under
one model it will be of exponential-time complexity under any other reasonable model.**

Although some computer scientists believe that one day it will be possible to
build Quantum computers (allowing for arbitrarily many parallel computations), this still
remains to be seen. Furthermore, even if a Quantum computer—or some other
computational device of comparable power—were physically realizable, it still need not
be the right model of human computation. Whichever will turn out to be the case, for

present purposes we will adopt the Invariance thesis.

2.5. The Tractable Cognition Thesis

So far we have talked of “reasonable encoding” and of “reasonable machines,” but what
about “reasonable time”? As discussed in Section 2.3.1, critics of the Church-Turing
thesis argue that computability does not pose strict enough constraints on human
computation, because human cognitive systems have to compute functions in a
“reasonable time.” In other words, cognitive functions are tractably computable. The
notion of tractable computability, like computability was before its formalization as
Turing-computability, is an intuitive notion. If we could somehow formally define the

class of functions that are tractably computable, and a class of functions that are not, then

21 See e.g. Deutsch (1985) for a treatment of quantum computation.

*? In Chapter 3 we will introduce fpt-time algorithms, and we will show that on the
Invariance thesis also problems of fpt-time complexity will be of fpt-time complexity
under any reasonable model.

30

we could have a Tractable Cognition thesis, which states that cognitive functions are
among the tractably computable functions. Such a thesis could then serve to provide
further theoretical constraints on the set of cognitive functions, as illustrated in

Figure 2.4.

Intractable Tractable

Cognitive
functions

Figure 2.4. Illustration of the Tractable Cognition thesis.

The set of all computable functions partitioned into tractable and
intractable functions. According to the Tractable Cognition thesis
cognitive functions are a subset of the tractable functions. The dotted line
indicates that the set of tractable functions remains to be formalized.

We do not know exactly what type of computational devices human cognitive systems
are. Therefore it would be particularly useful if we could define a Tractable Cognition
thesis that abstracts away from machine details. That is, like the Church-Turing thesis
provides a definition of computability independent of the Turing-machine formalization,
we would like to have a Tractable Cognition thesis that provides a definition of
tractability independent of the Turing-machine formalization. From the Invariance thesis
(Section 2.4.4) we know that if we could define the set of tractable and intractable
problems such that the classification is insensitive to a polynomial amount of complexity
in computation of the problem, we would have a machine independent formalization of
the notion of (in)tractability.

For now we have only formulated the Tractable Cognition thesis as a “mold” for a
formal version of the thesis (indicated by the dotted line in Figure 2.4). Chapter 3
investigates two possible formalizations of the Tractable Cognition thesis. The first is
called the P-Cognition thesis and the second is called the FPT-Cognition thesis. We will

see that both theses abstract away from machine details to achieve the desired generality.

31

Chapter 3. P-Cognition versus FPT-Cognition

This chapter contrasts two possible formalizations of the Tractable Cognition thesis: the
P-Cognition thesis and the FPT-Cognition thesis. I start by discussing classical
complexity theory and its motivation to define tractability as polynomial-time
computability. I discuss how many cognitive scientists have adopted this classical notion
of tractability, leading them to advance the P-Cognition thesis. Then I introduce the
theory of parameterized complexity and its accompanying notion of fixed-parameter
tractability. Using parameterized complexity, I will illustrate that polynomial-time
computability provides a too strict constraint on cognitive functions. I propose the FPT-

Cognition thesis and discuss how this thesis applies to cognitive theory formation.

3.1. Classical Complexity and Classical Tractability

Classical complexity theory™ proposes that the distinction between polynomial-time

algorithms and exponential-time algorithms, as introduced in Chapter 2, is a useful

(approximate) formalization of the intuitive distinction between tractable and intractable

algorithms (e.g. Garey & Johnson, 1979; Papadimitriou & Steiglitz 1988). As Garey and

Johnson (1979, p. 8) put it:
“Most exponential time algorithms are merely variations on exhaustive search,
whereas polynomial time algorithms generally are made possible only through the
gain of some deeper insight into the nature of the problem. There is wide
agreement that a problem has not been “well-solved” until a polynomial time
algorithm is known for it. Hence, we shall refer to a problem as intractable, if it is
so hard that no polynomial time algorithm can possibly solve it.”

Hence, we have the following classical definition of (in)tractability. A problem I is said

to be (classically) tractable if T1 can be solved by a polynomial-time algorithm. **

23 The reader is advised that what I call classical complexity theory is typically referred to
as (computational) complexity theory in both the computer science and cognitive science
literature. Because I wish to contrast this theory with a newer form of complexity theory,
called parameterized complexity theory, I refer to the earlier theory as “classical.”

* One may argue that not all polynomial-time algorithms are preferable to all
exponential-time algorithms (e.g. a running time of O(2") would in theory be preferred to

32

Conversely, a problem I1 is said to be (classically) intractable if 1 cannot be solved by a
polynomial-time algorithm (i.e., it requires an algorithm that runs in exponential (or
worse) time).

The classical definition of tractability is widely adopted in computer science (e.g.
Garey & Johnson, 1979; Papadimitriou & Steiglitz, 1988; or any introductory text in
theoretical computer science). To see that the definition has merit, consider Table 2.1.
Table 2.1 shows that an exponential function, like O(2") grows every so much faster than
a polynomial function, like O(|i]*). If we assume that a computing machine can compute,
say, 100 basic computations per second then, as |i| grows, the exponential running time
gets unrealistic very fast for any reasonable computing machine (compare Columns 2 and

3 of Table 2.1).

Table 2.1. Classical tractability and intractability

Iustration of how a polynomial running time, O(i %), and an exponential running time,
0(2"'), compare for different |i|; assuming either 100 or 10,000 computational steps per
second.

Assume 100 steps/sec. Assume 10,000 steps/sec.

i (i) 02" (i) 02"

2 0.04 sec 0.04 sec 0.02 msec 0.02 msec

5 0.25 sec 0.32 sec 0.15 msec 0.19 msec

10 1.00 sec 10.2 sec 0.01 sec 0.10 sec

15 2.25 sec 5.46 min 0.02 sec 3.28 sec
20 4.00 sec 2.91 hrs 0.04 sec 1.75 min
30 9.00 sec 4.1 mths 0.09 sec 1.2 days
50 25.0 sec 8.4x 10 yrs 0.25 sec 8.4 centuries
100 1.67 min 9.4x 10" yrs 1.00 sec 9.4x 10" yrs
1000 2.78 hrs 7.9 x 10*° yrs 1.67 min 7.9 x 10" yrs

a running time of, say, O(n'"")). It turns out, however, that problems that are computable

in polynomial time typically allow for algorithms with small constants in the exponent.
This suggests that polynomial-time computability to some extent captures our intuitive
notion of computational tractability. Even more important for present purposes, however,
is the fact that it does not matter that some polynomial-time algorithms are impractical, as
long as it is safe to say that all exponential-time algorithms are impractical.

33

Note that here the assumption of 100 basic operations per second is for illustrative
purposes only. In the context of cognitive theory, what constitutes a reasonable
assumption depends, of course, on both the cognitive function under consideration and
the hardware of the system that is presumed to compute the function. Importantly,
however, increasing the speed with which a basic computational operation can be
performed has very limited impact on the time required to compute a function if the
function is of exponential-time complexity. For example, if we could realize a 100-fold
speed-up of our computing machine (e.g. by improving its hardware so that it can
perform each sequential operation 100 times faster; or by having it run 100 computational
channels in parallel), then an exponential time algorithm running in time O(2") would
still be impractical for all but trivially small input sizes (compare Columns 4 and 5 of

Table 2.1).

3.2. The Theory of NP-completeness

Section 3.3 discusses how the classical notion of tractability has been applied in cognitive
psychology. Many of these applications use the theory of NP-completeness to infer
classical (in)tractability of cognitive functions. Therefore I first explain NP-completeness
(Section 3.2.1) and its accompanying notion of polynomial-time reducibility (Section
3.2.2). For more information see also Cook (1971), Karp (1972), Garey and Johnson
(1979), and Papadimitiou and Steiglitz (1988). Readers familiar with the theory of NP-

completeness can skip this section without loss of continuity.

3.2.1. The classes P and NP

Let I'T be a decision problem. Then 1 is said to belong to class P (we write 1 U P) if 'l
can be decided by a (deterministic) Turing machine (DTM) in polynomial-time; and 1 is
said to belong to class NP (I U NP) if all yes-instances for I'1 can be decided by a non-

deterministic Turing machine (NTM) in (non-deterministic) polynomial time.”> An NTM

* For completeness I note that a decision problem I is said to belong to class co-NP (I
[J co-NP) if all no-instances for 1 can be decided by a non-deterministic Turing machine
in (non-deterministic) polynomial-time problem. The class co-NP will not be considered
further here.

34

decides a yes-instance i for [1 if there exists at least one possible sequence of transitions,
as defined by the machine’s transition relation, that returns “yes” for i (cf. Section 2.2.3).

Many problems that are encountered in practice, and many of the cognitive
functions that are considered in later chapters, belong to the class NP. Note that also
Vertex Cover is in the class NP. Namely, in Section 2.4.2, we saw that the Exhaustive
Vertex Cover algorithm can be used to decide the problem Vertex Cover. Now imagine a
NTM with a transition relation that, analogous to the Exhaustive Vertex Cover algorithm,
defines two possible transitions for each vertex v in the input graph G: either (1) v is in
the vertex cover, or (2) v is not in the vertex cover. Clearly, if a vertex cover of size k
exists for G then at least one sequence of transitions in this non-deterministic machine
will return such a vertex cover.

The class NP is also sometimes referred to as the class of problems for which
solutions are “easy to check.” This is because, when given a candidate solution for a yes-
instance of a problem I [J NP, one can check in polynomial time whether the candidate
solution is indeed a solution for . For example, when given a vertex set V’ [V one can
easily check in polynomial time whether (a) V7’ is a vertex cover for G (we delete every
vertex in ¥’ from G and see if any edges are left in G; this can be done in O(n?)) and (b)
its size is at most k (we count the number of vertices in J’; this can be done in time O(n)).

Since a DTM is a special kind of NTM (viz., one in which the transition relation
is a function), we have P [J NP. It is widely believed that there exist problems in NP that
are not in P, and thus that P # NP (see Figure 3.1). This conjecture is motivated, among
other things, by the existence of so-called NP-hard problems.

To explain NP-hardness we define the notion of polynomial-time reducibility: For
problems I1; and I, we say that 1} reduces to IN,, if there exists an algorithm that
transforms any input i; for 1 into an input i, for ', such that input i; is a yes-instance
for I, if and only if input i, is a yes-instance for I1,. We say the reduction is a
polynomial-time reduction if the algorithm performing this transformation runs in
polynomial time. A decision problem I is NP-hard if every problem in NP can be
polynomial-time reduced to . Thus, NP-hard problems are not in P unless P = NP.

Problems that are NP-hard and members of NP are called NP-complete.

35

Computable

NP

NP-complete

Figure 3.1. The view of NP on the assumption that P # NP.
NP-complete problems are not in P if and only if P # NP.

The technique of polynomial-time reduction is very useful. Once a problem is known to
be NP-hard we can prove other problems to be NP-hard by polynomial-time reducing it
to these other problems. In 1971, Stephen Cook proved the first problem NP-hard. This
problem is called Satisfiability, abbreviated SAT (see Appendix B for its problem
definition). Since then many problems have been shown to be NP-hard by (direct or
indirect) reduction from SAT, and presently hundreds of problems are known to be NP-
hard. Among them is the problem Vertex Cover (Karp, 1972).

Despite great efforts from many computer scientists, nobody to date has
succeeded in finding a polynomial-time algorithm that solves an NP-hard problem
(hence, the belief that P # NP). Therefore the finding that a decision problem [T is NP-
hard is seen as very strong evidence that all algorithms solving I run at best in

exponential-time; e.g., in time O(Q"), where O is a constant and 7 is the input size.

3.2.2. Illustrating polynomial-time reduction
This section illustrates the technique of polynomial-time reduction: We reduce the
problem Vertex Cover to a different graph problem, called Dominating Set. A vertex set
V> U Vis called a dominating set for G = (V, E) if for every vertex in V either v 1 V" or v
has a neighbor u UJ V.

Dominating Set

Input: A graph G = (V, E) and a positive integer k.

Question: Does there exist a dominating set V'’ for G with V'] < k?

36

As mentioned above, Vertex Cover is NP-hard. Hence, a polynomial-time reduction from
Vertex Cover to Dominating Set proves that Dominating Set is NP-hard too. *® Recall
that, to establish a reduction from Vertex Cover to Dominating Set, we need to present a
transformation from any instance i = {G, k} for Vertex Cover to an instance i* = {G*,
k*} for Dominating Set such that i = {G, k} is a yes-instance for Vertex Cover if and only
ifi*= {G*, k*} is a yes-instance for Dominating Set.

For simplicity, in the following we assume that the input graph G is of minimum
degree 1 (i.e., G does not contain any singletons). The assumption is validated by the fact
that Vertex Cover is also NP-hard for graphs without singletons.”” We start by making
two observations.

Observation 3.1. Let G = (V, E) be a graph without singletons and let & be a
positive integer. If G and k form a yes-instance for Vertex Cover then G and k form a
yes-instance for Dominating Set.

Proof: Let G and k form a yes-instance for Vertex Cover. Then there exists a
vertex set J” [V' such that V'’ is a vertex cover for G and |V’| < k. This means that for
every edge (u, v) U E, u 10V’ or v U V. But then also for every vertex v [V either v in

V'’ or v has at least one neighbor u [1 V. Thus V"’ is a dominating set for G with |V’| < k.

We conclude G and k& form a yes-instance for Dominating Set. m

Observation 3.2. Let G = (V, E) be a graph without singletons and let k£ be a
positive integer. If G and k form a yes-instance for Dominating Set then G and k need not
form a yes-instance for Vertex Cover.

Proof: We prove the claim by example. Let G = (V, E) with V= {u, v, w} and E =
{(u,v), (v, w), (u, w)} and let k= 1. Then G and k form a yes-instance for Dominating Set
(e.g., vertex set {u} is a dominating for G of size 1), but G and & do not form a yes-

instance for Vertex Cover (i.e., the smallest vertex cover for G is of size 2, e.g. {u, v}). m

2% Of course, it is long known that Dominating Set is NP-hard (e.g. Garey & Johnson,
1979). The polynomial-time reduction discussed in this section is for illustrative purposes
only.

*7 Singletons are easily dealt with, both in Vertex Cover (where they can always be
excluded from the vertex cover) and Dominating Set (where they always need to be
included in the dominating set).

37

From these observations we conclude that a reduction from Vertex Cover to Dominating
Set of the form G* = G and k* = k will not work; viz., although all vertex covers are
dominating sets (Observation 1), the reverse is not true (Observation 2). If we could
somehow define G* such that every dominating set for G* is also a vertex cover for G,
without losing the relationship between the two problems as stated in Observation 1, then
we would be able to establish a proper reduction. Lemma 3.1 shows that indeed the
following transformation works: First we set G* = G and then for every edge (u, v) in G
we add a new vertex x to G* and connect it to the vertices # and v in G* with the edges

(x, u) and (x, v). See Figure 3.2 for an illustration.

Figure 3.2. Illustration of the reduction in Lemma 3.1.

The graph G consists of the white vertices and the solid edges, and graph G*
consists of G plus the gray vertices and the dotted edges. Note that G has a
vertex cover of size k if and only if G* has a dominating set of size £.

Lemma 3.1. Let G = (V, E) be a graph without singletons and let k£ be a positive
integer. Further, let G* = (V*, E*) with V*=V [A, where 4 = {x,, U V: (u, v) U E},
and E'=FE U E* ,where E*= {(y,z) :y=xp,andz=u or y =Xx,, and z=v) and let k* =
k. Then G and k form a yes-instance for Vertex Cover if and only if G* and £* form a

yes-instance for Dominating Set.

38

Proof: (=) Let G and k form a yes-instance for Vertex Cover. Then there exists a

vertex set V'’ [J V' such that V" is a vertex cover for G and |}V’ £ k. This means that for

every edge (u, v) U E, u J V" or v U V. From Observation 1 we know that for every
vertex v U V, v I V'’ or v has at least one neighbor u [J V. Further, because every vertex
X, U A 1s adjacent to both u [1 V'and v U V, with (u, v) U E, we also know every vertex
Xy [A4 has at least one neighbor in V. Thus V"’ is a dominating set for G* with |V'| < k=
k*. We conclude G* and £* form a yes-instance for Dominating Set.

(U) Let G*and k* form a yes-instance for Dominating Set. Then there exists a
vertex set V'’ [J V* such that V"’ is a dominating set for G* and |V’| £ k*. This means that
for every vertex v 1 V*, v UJ V" or v has a neighbor u [1 V". We prove that there exists a

vertex cover V' L1 V for G with [V”

<V

< k. We distinguish two cases (1) Let V" U V.
Then we consider V= J. Note that for "’ to dominate all vertices in 4 in G*, V" has to
cover every edge in £ (viz. every edge in £ has an associated vertex x,, [J 4). Hence, V'’
is a vertex cover for G of size at most £* = k. We conclude that (G, k) is a yes-instance
for Vertex Cover. (2) Let /” [V. Then we transform / into a set " as follows. For each
vertex x,, Ll V°, with x,, U V, we remove x,, from V"’ and replace it by « or v (or neither, if
both already happen to be in V). Note that the resulting set /' is also a dominating set
for G* and |V”| < |V’|. Further, V" U V and thus case (1) appliesto V'=V". =

Note that the transformation from G and £ to G* and k* in Lemma 3.1 can be
done in polynomial time: To create G* we copy G in time O(n”) and we then add at most
m vertices and 2m edges to G* in time O(n”). Hence, with Lemma 3.1 we have shown a
polynomial-time reduction from Vertex Cover to Dominating Set. Since, Vertex Cover is
known to be NP-hard, we can conclude from Lemma 3.1 that Dominating Set is NP-hard.
In other words, we have shown that if Dominating Set is in P, then so is Vertex Cover
(and so are all other problems in NP). Namely, if there exists a polynomial-time
algorithm M, that solves Dominating Set, then we can solve Vertex Cover with a
polynomial-algorithm M, = RM, that consists of M, preceded by a sub-procedure R that

transform the instance for Vertex Cover into an equivalent instance for Dominating Set.

39

3.3. The P-Cognition thesis

Classical complexity theory, including the theory of NP-completeness, has found its way
into cognitive psychology. Its application spans many cognitive domains, including:
learning (Judd, 1990; Parberry, 1994; 1997), judgment and prediction (Martignon &
Schmitt, 1999), categorization (Anderson, 1990), decision-making (Payne, Bettman, &
Johnson, 1993; Simon, 1988, 1990), knowledge representation (Parberry, 1997),
reasoning (Cherniak, 1986; Levesque, 1988; Millgram, 2000; Oaksford & Chater, 1993,
1998; Thagard, 2000; Thagard & Verbeurgt, 1998), linguistic processing (Barton,
Berwick, & Ristad, 1987; Ristad, 1993, 1995; Wareham, 1996, 1998), visual perception
(Kube, 1991; Tsotsos, 1988, 1989, 1990, 1991), and visual problem-solving (Graham,
Joshi, & Pizlo, 2000; MacGregor & Ormerod, 1996; MacGregor, Ormerod, & Chronicle,
1999, 2000; van Rooij, Schactman, Kadlec, & Stege, 2003; van Rooij, Stege, &
Schactman, 2003; Vickers, Butavicius, Lee, & Medvedev, 2001).

Intractable Tractable = P

Cognitive
functions

Figure 3.3. Illustration of the P-Cognition Thesis.

The set of all computable functions partitioned into tractable and intractable
functions based on the definition of classical (in)tractability. On the P-
Cognition thesis any function outside P can be rejected as computational
level theory of a cognitive system.

In present-day cognitive psychology classical complexity theory is used, among other
things, to evaluate the feasibility of computational theories of cognition. One of the first
researchers to explicate this usage of complexity theory in cognitive psychology is
Frixione (2001). Frixione made the case for the thesis that cognitive functions are among
the polynomial-time computable functions, and he called upon cognitive psychologists to

use this thesis to constrain computational level theories. I will refer to Frixione’s

40

proposed formalization of the Tractable Cognition thesis as the P-Cognition thesis (see
Figure 3.3 for an illustration). In some form or another, the P-Cognition thesis has been
advanced by many researchers in cognitive psychology (e.g. Anderson, 1990; Cherniak,
1986, Judd, 1990; Levesque, 1988; Martignon & Schmitt, 1999; Millgram, 2000;
Oaksford & Chater, 1993, 1998; Parberry, 1994; Simon, 1988, 1990; Thagard, 2000;
Thagard & Verbeurgt, 1998; Tsotsos, 1988, 1989, 1990, 1991), as well as in artificial
intelligence (see e.g. Cooper, 1990; Nebel, 1996). The application of the P-Cognition
thesis in psychological practice will be discussed below as well as in later chapters (see

Chapters 5 and 7).

3.3.1. P-Cognition in Psychological Practice

The P-Cognition thesis is presently employed in at least three qualitatively different
ways. First, some researchers view the finding that a given cognitive function is not in P
(assuming P # NP) as a reason to abandon the associated computational level theory
altogether. For example, in the domain of reasoning, Oaksford and Chater (1993, 1998)
argued that logicists’ approaches to modeling commonsense reasoning are untenable and
should be abandoned, because checking whether a set of beliefs is logically consistent is
NP-hard. Comparable reactions to NP-hardness results can be found in Martignon and
Schmitt (1999) and Millgram (2000).

Other researchers view complexity theory as a tool for refining (not all-round
rejecting) computational level theories such that they satisfy tractability constraints.
Researcher in this group reason as follows: If a computational level theory 1 is
classically intractable, then the cognitive system cannot be solving I in its generality;
hence it must (or might) be solving some variant or special case of 1. For example,
Levesque (1988), like Oaksford and Chater, recognized the inherent exponential-time
complexity of general logic problems, but unlike Oaksford and Chater, he concludes that
we need to adjust logic, not abandon it, in order to obtain psychologically realistic models
of human reasoning. Similarly, upon finding that visual search, in its general (bottom-up)
form, is NP-complete, Tsotsos (1988, 1989, 1990, 1991) did not abandon his model of
vision, but instead adjusted it by assuming that top-down information helps constrain the

visual search space.

41

Lastly, there are researchers that, upon finding that a cognitive function I is of
exponential-time complexity, do not reject 1 as computational level theory, nor adjust it
to accommodate tractability constraints. Instead they assume that, at the algorithmic
level, the function I is being computed by heuristics or approximation algorithms. This
approach is taken, for example, by Thagard and Verbeurgt in the domain of abductive
(coherence) reasoning (1998; Thagard, 2000; but see also Martignon and Schmitt, 1999).
This last group, in a sense, does not take the computational level theory very seriously;
1.e., the constraint that tractability places upon algorithmic level theories is recognized,

but not the constraints that tractability places upon computational level theories.

3.3.2. A Comment on Psychological Practice

I briefly comment on the validity of the three approaches sketched above. In my view, the
only sensible approach is the second one: An intractability result for Il indicates that the
function ' cannot be practically computed in all its generality, and this knowledge
should be used to reshape the cognitive theory I into a cognitive theory I’ that is of
more realistic form.

The first approach is unreasonable simply because no single intractability result
for a function M can overthrow the entire framework in which M was formulated.*® In my
response to the third approach I distinguish between algorithmic level descriptions that
are heuristics for the computational level function 1 and those that are approximation
algorithms for M.%° If we were to accept (mere) heuristics as algorithmic level
descriptions for the computational level function 1 then we can do away with the
computational level description ' altogether. Namely, then there is no principled

relationship between the algorithmic level and the computational level description. On

*® Interestingly, Oaksford and Chater (1998) side with the framework of Bayesian
inference, which is—as they themselves admit (p. 289)—equally plagued by
computational intractability results.

%% 1 use the words ‘heuristic’ and ‘approximation algorithm’ as mutually exclusive. An
approximation algorithm is a procedure that guarantees a bound on the extent to which
the computed output deviates from the required output. A heuristic is an approach that
(intuitively) seems to give approximate solutions to a problem, but does not provably do
so. This distinction between heuristics and approximation algorithms is important and is
often overlooked in the cognitive science literature.

42

the other hand, if one wishes to take an approximation approach then I would propose the
following: First define the adequate level of approximation that would be needed for the
cognitive system to perform the task under study, and then incorporate this as part of the
computational level theory. This way, the algorithmic level does not approximate the
computational level; instead the computational level is reformulated as an approximation

problem.

3.4. Parameterized Complexity and Fixed-Parameter Tractability

This section presents a brief introduction to the theory of parameterized complexity as
developed by Downey and Fellows (1999; see also Downey, Fellows, & Stege, 1999a,
1999b; Fellows, 2002). A detailed discussion of techniques for parameterized complexity
analysis is postponed until Chapter 4. This section primarily serves to introduce the

notion of fixed-parameter tractability, to be used in Section 3.5.

3.4.1. The classes FPT and W[1]

We have seen that classical complexity theory analyzes the complexity of problems in
terms of the size of the input, measured by [i|. In contrast, parameterized complexity
theory allows for a more fine-grained identification of sources of complexity in the input.
This is done by analyzing complexity in terms of the size of the input, |i|, p/us some input
parameter(s), K.

Inputs to decision problems often have several (explicit and implicit) aspects and
any one of them may be considered an input parameter. For example, Vertex Cover and
Dominating Set both have two aspects that are explicitly stated in the input: a graph G
and a positive integer k. The problems also have several implicit parameters; e.g., the
maximum (or minimum) degree of vertices in G, the length of the longest path in G, the
number of cycles in G, the ratio between the number of edges and vertices in G. All of
these aspects may be considered a problem parameter, and a problem may be
parameterized on one or more parameters at the same time.

We denote a parameter set by K = {ky, ky, ..., kn}, where ki, i =1, 2, ..., m, denotes

an aspect of the input. We denote a problem I parameterized on K by K-I1, and call K- a

43

parameterized problem. An instance for K-I1, with input 7 and parameter K, is denoted by
a tuple (i, K).

When a problem is shown to be NP-hard it is important to understand which
aspects of the input are actually responsible for the non-polynomial time behavior of the
problem. The theory of parameterized complexity is motivated by the following
observation. Some NP-hard problems can be solved by algorithms whose running time is
non-polynomial in some parameter K but polynomial in the input size [i|. In other words,
the main part of the input contributes to the overall complexity in a “good” way, while
only K contributes to the overall complexity in a “bad” way. In these cases, we say K
confines the non-polynomial time complexity in the problem, and the problem is said to
be fixed-parameter tractable for parameter K.

More formally, a parameterized problem K-I1 is said to be fixed-parameter
tractable if any instance (Z, K) for K- can be decided in time O(f(K)n®), where f(K) is a
function depending only on K. An algorithm that solves a parameterized problem K-I1 in
time O(f(K)n®) is called a fixed-parameter tractable (fpt-) algorithm. Parameterized
decision problems that are not fixed-parameter tractable are called fixed-parameter

intractable.

Computable

W[1]-complete

Figure 3.4. The view of W[1] on the assumption that FPT # W[1].
W[1]-complete problems are not in FPT if and only if FPT # W[1].

Analogous to the classical complexity classes P and NP, parameterized complexity theory

introduces the parameterized complexity classes FPT and W[1], with FPT U w[1].*°

% See e.g. Downey and Fellows (1999) for a definition of the class W[1].

44

Fixed-parameter tractable parameterized problems are said to be in the class FPT. It is
widely believed that there exist parameterized problems in W[1] that are fixed-parameter
intractable, and thus that FPT # W[1] (see also Figure 3.4). This conjecture is, among
other things, motivated by the observation that there exist W[1]-hard problems.

To explain W[1]-hardness we define the notion of parametric reduction: *' For
parameterized problems K;-I1; and K,-I1, and functions fand g, we say a parametric
reduction from K;-I1; to K-, is a reduction that transforms any instance i; for K;-1; into
an instance i, for K»-M, with K, = g(K1). Further, the reduction runs in time f{K,)|i1|%,
where 0 is a constant. A parameterized problem K-I1 is said to be W[1]-hard if any
parameterized problem K’-I1° [J W[1] can be transformed to K- via a parametric
reduction (problems that are W[1]-hard and in W[1] are called W[1]-complete). Since,
membership of a W[1]-hard problem in FPT would imply that FPT = W[1], the finding
that a problem is W[1]-hard is seen as very strong evidence that the problem is not in

FPT.

Computable

PARKNP)

Figure 3.5. Illustration of the relationship between classes W[1], FPT, P and NP.
Because W[1] and FPT are classes of parameterized problems we cannot
compare them directly to the classes P and NP. Therefore we define the class of
all possible parameterizations of problems in P, denoted PAR(P), and the class
of all possible parameterizations of problems in NP, denoted PAR(NP). Since P
[NP, we have PAR(P) J PAR(NP). Further, since every problem in P is in
FPT for any parameter we have PAR(P) U FPT [0 W[1].

When relating Figure 3.4 to Figure 3.1, it is important to keep in mind that W[1]

and FPT are classes of parameterized problems, while NP and P are classes of (non-

*! The technique of parametric reduction is illustrated in Chapter 4.

45

parameterized) problems. The relationship between W[1] and NP can be understood as
follows. Let PAR(NP) denote the set of all possible parameterizations of problems in NP,
and let PAR(P) denote the set of all possible parameterizations of problems in P, then
PAR(P) U PAR(NP) and PAR(P) U FPT J W[1]. Figure 3.5 illustrates these
relationships. Note that all problems that are solvable in polynomial time are solvable in
fpt-time for all possible parameterizations. Since parameterization does not change the
nature of a problem (it only specifies how its complexity is to be analyzed) we could say

that “P [J FPT.”

3.4.2. Illustrating Fixed-parameter Tractability

To illustrate the qualitative difference between fixed-parameter tractability and fixed-
parameter intractability, we consider the problems Vertex Cover and Dominating Set
when parameterized by k. Both of these problems can be solved by an exhaustive search

that simply checks for every vertex set of size £ whether or not it is a vertex cover

(dominating set) for G. For a graph on n vertices there exist (]J such subsets. Since

!
Tl is O(n*) we can solve Vertex Cover and Dominating Set in time on").
k) (n—k)'k!

Notably, it is possible to decide the problem Vertex Cover must faster than this. Namely,
using a technique from parameterized complexity theory—to be discussed in Chapter 4—
we can show that Vertex Cover is solvable in time O(2*n).** Thus the parameterized
problem k-Vertex Cover is in FPT. A similar running time is most likely not possible for
Dominating Set: viz., the parameterized problem k-Dominating Set has been shown to be
W[1]-hard (Downey & Fellows, 1999).

Table 2.2 illustrates how the running times 0(2“ ‘), O(|i|*) and O(2"|i]) compare, for
K = 10 and K = 20 and different [i|. Clearly, an fpt-algorithm that runs in time O(2"|i]) is

feasible even for large |i| provided only that K is not too large.

32 In fact, with the use of further techniques and a better analysis, we can show that k-
Vertex Cover is solvable in time O(1.28" + kn) (Chen, Kanj, & Jia, 2001).

46

The take home message of this illustration is that the classical characterization of
exponential-time algorithms as “all bad” is too crude: Not all exponential-time algorithms
are created equal (cf. Downey & Fellows, 1999; Niedermeier, 2003). Namely, we have
seen that the known NP-hard problem Vertex Cover can be solved by an exponential-
time algorithm O(2"n) where the running time is exponential only in k. Since the size of
k is but one (relatively small) part of the input to this problem, it seems inappropriate to

consider Vertex Cover as generally intractable.

Table 2.2. Fixed-parameter tractability and intractability.
Ilustration of how the running time O(2""), O(|i*) and O(2¥|i) compare for different
levels of |i|, when K = 10 or K = 20 (assuming 10,000 computational steps per second)

K=10 K =20
i o' o) 0(2"i) o) (2"
2 0.02 msec 0.10 sec 0.20 sec 1.75 min 3.5 min
5 0.19 msec 16.3 min 0.51 sec 3 centuries 8.7 min
10 0.10 sec 11.6 days 1.02 sec 3.2x 10% yrs 17.5 min
15 3.28 sec 22 mths 1.54sec 1.1x10%yrs 262 min
20 1.75 min 32.5 yrs 2.05 sec 33x10"yrs 35.0 min
30 1.2 days 19 centuries 3.07 sec 1.1x10%yrs 524 min
50 35 centuries 3.1x10°yrs 5.12sec 3.0x 107 yrs 1.45hrs

100 40x10%yrs 3.2x10%yrs 102sec 32x10%yrs 2.9hrs
1000 3.4x10"°yrs 32x10%yrs 1.71min 3.2x10"® yrs 29 hrs

3.5. The FPT-Cognition thesis

The theory of parameterized complexity remains largely unknown to and unexplored by
cognitive psychologists (to my knowledge, the first and only connection drawn is by
Wareham, 1996, 1998).* Studying the complexity of different parameterizations of a

problem is of great use for cognitive psychology, however, because it gives us insight

33 Tsotsos (1990) also emphasized that different input parameters may differentially
contribute to a problem’s complexity, but he did not use parameterized complexity theory
in his analyses. Further, note that parameterized complexity theory is already being
applied in the field of artificial intelligence (e.g. Gottlob, Scarcello, & Sideri, 2002).

47

into how the complexity of a problem depends on its different input parameters. If a
problem of exponential-time complexity allows for this exponential-time complexity to
be confined to parameters that are in practice small, then the problem is in practice not as
hard as a classical complexity analysis would suggest. This observation leads me to
formulate the FPT-Cognition thesis: Cognitive functions are among the functions that
have problem parameters that are “small enough” in practice and that are fixed-parameter
tractable for (a subset of) those parameters.

A comment on the qualification “small enough” is in order. First, note that every
problem in NP is in FPT for at least one parameter; e.g., when K = |i|. The FPT-Cognition
thesis is purposely formulated to exclude such trivial cases of fixed-parameter
tractability. Furthermore, the range of feasibility for K is different for an fpt-algorithm
that runs in O(2"n) than for an fpt-algorithm that runs in O(2"n). In sum, whether an fpt-
algorithm runs fast enough in practice will depend on (1) the exact function f{(K) in the
running time, and (2) the range of values that K may take in practice. The formal theory
of parameterized complexity can help determine bounds on the function f{K), but
empirical observation and psychological theory will be needed to provide reasonable

estimates of bounds on K.

Intractable Tractable = FPT

Figure 3.6. Illustration of the FPT-Cognition thesis.

The set of all computable functions partitioned into tractable and intractable
functions based on the definition of parameterized (in)tractability. On the
FPT-Cognition thesis any computational theory instantiating a function that is
not in FPT for some small input parameters can be rejected.

48

See Figure 3.6 for an illustration of the FPT-Cognition thesis. Since “P U FPT”
the FPT-Cognition thesis instantiates a relaxation of the P-Cognition thesis. That is, under
the FPT-Cognition thesis the space of feasible computational theories is larger than the
set of feasible theories under the P-Cognition thesis.

Why relax the P-Cognition thesis? If we use computational complexity theory to
constrain psychological theorizing we do not want to constrain it too much. That is, we
do not want to risk rejecting veridical theories simply because our formalization of the
Tractable Cognition thesis is wrong. If the FPT-Cognition thesis is realistic (and I believe

it is) then, if we adopt the P-Cognition thesis, we risk exactly this.

3.5.1. FPT-Cognition in Psychological Practice

I close this chapter with a discussion of how the FPT-Cognition thesis might be usefully
employed in psychological practice. In this context, it is important to understand that the
analytic tools provided by parameterized complexity theory are not meant to replace the
tools provided by classical complexity theory; instead the parameterized tools should be
seen as extending the classical tools.

With the FPT-Cognition thesis I do not mean to argue that NP-hardness results
are of no significance to psychological science. The FPT-Cognition thesis, like the P-
Cognition thesis, recognizes that an NP-hard function [cannot be practically computed
in all its generality. If the system is computing I1 at all, then it must be computing some
“restricted” version of it, denoted I1°. The crux is, however, what is meant by
“restricted.” The P-Cognition thesis states [1° must be polynomial-time computable,
whereas the FPT-cognition thesis states that 1 must have problem parameters that are in
practice “small” and that [T’ must be fixed-parameter tractable for (a subset of) those
parameters.

On the one hand, the FPT-Cognition thesis loses in formality by allowing an
undefined notion of “small” parameter in its definition. On the other hand, this allowance
is exactly what brings the FPT-Cognition thesis much closer to psychological reality.
Many natural cognitive functions have input parameters that are of qualitatively different
sizes. Ignoring these qualitative differences, and treating the input always as one big

“chunk,” would make complexity analysis in psychological practice completely vacuous.

49

The FPT-Cognition thesis, then, should not be seen as a simple litmus test for
distinguishing feasible from unfeasible computational level theories. On the contrary, the
FPT-Cognition thesis, as I put it forward, is meant to stimulate active exploration of
natural problem parameters in cognitive tasks. It is only when we know how the
complexity of a function depends on its problem parameters that we can have a solid

understanding of a function’s complexity in practice.

50

Chapter 4. Techniques in Parameterized Complexity

This chapter presents a primer on parameterized complexity analysis. The purpose of this
chapter—as well as the three following chapters—is to make the techniques for classical
and parameterized complexity analysis accessible to cognitive psychologists interested in
analyzing the complexity of their cognitive theories. This chapter gives an overview of
basic techniques developed in the field of parameterized complexity. To facilitate
understanding I illustrate each technique with one or more examples. For my examples I
use Vertex Cover and related graph problems.>* The techniques presented in this chapter,
together with the technique of polynomial-time reduction (Section 3.2), are then used in

Chapters 5, 6 and 7 to illustrate complexity analysis for existing cognitive theories.

4.1. Reduction Rules

If 1 is an NP-hard problem, then we know that we cannot solve I in polynomial-time
(unless P = NP). Nevertheless, sometimes we can solve parts of an instance i for 1 in
polynomial time by applying so-called reduction rules. A reduction rule takes as input an
instance i for Il and transforms it into an instance i’ for 1 such that i is a yes-instance for
M if and only if i’ is a yes-instance for 1. In other words, a reduction rule instantiates a
reduction as discussed in Section 3.1, but in this particular case it is a reduction where i
and i’ are instances for one and the same problem. Generally, the goal of a reduction rule
is to reduce instance 7 to an instance i’ such that i” smaller and/or easier to work with than
i. Since the reduction maintains the equivalence between i and i’ for I1 (i.e., the answer
is either “yes” for both i and i” or “no” for both i and i), we can safely work with i’
instead of 7, even if our goal is to solve i. Namely, the reduction ensures that as soon as

we solve i’ for I'1 we have also solved i for I1.

*1 do not claim originality of all examples in this chapter. Many of the examples using
Vertex Cover are adopted from Balasubramanian, Fellows, and Raman (1998) and the
monograph by Downey and Fellows (1999). Many examples using profit problems derive
from my own work together with Ulrike Stege. My contribution here is to bring all these
examples together in a coherent way, with the aim of making parameterized complexity
techniques easily understandable for a non-expert.

(G, h)

3 o

(G, k)

3 i

(G, k), k=3

7

(G, k), k=8

(G, k), k<2

(VC 1)

(VC2)

(VC 3)

=

(VC 4)

=

(G* k), k* =k

(G* k¥, k*=k—1

(G* k*), k*=k—1

“yes

“no”

2

51

Figure 4.1. Illustration of reduction
rules (VC 1) — (VC 5) for Vertex
Cover.

Arrows indicate the application of a
reduction rule. The instance before
reduction rule application is denoted
(G, k) and the instance after
reduction rule application is denoted
(G*, k*). Note that, in each case,
(G*, k*) is defined such that it is a
yes-instance for Vertex Cover if and
only if (G, k) is a yes-instance for
Vertex Cover. Application of (VC 1)
causes singletons to be deleted from
G. Application of (VC 2) causes
pendant vertices to be deleted from
G. Note that we set k* = k£ — 1,
because rule (VC 2) assumes that the
neighbor of the pendant vertex is in
the vertex cover. Application of (VC
3) causes vertices with degree larger
than & to be deleted from G. Again
we set k* = k — 1 because rule (VC
3) assumes that the deleted vertex is
in the vertex cover. Note that, in this
example, (G*, k*) is a graph with
pendant vertices; thus we can apply
(VC 1) to (G*, k*). If the number of
edges in G is smaller than £, then
application of (VC 4) returns the
answer “yes,” because then we can
cover each edge by including one of
its endpoints in the vertex cover. If
the number of independent edges in
G exceeds £, then application of (VC
5) returns the answer “no,” because
for each independent edge we will
need to include at least one vertex in
the vertex cover. In the bottom
figure, the dotted lines form a largest
set of independent edges for G.

52

To illustrate the use of reduction rules, we again consider the problem Vertex Cover.
Figure 4.1 illustrates the first five reduction rules.

To derive the first reduction rule, we observe that if an input graph G contains a
singleton v (i.e., degg(v) = 0), then we can delete v from G. Namely, v has no incident
edges and thus v need not be considered for inclusion in the vertex cover for G. Hence we
can apply the following reduction rule to G when solving Vertex Cover.

(VC 1) Singleton Rule: Let graph G = (V, E) and positive integer k& form an
instance for Vertex Cover. If there exists a vertex v J V' with degg(v) = 0, then let G* =
(V* E), with "*= V'\{v}, and positive integer k form the new instance for Vertex Cover.

To prove that (VC 1) is a valid reduction rule as defined above, we need to show
that (G, k) is a yes-instance for Vertex Cover if and only if (G*, £*) is a yes-instance for
Vertex Cover. That is, the transformation described by the rule must be such that, if the
answer for the new instance (G*, £*) is “yes” then we can conclude that the old instance
(G, k) 1s “yes,” and if the answer for the new instance (G*, k*) is “no” then we can
conclude that the old instance (G, k) is “no.”

Proof of (VC 1): We show that (G, k) is a yes-instance for Vertex Cover if and
only if (G*, k*) is a yes-instance for Vertex Cover. Let v I V' be a vertex in G without
incident edges. (=) Let (G, k) be a yes-instance for Vertex Cover. Then G has a vertex
cover V'’ U1 V of size at most k. We distinguish two cases: (1) Let v V. Then V' is a
vertex cover for G* of size k* = k. (2) Let v I V". Then, since v is a singleton, V" \{v} is
also a vertex cover for G of size at most £ —1, and thus V" \{v} is also a vertex cover for
G* of size at most k* — 1 = k — 1. Hence, in both case (1) and (2) we conclude that (G*,
k*) is a yes-instance for Vertex Cover. ([J) Let (G*, k*) be a yes-instance for Vertex
Cover. Then G* has a vertex cover V' [V of size k*. Since G contains the same edges as
G*, V" is also a vertex cover for G. We conclude that (G, k) is a yes-instance for Vertex
Cover. m

In the proof of (VC 1) above, we proved each direction (=) and (L1) separately.
Sometimes we may choose to prove both directions at once. For example, an alternative

proof of (VC 1) could go as follows.

53

Alternative Proof of (VC 1): Let V' U V be a minimum vertex cover for G and
let v U V' be a singleton. We make three observations. (1) We know v [V'’ (namely, if we
assume v [J 7, then we can have a smaller vertex cover V\{v} for G, contradicting that
|V’ is minimum). (2) Since G* = (J\{v}, E), we know V"’ is a minimum vertex cover for
G*. (3) In general, we know for any instance (G, k’) that (G, k’) is a yes-instance if and
only if a minimum vertex cover for G’ has size at most £’. From (1), (2) and (3) we
conclude that (G, k) is a yes-instance if and only if (G*, k¥*) is a yes-instance. m

We derive a second reduction rule. We observe that any instance (G, k) for Vertex
Cover can be reduced such that G has no pendant vertices (i.e., vertices of exactly degree
1). Namely, a pendant vertex u, with neighbor v, can cover only edge (u, v), whereas its
neighbor v covers the same edge plus possibly more. Hence we can always include v
instead of u in the vertex cover for G.

(VC 2) Pendant Rule: Let graph G = (V, E) and positive integer k& form an
instance for Vertex Cover. If there exists a vertex u [J V' with degg(u) = 1, then let G* =
(V*, E*), with V*= W{u, v}, E* = E\Rg({u, v}), and positive integer k* = k — 1 form the
new instance for Vertex Cover.

Proof: We need to show that (G, k) is a yes-instance for Vertex Cover if and only
if (G*, k*) is a yes-instance for Vertex Cover. (=) Let (G, k) be a yes-instance for Vertex
Cover. Then G has a vertex cover V' L1 V of size k. First, we show that w.l.o.g. v V.
The proof is by contradiction. Assume that v [1 J”. Then its neighbor ¥ must be in V",
otherwise edge (u, v) is not covered and V"’ would not be a vertex cover for G. But then
we can transform V" into V"= (V' [0 {v}) — {u} and conclude that V"’ is a vertex cover
for G of size k. Second, since w.l.o.g. v V"’ and E* = E\Rg({u, v}), we know that
VA\{v} is a vertex cover of size k — 1 for G* We conclude that (G*, k*) is a yes-instance
for Vertex Cover. (L]) Let (G*, k*) be a yes-instance for Vertex Cover. Then G* has a
vertex cover V' [V of size k*. Since v covers every edge in Rg({u, v}), and E = E* []
Re({u, v}), we know that V" [J {v} is a vertex cover for G of size k* + 1. We conclude

that (G, k) is a yes-instance for Vertex Cover. m

54

If we apply reduction rules (VC 1) and (VC 2) to an instance (G, k) until no
longer possible, then we will have removed all degree-0 and degree-1 vertices from the
input graph.

We next show that we can also remove vertices of high degree. More specifically,
if G contains a vertex v of degree at least k£ +1, then any vertex cover for G of size at most
k will have to include v. Namely, to cover the edges incident to v we need to include
either v in the vertex cover or all of its neighbors. Since v has more than k neighbors, V'’
is a vertex cover for G of size at most k only if v I V.

(VC 3) Degree-(k +1) Rule: Let graph G = (V, E) and positive integer k£ form an
instance for Vertex Cover. If there exists a vertex v [J V' with degg(v) > k, then let G* =
(V*, E*), with V* =V \{v}, E*= E\Rg({v}), and positive integer k* = k — 1 form the new
instance for Vertex Cover.

Proof: We need to show that (G, k) is a yes-instance for Vertex Cover if and only
if (G*, k*) is a yes-instance for Vertex Cover. (=) Let (G, k) be a yes-instance for Vertex
Cover. Then G has a vertex cover V' [V of size k. We show that v [J’. The proof is by
contradiction. Assume that v [V. Then all neighbors of v are in V. Since [Ng(v)| =
degg(v) > k we can conclude |V’| > k, contradicting the fact that V'’ is of size at most £.
Since, v U V'’ and E* = E\Rg({v}), we know that V"\{v} is a vertex cover of size k — 1 for
G*. We conclude that (G*, k*) is a yes-instance for Vertex Cover. (LI) Let (G*, k*) be a
yes-instance for Vertex Cover. Then G* has a vertex cover V' [V of size k*. Since v
covers every edge in Rg({v}), and E = E* [J Rg({v}), we know that V" [] {v} is a vertex
cover for G of size k* + 1. We conclude that (G, k) is a yes-instance for Vertex Cover. m

For certain problems it is possible to formulate a reduction rule that tests whether
the instance i has a property that allows us to directly decide i for 'l. For example, if a
graph G has less than £ edges then we know right away that G has a vertex cover of size
at most k. Namely, for each edge we can just include any one of its incident vertices in
the vertex cover.

(VC 4) Less Than k Edges Rule: Let graph G = (V, E) and positive integer k

form an instance for Vertex Cover. If |E| < k then output “yes.”

55

Proof: Let G = (V, E) be a graph with |E| < k. Then we can cover every edge (u, v)
U E with the following procedure: For each (u, v) U E include v into the vertex cover V'~
[J V. Since we have at most k£ edges, this procedure will lead us to include at most &
vertices in the vertex cover. Hence, (G, k) is a yes-instance for Vertex Cover. m

The rule (VC 4) allows us to recognize some yes-instances for Vertex Cover.
There also exist rules that allow us to recognize some no-instances for Vertex Cover. For
example, let G and k form an instance for Vertex Cover, and let £’ [E be a set of
independent edges in G (i.e., no two edges in £’ has a vertex in common). If |E’| > k then
we know that G and & form a no-instance for Vertex Cover. Namely, to cover an edge (u,
v) at least one of # and v must be in the vertex cover. Since the edges in £’ are
independent, a vertex that covers an edge in £’ does not cover any other edge in £
Hence, we need at least |E’| > k vertices to cover all edges in G.

(VC 5) More Than k Independent Edges Rule: Let graph G = (V, E) and
positive integer k form an instance for Vertex Cover. If G contains a set of independent
edges £’ [E such that |E’| > k, then output “no.”

Proof: Let G = (V, E) be a graph, and let £’ [] E be a set of independent edges.
Further, let |[E’| > k and let (i, v) be any edge in £’. For a vertex set V' [V' to cover (u, v)
U E’, we must have u U V" or v I V. Since all edges in £ are independent we know that
for any edge (x, y) U E’, with (x, y) # (u, v), that x Z u, x # v, y # u, and y # v (otherwise
the two edges are not independent). Hence we need at least as |[E’| > k vertices in V' to
cover all edges in E’, and thus we need at least as |E’| > k vertices in V'’ to cover all edges
in E. We conclude that (G, k) is a no-instance for Vertex Cover. m

All these reduction rules run in polynomial-time. The time to execute rules (VC 1)
and (VC 2) is independent of the size of the input, and thus these rules run in time O(1).
The rule (VC 3) requires the removal of a vertex and all its incident edges from G; since a
vertex has at most || — 1 incident edges, this rule can be executed in time O(|V]). Rule
(VC 4) involves counting the number of edges in the input graph, which runs in time
O(|V/*). Finally, rule (VC 5) involves counting the number of independent edges in a
graph. The problem of finding the maximum number of independent edges in a graph is

equivalent to the problem Maximum Matching (see Appendix B for problem definition).

56

It is known that Maximum Matching can be solved in time O(|V]*) (e.g. Gross & Yellen,
1999), and thus rule (VC 5) also runs in polynomial-time.>

Whenever we have a set of reduction rules for a given problem we often say that a
problem is reduced if none of the reduction rules apply. For example, we may say that
instance (G, k) for Vertex Cover is reduced if and only if (VC 1) = (VC 5) do not apply to
(G, k).

4.2. Reduction to Problem Kernel

Sometimes a set of reduction rules can lead to kernelization of the input. In such cases we
know that, if application of the reduction rules is no longer possible, then the size of the
input 7 is bounded by some function depending only on the parameter K. The kernelized
input i is then called a problem kernel. More formally, if there exists a function f{(K),
depending only on K, such that |i| < f(K) we say that i is kernelized. We call i the problem
kernel, and we call |i| < f(K) the problem kernel size. A set of reduction rules that leads to
a problem kernel is called a reduction to problem kernel.

Once a kernelization result is known for a problem K-I1, we conclude that K- [
FPT.*® Namely, we know that there exists some function g(|i|), such that O(g(|i|)) captures
the running time for . But then, given the problem kernel |i| < f{K), we know that we can
solve K-l in time O(g(f(K)) + A(|i|, K)), where function A(|i|, K) denotes the time required
for the reduction. If /(Ji|, K) is polynomial- or fpt-time we can rewrite O(g(f(K)) + A(Ji|, K))
as O(g’(K) + h’(|i])), which is fpt-time.

To illustrate this technique, we add to the set of reduction rules (VC 1)—-(VC 5)
the kernelization rule (VC 6). It is important that before applying rule (VC 6) we first
reduce the input (specifically, we have to make sure that the rules (VC 1) and (VC 3) do
not apply). Then, using the fact that reduced graphs have no degree-0 and no degree-(k

%> All reductions considered here happen to be polynomial-time reduction rules. I remark
that it is also possible to use reduction rules that run in fpt-time when building fpt-
algorithms. In the discussion of bounded search tree, in Section 4.3, we will allow for
either polynomial-time or fpt-time reduction rules. A reduction that runs in fpt-time will
be illustrated in Section 4.6.

3% In fact, an even stronger relationship holds: A problem is in FPT if and only if it is
polynomial-time kernelizable (Downey et al., 1999a).

57

+1) vertices, rule (VC 6) concludes that a reduced instance (G, k) such that G has more
than k(k + 1) vertices is a no-instance for Vertex Cover. See Figure 4.2 for an illustration

of (VC 6).

O {-- @ - O oy

no

Figure 4.2. Illustration of rule (VC 6) and the intuition behind its proof.

The figure depicts an instance (G, k) for Vertex Cover. The graph G consists of &
components: the first £ —1 components are stars and the Kt component is a star on which
a pendant vertex v is appended. Further, the root of each component is of degree k. Note
that the most economical way of covering every edge in G is by including the root of
each star, plus v or its neighbor, in the vertex cover. This means that the smallest vertex
cover for G is of size k£ + 1 and thus the answer is “no” for (G, k). To illustrate the
intuition behind the proof of (VC 6) we make some further observations: Note that G has
exactly k(k + 1) + 1 vertices. Consider the graph G’ that is the same as G except that
vertex v has been deleted. Note that G’ has k(k + 1) vertices, and the smallest vertex
cover for G’ is of size k. If you try to change G’, by changing only the edge set, and
without creating singletons (because then we can apply (VC 1)) and without creating
vertices of degree larger than k (because then we can apply (VC 3)), you will see that it is
not possible to create a graph on the same set of vertices that has a vertex cover of size k
—1. From this we conclude that any graph larger than G’ for which (VC 1) and (VC 3) do
not apply, like G, does not have a vertex cover of size .

(VC 6) More Than k(k + 1) Vertices Rule:’ Let graph G = (¥, E) and positive
integer k form a reduced instance for Vertex Cover (i.e., rules (VC 1) = (VC 5) do not
apply to (G, k)). If G has more than k(k + 1) vertices, then output “no.”

Proof: Let G be a reduced graph with more than k(k + 1) vertices. Further,

because G is reduced we know it does not contain vertices with degree larger than &, nor

37 This kernelization rule also appears in Downey and Fellows (1999), and is due to Sam
Buss.

58

any degree-0 vertices. We show that we need more than & vertices in the vertex cover to
cover all the edges.

The proof is by contradiction. Let V" [J V be vertex cover for G of size k. Because
G is reduced its vertex degree is bounded by £, and thus the maximum number of edges
covered by any one vertex v [1 V'’ is k. Now consider the combined neighborhood of
vertices in 7, denoted Ng(7”). Since each vertex v [1 ’ can cover at most k edges, and
V"’ contains at most k vertices, we know that [Ng(7’)| < &* and thus |V’ O Ng(V)| < &+
k= k(k+ 1). But G has more than k(k + 1) vertices. This means there must exist at least
one vertex u in G such that u [1 7’ [0 Ng(V”). Since G is reduced we know that this vertex
has at least one incident edge (viz., (VC 1) does not apply), and since u I V" I Ng(V")
we know that this edge is not covered by V. We conclude that /"’ is not a vertex cover for
G =

We say that an instance (G, k) for k-Vertex Cover is kernelized if it is reduced and
(VC 6) does not apply. We now observe that in a kernelized instance (G, k) for k-Vertex
Cover, with G = (V, E), the size of V' is bounded by a function of k. To be exact, we have
a problem kernel |V] = n < k(k + 1). Recall that we can solve Vertex Cover in time O(2"),
simply by trying out all 2" possible subsets of vertices (e.g., using the Exhaustive Vertex
Cover algorithm described on page 24). This means that we can solve a reduced instance

2Mk Dy Adding the time required to reduce and kernelize an

Sklk+1) |

of Vertex Cover in time O(
instance we conclude that we can solve any instance for Vertex Cover in time O(

n”). This establishes that k-Vertex Cover is in FPT.

4.3. Bounded Search Tree

Reduction to problem kernel is one technique for showing that a problem is in FPT.
Another technique is the bounded search tree technique. The goal of this technique is to
construct a search tree 7, such that for every instance 7 for K-I' the following three
conditions are met: (1) the search tree returns a solution for K-I1 (i.e., one of its leaves is
labeled by a yes-instance) if and only if i is a yes-instance for K-[1, (2) the search tree is
bounded in size by some function f{K), and (3) each node in the search tree can be created

in fpt-time.

59

Here, requirement (1) is to ensure the correctness of the algorithm; i.e., we want
the algorithm to solve the problem I. Requirements (2) and (3) are to ensure that the
search terminates in fpt-time O(f(K)|i|"). To see that requirements (2) and (3) together
ensure an fpt running time consider the following: Let the size of the search tree 7 be
O(f1(K)) and let the time to create a node in T be time O(f>(K) |i|*), then the total running
time of the search algorithm is given by O(f1(K) £2(K) |i|")) = O(f(K) [i|*), which is fpt-time
with respect to parameter K. I discuss and illustrate points (1), (2) and (3) in turn.

To meet requirement (1), we create the search tree by recursively calling one or
more branching rules. Like a reduction rule, a branching rule takes as input an instance i
for a problem 1, but unlike a reduction rule, a branching rule outputs multiple instances
i1, 1o, ..., ip for I'1l. To ensure that the search tree returns a solution for K-I1 if and only if
(1, K) is a yes-instance for K-I1, the instances iy, i, ..., i are constructed such thatiis a
yes-instance for I if and only if i} or i; or... or i is a yes-instance for 1. To illustrate we
reconsider the Exhaustive Vertex Cover algorithm discussed in Section 2.4.2 (page 24).

The Exhaustive Vertex Cover algorithm can be seen as building the search tree T’
in Figure 2.3 (page 26). The root of T'is labeled by the original input instance (G, k).*®
For each node s in 7 the procedure Branch in the Exhaustive Vertex Cover algorithm
causes the creation of two children, s, and s, of 5. Here s, and s, are labeled by (G, ki)
and (G, k») such that (G, k) is a yes-instance for Vertex Cover if and only if (G, k1) or
(G2, k) 1s a yes-instance for Vertex Cover. The procedure Branch accomplishes this by
applying the rule “If V" is a vertex cover for a graph G, and v is a vertex in G, then either
visin V"’ or visnotin V.” This branching rule is formally defined by (VC 7) below (see

Figure 4.3 for an illustration).

3% In Figure 2.3 on page 26, at each node of the search tree we additionally kept track of
the set /'’ that was to be build into a vertex cover. From now on I will no longer explicate
that 7’ is being build during the construction of the search tree. For all algorithms
discussed in the text—unless otherwise noted—the reader may just assume that the
algorithm builds a constructive solution for every yes-instance of the problem that it
solves.

60

Figure 4.3. Illustration of branching
G0 rules (VC 7) and (VC 8).

The instance before branching rule

application is denoted (G, k) and the

two instances obtained after

branching rule application are

denoted (G, k1) and (G», k»). Note

that both branching rules define the

vVC7) new instances (G, k1) and (G, k)

(G k), ky=k—1 (Gy k) by =k such that (Gy, ki) or (G, k) is a

yes-instance for Vertex Cover if

and only if (G, k) is a yes-instance

for Vertex Cover. This way each

rule ensures that the branching

algorithm returns the answer “yes”

(or “no”) if and only if the answer

for the original input to the

algorithm 1s “yes” (“no”). The rule

(VC 7) considers for a vertex v in

G, the possibility that v is in the

vertex cover and the possibility that

v is not in the vertex cover. If we

assume that v is in the vertex cover,

then we can delete v and its incident

edges from G, leading to Gj, and

we set k1 = k — 1. If we assume that

(VC?9) v is not in the vertex cover, then we

(G k) by =k—1 (G ky), k,=k-4 also delete v and its incident edges

from G, leading to G, but we set k;

= k. Note that, in this example, (VC

2) can be applied to both (G, k)

and (Gy, k). The rule (VC 8), like

O (VC 7), considers for a vertex v in

G, the possibility that v is in the

vertex cover and the possibility that

v is not in the vertex cover. The rule

(VC 8), unlike (VC 7), uses the fact that, if v is not in the vertex cover, then all of its

neighbors are in the vertex cover (otherwise the edges incident to v would not be

covered). If we assume v is in the vertex cover, then we delete v and its incident edges

from G, leading to Gy, and we set k; = k — 1. If we assume v is not in the vertex cover,

then the neighbors of v are in the vertex cover. Then we delete v and its incident edges

from G, and additionally we delete its neighbors and their incident edges, leading to G,.

Further, we set k&, = k — [Ng(v)|. In this example, v has 4 neighbors and thus [Ng(v)| = 4.

Also note that, in this example, (VC 2) can be applied to (Gi, k1), and both (VC 1) and
(VC 2) can be applied to (G, k).

G, b

61

(VC 7) The Vertex-In-or-Out Branching Rule: Let node s in the search tree be
labeled by instance (G, k), G = (V, E), for Vertex Cover and let v J V. Then we create
two children of s in the search tree, called s, and s;, and label s; by (G, k) and label s, by
(G2, k). Here Gy = (V1, Ey) with V1 = V\{v}, E\= E\Rg({v}), ki =k — 1 and G, = (V2, E»)
with Vo = V\{v}, E,= E\Rg({v}), k» = k.

Proof: We need to show that (G, k) is a yes-instance for Vertex Cover if and only
if (G1, k1) or (Ga, k) 1s a yes-instance for Vertex Cover. (=) Let (G, k) be a yes-instance
for Vertex Cover. Then there exists a vertex cover V' [V for G with |V’| < k. We
distinguish two cases: (1) Let v J V. Since E; = E\Rg({v}) we know that V'\{v} is a
vertex cover for G, of size k — 1. We conclude (G, k) is a yes-instance for Vertex Cover.
(2) Let v I V’. Then V"’ is a vertex cover for G, of size k. We conclude (G, k) is a yes-
instance for Vertex Cover. (U) Let (G, ki) or (G, k2) be a yes-instance for Vertex
Cover. We distinguish two cases: (1) Let (G, k1) be a yes-instance for Vertex Cover.
Then there exists a vertex cover V;’ for Gy, such that |V}’| < k. Since v covers every edge
in Rg({v}), and E=E, U Rs({v}), we know that V"=V’ [I {v} is a vertex cover for G of
size at most k; + 1. We conclude (G, k) is a yes-instance for Vertex Cover. (2) Let (Ga,
ky) be a yes-instance, and (G, k;) be a no-instance, for Vertex Cover. Then there exists a
vertex cover V5’ for G, such that |1,’| < k». Then V7>’ is a vertex cover for G of size k»
(otherwise, (G, k1) would be a yes-instance for). We conclude (G, k) is a yes-instance
for Vertex Cover. m

The rule (VC 7) ensures that a leaf of 7" in Figure 2.3 (page 26) is labeled by a
yes-instance for Vertex Cover if and only if the instance that labels the root of 7'is a yes-
instance for Vertex Cover. This is how we ensure that the Exhaustive Vertex Cover
algorithm always returns “yes” if the original input is a yes-instance, and “no” if the
original input is a no-instance.

Is the search tree size created by (VC 7) bounded by a function of the parameter
k? No, it is not. Even though fan(7) is bounded by the function g(k) = 2, the depth of the
search tree is not bounded any function (k). Namely, the depth of the path from the root
of T to the rightmost leaf can be as long as n. For this reason the search tree obtained by

the application of rule (VC 7) does not meet requirement (2).

62

In general, for a parameter K, requirement (2) can be met if there exist functions
g(K) and A(K), such that fan(7) < g(K) and depth(7) < 4(K). Namely, as we have seen in
Section 2.4.2, for any search tree T, size(7) < 2fan(T)**™® - 1, which is O(fan(7)*""D).
And thus, if we have fan(7) < g(K) and depth(7) < A(K), then we conclude that size(7) is
O(g(K)"™). To illustrate, I now present a new branching rule, (VC 8), to replace (VC 7).
I will show that (VC 8) can be used to construct a search tree that meets requirement (2)
for parameter k. Rule (VC 8) uses the observation that, to cover all edges incident to a
vertex v in a graph G, if v itself is not in the vertex cover then all of its neighbors must be
in the vertex cover. Further, the rule (VC 8) is applied only to vertices of minimum
degree 1 to ensure that k£ gets reduced by at least 1 for each branch (see Figure 4.3).

(VC 8) The Vertex-or-All-Its-Neighbors Branching Rule: Let node s in the
search tree be labeled by instance (G, k), G = (V, E), for Vertex Cover and let v [V' with
degs(v) 2 1. Then we create two children of s in the search tree, called s, and s,. We
label s; by (G, k1), with G1 = (V1, Ev), Vi =V \{v}, E1= E\Rg({v}), ki =k — 1, and we
label s, by (G2, k), with Gy = (V2, E») with V, = V\Ng(v), E2= E\RG(Ng(V)), k» = k —
[Ne(v)L.

Proof: We need to show (G, k) is a yes-instance for Vertex Cover if and only if
and only if (G, k) or (G2, k) 1s a yes-instance for Vertex Cover. (=) Let (G, k) be a yes-
instance for Vertex Cover. Then there exists a vertex cover V' [V for G with | V| < k.
We distinguish two cases: (1) Let v I V. Since E; = E\Rg({v}) we know that V"\{v} is a
vertex cover for G, of size k — 1. We conclude (G, k) is a yes-instance for Vertex Cover.
(2) Let v 0 V’. Then Ng(v) U ¥’ and thus V"\Ng(v) is a vertex cover for G, of size k —
ING(v)| (Note: Since degg(v), [Ng(v)| £ k—1). We conclude (G, k») is a yes-instance for
Vertex Cover. (1) Let (Gy, k) or (G2, k) be a yes-instance for Vertex Cover. We
distinguish two cases: (1) Let (G, k;) be a yes-instance for Vertex Cover. Then there
exists a vertex cover ¥’ for Gy, such that |V;’| < k;. Since v covers every edge in Rg({v}),
and £ =E; U Rg({v}), we know that J” =V’ [{v} is a vertex cover for G of size at
most k; + 1. We conclude (G, k) is a yes-instance for Vertex Cover. (2) Let (G, k2) be a
yes-instance for Vertex Cover. Then there exists a vertex cover V>’ for G, such that |13’

< k. Since Ng(v) covers every edge in Rg(Ng(v)), and E = E» [Rg(Ng(v)), we know that

63

V’=7V1, U Ng(v) is a vertex cover for G of size at most k; + |[Ng(v)|. We conclude (G, k)
is a yes-instance for Vertex Cover. m

We can use the branching rule (VC 8) to create a bounded search tree algorithm
for k-Vertex Cover as follows: The algorithm takes as input an instance (G, k) and
recursively applies (VC 8) to (G, k) until either an instance (G, £’) is encountered with k£’
< 0 (in which case the algorithm returns the answer “yes”) or (VC 8) cannot be applied
anymore (this happens if the graph is empty or contains singletons only). If the algorithm
halts without returning the answer “yes” then we conclude that (G, k) is a no-instance for
Vertex Cover (viz., we have shown in the proof above that the search tree will return the
answer “yes” if and only if (G, k) is a yes-instance for Vertex Cover). This meets
requirement (1) for a bounded search tree.

Now, to see that the resulting search tree also meets requirement (2), first observe
that each application of the rule (VC 8) at node s leads to the creation of at most two
children s, and s,. Hence, fan(7) < g(k) = 2. Further, because we only apply (VC 8) to a
vertex v if degg(v) =2 1, we have |[Ng(v)| 2 1, and thus we know that for each child s;, i = 1,
2, k; < k. Since we terminate our search as soon as we encounter a node s’ labeled by (G,
k’) with £” = 0, we conclude that depth(7) < A(k) = k. Hence the size of the search tree is
bounded as follows: size(7) < fik) = 2fan(7)* "D — 1 = 2g(k)"™ - 1 =2 - 1, which is
0(24 %

To ensure that a search tree algorithm runs in fpt-time for parameter K, we not
only need to bound the size of the search tree 7 by a function of K, but we also need to
make sure that each node in 7 can be created in fpt-time. This is requirement (3). To
illustrate we again consider the search tree created by branching rule (VC 8): To apply
the rule we need to find a vertex v in G of minimum degree 1. We can do so in time
O(|V)) (Note: Instead of searching for such a vertex, we can first apply (VC 1) until no
longer possible, in time O(|V]), and then pick any arbitrary vertex in G to branch on, in
time O(1)). Further, at each node we spend at most time O(|V]?) to delete one or more

vertices and their incident edges, and to update £. We conclude that the branching

3% Note that we can shrink the size of the search tree by requiring that the instance is

reduced using (VC 2) before applying (VC 8). Then we ensure that [Ng(v)| = 2, leading to
a tree size that is O(1.618).

64

algorithm for Vertex Cover that uses (VC 8)—possibly in combination with (VC 1)—is
an fpt-algorithm for k-Vertex Cover and runs in time O(2%| V).

4.4. Alternative Parameterizations

In the illustrations so far, we have only considered the parameter k. In Vertex Cover the
integer k denotes the bound on the size of the vertex cover in k-Vertex Cover; in
Dominating Set the integer k& denotes the bound on the size of the dominating set.
Because this parameter is explicitly stated as a part of the input we call it an explicit
parameter. The parameter k is sometimes also referred to as the natural parameter for
Vertex Cover and Dominating Set, and k-Vertex Cover and k-Dominating Set are then
called the natural parameterizations of Vertex Cover and Dominating Set (see e.g.
Downey & Fellows, 1999; Niedermeier, 2002; Stege & van Rooij, 2003). Note, however,
that many different parameterizations are possible for these problems. In this section I

discuss such alternative parameterizations.

4.4.1. Implicit Parameters

A problem I may have many implicit parameters. An implicit parameter for a problem
I is an aspect of an instance 7 for I that is not explicitly stated as part of the problem’s
input. Consider, for example, Vertex Cover and Dominating Set. Both take as input a
graph G = (V, E). Graphs have many implicit parameters: e.g., the maximum vertex
degree in G (A), the minimum vertex degree in G (), the maximum number of
independent edges in G, the number of cycles in G, the size of the smallest vertex cover
for G, and so on. Note that a graph G = (V, E) also has the number of vertices || = n and
the number of edges |E| = m as implicit parameters. *’ For each of these parameters we
may ask whether a graph problem is in FPT for that parameter. For example, we may ask:
Is A-Vertex Cover in FPT? The following lemma shows that the answer is most likely

no.

Lemma 4.1. A-Vertex Cover [FPT (unless P = NP)

0T will use Arabic letters to denote explicit parameters and Greek letters to denote
implicit parameters, unless convention prescribes otherwise (e.g., n and m are the
conventional letters that refer to |V]| and |E]).

65

Proof: 1t is known that Vertex Cover is NP-hard even for graphs with no vertex
degree exceeding 4 (Garey & Johnson, 1979). Using this fact, we prove the claim by
contradiction. Assume that A-Vertex Cover [l FPT and P # NP. Then there exists an fpt-
algorithm solving A-Vertex Cover in time O(f{A)n”). Therefore for A = 4 we can solve
Vertex Cover in time O(f{4)n”) = O(n”), meaning that Vertex Cover on graphs of
maximum degree 4 is in P. But then P=NP. m

Since also Dominating Set is know to be NP-hard for graphs of maximum vertex
degree 4, with the same argument, we can conclude that A-Dominating Set [FPT (unless
P = NP). Analogously, since for all graphs d = 0, we can also argue that d-Vertex Cover
O FPT and &-Vertex Cover [J FPT (unless P = NP).

Note that the parameterized problems n-Vertex Cover, n-Dominating Set, m-
Vertex Cover and m-Dominating Set, are all trivially in FPT. Namely, we can solve
Vertex Cover and Dominating Set by an exhaustive search on all possible 2" subsets on n
vertices in time O(2"), which is fpt-time for parameter n. Hence, n-Vertex Cover [1 FPT
and n-Dominating Set [J FPT. Further, since n < m, we have O(2") < O(2"), which is also

fpt-time for m-Vertex Cover and m-Dominating Set.

4.42. Relational Parameterization®!

The implicit parameters for Vertex Cover and Dominating Set discussed in Section 4.4.1
are all properties of the graph G, and are independent of the integer k. There also exist
implicit parameters for Vertex Cover and Dominating Set that involve a relationship
between an implicit parameter and the explicit parameter k. We call such parameters
relational parameters. Here, | discuss two types of relational parameterizations that
appear in the literature. The first is called dual parameterization and the second profit

parameterization.

*' T introduce the notion of ‘relational parameterization.” To my knowledge, the notion
has not yet been so defined in the parameterized complexity literature. My definition is
motivated by the observation that dual parameterizations, (some) profit
parameterizations, and parameterizations discussed in Chapter 5 (page 115) and Chapter
6 (page 129), all have in common that the defined parameter is a function of both the
input graph and the positive integer. It seems natural, and useful, to group these types of
parameterization under one heading.

66

Dual Parameterization: The parameter in a dual parameterization is a function
of k and n. I first define the dual of a problem N with input graph G = (V, E) and positive
integer k. If [asks “Does G have property X that has property Y that depends on £?” then
the dual 1 asks “Does G have property X that has property Y that depends on &’ = |V] —
k?” (ctf. Khot & Raman, 2000; Downey & Fellows, 1999; Niedermeier, 2002; Stege &
van Rooij, 2003). The natural parameterization of '1°, denoted £ ’-I1’, is called the dual
parameterization of I, and k’-I'’ is then called the parametric dual of k-T1.

For example, Vertex Cover asks “Does G have a vertex cover that contains at
most k& vertices?.” The dual of Vertex Cover asks “Does G have a vertex cover that
contains at most k£’ = |V| — k vertices?” The dual of Vertex Cover is better known under
the name Independent Set. A set of vertices V' L1 V'is called an independent set for a
graph G = (V, E) if there does not exists any edge (u, v) U E with both u, v 1 V.

Independent Set

Input: A graph G = (V, E) and a positive integer k.

Question: Does there exist an independent set V'’ for G with || = k?

To prevent confusion let kv denote the positive integer in the input of Vertex Cover, and
let k1 denote the positive integer in the input of Independent Set. Now observe that a
graph G has a vertex cover of size at most kv if and only if G has an independent set of
size at least ky = | V] — kv. This means that the natural parameterization of Independent Set,
denoted k-Independent Set, is equivalent to the dual parameterization of Vertex Cover,
denoted (|V] — kvy)-Vertex Cover or k-Vertex Cover.

We also consider the dual of Dominating Set, called Non-Blocker. A vertex set V'’
is called a non-blocking set if for every vertex v [1 I’ there exists at least one neighbor u
of v, such that u I V.

Non-Blocker

Input: A graph G = (V, E) and a positive integer k.

Question: Does there exist a non-blocking set V' for G with |V| 2 k?

Let kp denote the positive integer in the input of Dominating Set, and let Ay denote the
positive integer in the input of Non-Blocker. Observe that a graph G has a dominating set

of size at most kp if and only if G has a non-blocking set of size at least kx = |V] — kp.

67

Hence, the natural parameterization of Non-Blocker, denoted Ay-Non-Blocker, is
equivalent to the dual parameterization of Dominating Set, denoted (V] — kx)-Dominating
Set or kp-Dominating Set.

Note that a parameterized problem K-I1 and its parametric dual K’-1’ need not be
in the same complexity class. For example, k-Vertex Cover is in FPT, but its parametric
dual (|V] — k)-Vertex Cover (i.e., k-Independent Set) is W[1]-hard (Downey & Fellows,
1999). Also, k-Dominating Set is W[1]-hard, but its parametric dual (|¥] — k)-Dominating
Set (i.e., k-Non-Blocker) is in FPT.*

Profit Parameterization: Above we have seen that the natural parameterization
of the dual of a graph problem I instantiates a dual parameterization of 1. I will now
explain how the natural parameterization of a profit relaxation of a graph problem [1
instantiates a profit parameterization of 1. Below I will sketch the intuition behind profit
relaxation using examples. For a more formal treatment of profit relaxation the reader is
referred to Stege and van Rooij (2003).

Assume we wish to relax the problem Vertex Cover as follows: We no longer
require the set /" to cover every edge in G; instead we consider the extent to which V" is
“close” to being a vertex cover as gain (say, the more edges V'’ covers the better).
Further, we consider the size of the set V'’ as loss (in other words, we want to use few
vertices to cover many edges). The “profit” associated with a vertex set V'’ is then given
by the function profit = gain — loss. With this relaxation of Vertex Cover we obtain a
problem called Profit Cover (Stege, van Rooij, Hertel & Hertel, 2002).

Profit Cover

Input: A graph G = (V, E) and a positive integer p.

Question: Does there exist a vertex set V'’ [J V such that profitpc o(V’) = p? Here
—_ | V’

profitpc o(V’) = [Ra(V”)

Note that Profit Cover is not just a relaxation of Vertex Cover—it has a special property.
Its natural parameterization, p-Profit Cover, is a parameterization for Vertex Cover.

Namely, a graph G has a vertex cover of size at most £ if and only if there exists a vertex

*2 This is an unpublished result due to Fellows and MacCartin in 1999 (see also Prieto &
Sloper, forthcoming; Stege & van Rooij, 2003).

68

set V" with profitpc (V) 2 p = |E| — k (see Stege et al., 2002, for a proof). In other words,
p-Profit Cover is a relational parameterization for Vertex Cover, with the parameter being
the function p = |E| — k.

Similarly, if we define the number of vertices dominated by vertex set V'’ as gain,
and the size of V" as loss we obtain a problem called Inclusive Profit Domination (Stege
& van Rooij, 2001).

Inclusive Profit Domination

Input: A graph G = (V, E) and a positive integer p.

Question: Does there exist a vertex set V'’ L1 V such that profitppp ¢(V”) 2 p? Here

profitpp (V") = [Ng[V] = Ng(V")|, with Ng[V'] and Ng(V’) denoting the

_|V’

closed and open neighborhoods of V'’ respectively.
A graph G has a dominating set of size at most k if and only if there exists a vertex set V"’
with profitippg(V’) 2 p = |V]| — k. Thus, p-Inclusive Profit Domination is a relational
parameterization for Dominating Set, with the parameter being the function p = |V]| — k.

Note that profit relaxation does not always lead to an alternative parameterization
of a problem. For example, a graph G has a non-blocking set of size at most & if and only
if there exists a vertex set J” with profitipp (V') =2 p = k, and thus p-Inclusive Profit
Domination is also a profit relaxation of Non-Blocker. In this case, however, the profit
parameterization is the same as the natural parameterization k-Non-Blocker, since p = k.

A similar situation arises when we derive a profit relaxation of Independent Set as
follows: Let us define the number of vertices in a set V'’ as gain, and the number edges
with both endpoints in V" as loss. Then we obtain a problem called Profit Independence
(Stege & van Rooij, 2001).

Profit Independence

Input: A graph G = (V, E) and a positive integer p.

Question: Does there exist a vertex set V'’ L1 V such that profitp (V) 2 p? Here

profitpr (V") = V'] = [Ec(V’)

A graph G has an independent set of size at most & if and only if there exists a vertex set

V' with profitpr.(V’) 2 p = k (for a proof see Lemma 4.3 in Section 4.6). Hence, the

69

natural parameterization of Profit Independence is the same as the natural

parameterization of Independent Set.

4.4.3. Multiple-parameter Parameterizations

We have considered explicit parameters, implicit parameters and relational parameters—
but what about parameterizing a problem by more than one parameter at once? This type
of parameterization we call multiple-parameter parameterization. In the case of multiple-
parameter parameterization the parameter K is a set consisting of at least two parameters
(e.g. Downey & Fellows, 1999, Neidermeier, 2002).

LetK = {ky, ko, k), with x =2 1. We call K a parameter set.”> We denote a
problem 1 parameterized by parameter set K in one of two ways: either as K-I1 with K =
{ki, ko, ky}, or as {ki, ko, ke }-T1. In the case that K contains only one element, K =
{k}, we simply write k-l instead of {k}-I1 (as we have done so far).

Let 'l be a problem and let k; and £, be two possible parameters for 1. It is
important to realize that we can have {k;, k»}- U FPT even if k;-I1 1 FPT and k-1 [
FPT. Consider, for example, the problem Independent Set. As remarked above, .-
Independent Set is W[1]-hard; and thus not in FPT (unless FPT = W[1]). Further, recall
that we proved A-Vertex Cover [J FPT (unless P = NP) using the fact that Vertex Cover
is NP-hard even for A = 4 (Lemma 4.1, page 64). Since also Independent Set is NP-hard
for A = 4, we can conclude with the same argument that A-Independent Set [FPT
(unless P = NP). We will now show that {k, A}-Independent Set is in FPT.

The argument is organized as follows: First, we define a branching rule (IS 1) for
Independent Set. Second, we show that the rule (IS 1) constructs a search tree whose size
is bounded by a function f{(k, A) = (A+1)k. Third, we show that each node in the search
tree can be created in polynomial-time. Finally, we conclude a running time for {k, A}-
Independent Set that is O((A+1)" |V)?), which is fpt-time for parameter set kK = {k, A}.

The branching rule (IS 1) uses the following observation: If " is a largest

independent set for graph G, and vertex v in G is not in V'’ then a neighbor v; of v must be

* Note that the definition of a parameter set incorporates the case where K contains
exactly one element as a special case.

70

in V'’ (otherwise, V'’ =V’ [{v} would be an independent set that is larger than /",
contradicting the fact that |}’ is maximum). See Figure 4.4 for an illustration of (IS 1).

(IS 1) The Vertex-or-one-of-its-Neighbors Branching Rule: Let node s in the
search tree be labeled by instance (G, k), G = (V, E), for Independent Set, and let vo LI V.
Then we create a child sy of s and label it by (G, ko), with Gy = (Vo, Eo), Vo=V
\We[{vo}], Eo= E\Rg({vo}), and ko = k — 1. Further, for each neighbor v;of v,i=1,2, ...,
degg(v), we create a child s; of s and label itby (G, k), Gi= (V3, E)), Vi=V\Ng[{vi}], Ei
=E\Rg({v}), and k; =k — 1.

To prove that (IS 1) is a valid branching rule as defined in Section 4.3, we need to show
that (G, k) is a yes-instance for Independent Set if and only if (Go, ko) or (G, k;) or (Go,
k) or ... or (Gaegv), kdeg(v) 18 @ yes-instance for Independent Set.

Proof of (IS 1): (=) Let (G, k) be a yes-instance. Then there exists an
independent V'’ [V for G, with |V’| = k. Since for each j U1 {0, 1, 2, ..., degs(v)} at most
one vertex in V' is also in Ng[{v;}] (i.e., [Ng[{v;}] n V| = 1; otherwise /" would not be
an independent set) and V; = V' \Ng[{v;}], we conclude that each G; has an independent set
of size at least k —1. (LU) Assume that at least one instance (G, k;), withj [1 {0, 1, 2, ...,
degg(v)}, 1s a yes-instance for Independent Set. Then there exists an independent V;” U V
for Gj, with |V;’| 2 k;. Since Ng[{v;}] U V}, and thus Ng[{v;}] U V;’, we conclude that V;’
O {v;} is an independent set for G of size k; + 1. and Ng[{v;}]. m

We can use the branching rule (IS 1) to create a bounded search tree algorithm for
{k, A)-Independent Set as follows. The algorithm takes as input an instance (G, k) and
recursively applies (IS 1) to (G, k) until either an instance (G, k’) is encountered with &’
< 0 (in which case the algorithm returns the answer “yes”) or (IS 1) cannot be applied
anymore (this happens if J”= [). If the algorithm halts without returning the answer
“yes” then we conclude that (G, k) is a no-instance for Independent Set (viz., we have
shown in the proof above that the search tree will return the answer “yes” if and only if
(G, k) 1s a yes-instance for Independent Set). This meets requirement (1) for a bounded

search tree.

71

‘uondiosap 10y 93ed 1xou 99§ (1 ST) o[SurydoueIq Jo uonensn[[[‘' I3

g

[-%="y("y D)

1-¥="% %y “D) 1-¥=%% “o) 1-¥="7("y o) 1-4=" " “0)

72

Figure 4.4. Illustration of branching rule (IS 1).

The instance before the application of the branching rule is denoted (G, k) and the
instances obtained after the application of the branching rule on vertex v in G, are
denoted (G;, k) withi =0, 1, 2, ..., degg(v). The rule (IS 1) assumes for every vertex v in
G, that either v is in the independent set or it is not; further, if v is not in the independent
set, then at least one of its neighbors, u, w, x, or y can be included in the independent set
(otherwise v could be included in the independent set and we would have a larger
independent set). Once a vertex is included in the independent set, we can delete it and all
its neighbors from G. For each instance (G;, k;), i =0, 1, 2, ..., degs(v), we define k; =k —
1, to reflect the fact that a vertex has already been included in the independent set. As
soon as we encounter an instance (G, k;) with k; = 0 we return the answer “yes” (i.e., we
conclude that the original input has an independent set of size at least k) and if we cannot
apply (IS 1) anymore, then we have exhausted the search tree and we return the answer
“no” (i.e., we conclude that the original input does not have an independent set of size at
least k). Note that in this example, degs(v) = 4, and thus application of rule (IS 1) leads to
the creation of five new instances, (Go, ko), (G1, k1), (G2, k2), (G3, k3), and (G4, ka).
Further, note that these new instances are defined such that (G, ko) or (G, k) or (G, k2)
or (Gs, k3) or (Ga, ky) is a yes-instance for Vertex Cover if and only if (G, k) is a yes-
instance for Vertex Cover. This way, rule (IS 1) ensures that the branching algorithm
returns the answer “yes” (or “no”) if and only if the answer for the original input to the
algorithm is “yes” (“no”).

To see that the algorithm meets requirement (2) with respect to the parameter set K = {A,
k}, first observe that each application of (IS 1), to a vertex vy, leads to the creation of 1 +
degs(vo) < 1 + A new branches in the search tree 7. Hence we have fan(7) < 1 + A.
Further, whenever (IS 1) creates a node labeled by (G, ¢) for a parent labeled by (G, g)
then £’ < k — 1, and thus depth(7) < k. We conclude that the size of the search tree is at
most O((1 + AYY).

Finally, with respect to requirement (3), we show that we can create each node in
the search tree in time O(|V|*): First, to apply (IS 1) to an instance (G, k), G = (V, E), we
need to pick an arbitrary vertex vo Ll V. This we can do in time O(1). Then, for each new
search tree node s; that we create we spend at most O] V) time to label it by (Gj, k).
Namely, for each v; we spend time at most O(| V) to delete all vertices in Ng[{v;}] and all
edges adjacent to vertices in Ng[{v;}]. Combined with the size of the search tree we can

conclude that the algorithm for Independent Set runs in time O((1 + A)k |V|2).

73

4.5. Crucial Sources of Complexity™
In Section 4.4.3, I have illustrated how a problem (Independent Set), that is not in FPT
(unless W[1] = FPT) for either of two parameters (A and k), can nevertheless be in FPT
when both parameters are in the parameter set. Hence, knowing that two
parameterizations K-I1 and K’-1, K # K’, are not in FPT, tells us nothing about the
complexity class of the parameterization (K [K’)-I1. On the other hand, if K-I1 or K’-I1, K
K’, are in FPT then we can conclude that also (K U K”)-I1 U FPT. In other words, we
have Observation 4.1.

Observation 4.1. If a parameterized problem K-l [J FPT, then for any superset K’
0k, k’-IN O FPT.

To see why Observation 4.1 holds consider the following: The fact that K- U
FPT means that the problem I can be solved in time O(f(K)|i|). Now note that O(f(K)|i]) is
fpt-time for any parameter set K’ [J K. That the function f{.) will be independent of some
parameters in the set K’ does not matter; the only requirement for the function £{.) is that
it does not depend on |i|. With this observation we can conclude from {A, k}-Independent
Set U FPT that K-Independent Set is in FPT for all parameters sets K, with {A , k} [J K.
For completeness, I note that Observation 4.2 is a direct consequence of Observation 4.1.

Observation 4.2. If a parameterized problem K-I1 [J FPT, then for any K’ U K, K’-
M O FPT.

Now consider a problem [1 that is not in P. Say we know a parameter set K such
that K-l [J FPT. Then we know that the parameters in the set K are sufficient for
confining the non-polynomial time complexity inherent in 1. From Observation 4.1,

however, we know that K may contain one or more parameters that are ‘redundant,’ in the

* 1 introduce the notion of ‘crucial source of complexity” (see also van Rooij et al.,
2003). To my knowledge, the notion has not yet been so defined in the parameterized
complexity literature (but see e.g. Wareham, 1998, for a discussion of a related notion
called ‘intractability map’). My definition is motivated by the fact that some parameter
sets may contain ‘redundant’ parameters, i.e., parameters that are not necessary for
confining the exponential complexity, and thus, in a sense, do not contribute to the result
that the problem is in FPT for that parameter set. It seems to me that in cognitive theory it
may often be of interest to know whether or not a parameter set contains such redundant
elements.

74

sense that the fpt-classification of K-I1 does not depend on those parameters. In those
cases we say K not minimal. More formally, if K-I1 [J FPT and there does not exist a
proper subset K’ [K such that K’-1 [J FPT, then we say K is a minimal parameter set for
M.

If K is a minimal parameter set for a classically intractable problem 1 we call K a
crucial source of (non-polynomial time) complexity in I'l, because then I is “easy” for
small values of parameters in K irrespective the size of other input parameters. Note that a
crucial source of complexity need not be unique. That is, there may exist different
parameter sets K and K’, with K’ [J K, such that K-I1 [J FPT and k’-1 U FPT. Also note
that every problem has K = {|i|} as a crucial source of complexity. Thus the label ‘crucial
source of complexity’ should be read as denoting a minimal set of parameters that is
sufficient, but not necessary, for confining the non-polynomial time behavior in a
problem.

To illustrate, we again consider {A, k}-Independent Set. We have shown in
Section 4.4.3 that {A, k}-Independent Set [J FPT. Thus, the parameter set K = {A, k} is
sufficient for confining the non-polynomial time complexity in the problem. Is {A, k} a
minimal parameter set for Independent Set? Yes, it is (unless FPT = W[1]). As discussed
in Section 4.4.3, A-Independent Set is not in FPT (unless P = NP) and k-Independent Set
is not in FPT (unless FPT = W[1]). This establishes that there does not exist any subset K’
U {A, k), such that K-Independent Set is in FPT (unless FPT = W[1]). We conclude that

{4, k} is a crucial source of complexity for Independent Set.

4.6. Parametric reduction

This section explains and illustrates the technique of parametric reduction. I restate the
definition of parametric reduction from Section 3.4.1 (page 44): For parameterized
problems K;-I1; and K»-I1, and functions f'and g, we say a parametric reduction from K-
I, to K»-T15 1s a reduction that transforms any instance #; for K;-I1; into an instance i for
K,-T, with K, = g(K;). Further, the reduction runs in time f{K,)|i;|", where o is a constant.
In Chapter 3 we have already seen a parametric reduction: The polynomial-time

reduction from Vertex Cover to Dominating Set in Lemma 3.1 (page 37; see also Figure

75

3.2) happens to be a parametric reduction from ky-Vertex Cover to kp-Dominating set.
Namely, the reduction involves a transformation from an instance (Gv, kv) for ky -Vertex
Cover to an instance (Gp, kp) for kp-Dominating Set, such that kp = g(kv) = ky. Further,
the transformation runs in time O(] Vv\z), which is polynomial time (and thus also fpt-
time).

To illustrate a parametric reduction that runs in fpt-time, but not in polynomial-
time, we adapt the reduction in Lemma 3.1 as follows: Instead of appending for each
edge (u, v) in G one vertex x,, in G*, we append 2* vertices (denoted x,,,; with i = 1, 2,

..., 2") per edge (u,v) in G. Lemma 4.2 presents this reduction. See Figure 4. for an

illustration.
(G, k) (G* k*), k*=k
(Lemma 4.2) @
. N = 4 >
| \ | \ | \ | \

Figure 4.5. Illustration of the reduction in Lemma 4.2.

Every edge (u, v) in G (on the left) is copied to G* (on the right). Further in G* we
append 2" vertices on u and v, denoted x1, x2, ..., xok. Note that (G, k) is a yes-instance for
Vertex Cover if and only if (G*, k*), with k*= £k, is a yes-instance for Dominating Set.

Note that the transformation in Lemma 4.2 can be done in fpt-time: We can copy
G =(V,E) to G*= (V* E*)in time O(|V]*), and we can add the 2*|E| extra vertices and
their 2°"'|E] incident edges, in time O(2* |E|) which is O(2"[V*). Thus, the total time
required for the transformation is O(|V* + 2¥| V%) or O(2*|V%), which is fpt-time for
parameter k. Further, as in Lemma 3.1, Lemma 4.2 shows that (G, k) is a yes-instance for
Vertex Cover if and only if (G*, £*), is a yes-instance for Dominating Set with k* = k.

Hence, the reduction is a parametric reduction.

76

Lemma 4.2. Let G = (V, E) be a graph without singletons and let £ be a positive
integer. We create a graph G* = (V*, E*) as follows. For every (u, v) U E, let (u, v) U E*.
Further, for each (u, v) U E we include in G* 2% new vertices Xuw,i 1 G and attach them to
u,v O E* using the edges (i, xuv,;) and (v, X,,1), i = 1, 2, ..., 2 . Finally, let k* = k. Then G
and k form a yes-instance for Vertex Cover if and only if G* and k* form a yes-instance
for Dominating Set.

Proof: (=) Let (G, k) be a yes-instance for Vertex Cover. Then, we know that
for every vertex v U V, v I V" or v has at least one neighbor u [1 V'’ (Observation 3.1,
page 36). Further, because every vertex x,,; L V*\I" is adjacent to both u [J V* and v [
V*, with (u, v) U E, we also know every vertex x,,, [J *\J' has at least one neighbor in
V°. Thus V"’ is a dominating set for G* with |V’| < k = k*. We conclude (G*, £*) is a yes-
instance for Dominating Set.

(0) Let (G*, £*) be a yes-instance for Dominating Set, and let /' [J V'*be a
minimum dominating V"’ for G*. (1) We show V'’ contains only vertices in V' (i.e., V' n
¥\ = [J). Namely, for every edge (u, v) U E, to dominate in G* each vertex in {u, v,
Xuv, 1> Xuv,25 ---» Xuv 2k} U V*, we can either include # in 7’ or v in V"’ or at least 2 vertices
from {u, v, Xuy.1, Xuv,2, - .., Xuv2k}, since k = 1. Therefore, a minimum dominating set will
include u or v, and no vertices from {x,,,1, Xu»,2, ..., Xu,2k}. (2) Since V'’ [1 V, and for each
edge (u, v) U E, u 0V’ or v UV, we conclude that V"’ is a vertex cover for G with |[V'| < k
= k*. We conclude that (G, k) is a yes-instance for Vertex Cover. m

A word of warning on what can, and what cannot, be concluded from Lemma 4.2:
Because the reduction in Lemma 4.2 does not run in polynomial-time, it does not imply
anything for the classical complexity of Dominating Set. Thus, unlike Lemma 3.1,
Lemma 4.2 is not a proof that Dominating Set is NP-hard. Further, because k-Vertex
Cover is in FPT, all that Lemma 4.2 shows is that &-Dominating Set is, in the
parameterized sense, “at least as hard” as k-Vertex Cover. It does not tell us, however,
whether k-Dominating Set is strictly harder than &-Vertex Cover (Is it W[1]-hard?), or
that it is equally hard (Is it in FPT?).%*

Of course, as noted in Section 4.4.2, it is known that &-Dominating Set is W[1]-hard.
My argument here is that we cannot conclude this fact from Lemma 4.2.

77

Although Lemma 4.2 serves its purpose as an example of a parametric reduction,
we are typically more interested in finding either (1) a parametric reduction from a
known W[1]-hard problem I1 to an unclassified problem I1’, or (2) a parametric reduction
from an unclassified problem N’ to a known FPT problem 1. In the first case we can
conclude that I° is W[1]-hard, while in the second case we can conclude that I1° is in
FPT. To illustrate the first case I present a parametric reduction from k-Independent Set
to p-profit Independence. This reduction transforms an instance (G, k) for Independent
Set into an instance (G, p) for Profit Independence, with p = £.

Lemma 4.3. Let (G, k) be an instance for Independent Set. Further, let (G, p) be
an instance for Profit Independence with p = k. Then (G, k) is a yes-instance for
Independent Set if and only if (G, p) is a yes-instance for Profit Independence.

Proof: (=) Let (G, k), G=(V, E), be a yes-instance for Independent Set. Then
there exists an independent set V'’ [J V for G with |V’| =2 k. This means that Eq(}V") = U,
and thus profitpr.c(V’) = |V'|—|Ec (V)| =|V’| 2 k = p. We conclude that (G, p) is a yes-
instance of Profit Independence.

(0) Let (G, p), G = (V, E), be a yes-instance for Profit Independence. Then there
exists a subset V'’ U V with profitp; (V) =2 p. We distinguish two cases: (1) If Eg (V') =U
then V7’ is an independent set for G, with |V’ 2 p = k. We conclude that G and & form a
yes-instance of Independent Set. (2) If Eg()”) # U then we transform V" into an
independent set V'’ for G using the following algorithm:

1. =
2. while Eq(V”) # O do
3. pickanedge (v, v) U Eg(V?”)
4. V7 < V\{v}
5. end while
6. return V"’
The algorithm considers each edge in G at most once and thus runs in time O(|/]*). Note
that every call of line 4 results in the removal of at least one edge from Es(/”). Hence,

profitp; (V") = profitp; (V) = p. Furthermore, when the algorithm halts then Eq(V”) = [

78

and thus V7” is an independent set of size at least p = k for G. We conclude that G and £
form a yes-instance for Independent Set. m

Note that the transformation of (G, k) to (G, p), in Lemma 4.3, can be done in
polynomial-time: time O(1) to set p = k. Further, since p is a function of & only, the
reduction is a parametric reduction. We know k-Independent Set is W[1]-hard, so we can

conclude from Lemma 4.3 that p-Profit Independence is W[1]-hard as well.*®

4.7. The Parametric Toolkit and Beyond
In this chapter I have reviewed a set of basic techniques for parameterized complexity
analyses. The techniques discussed here do not exhaust all known techniques for
parameterized complexity analysis. The reader interested in learning about other
techniques is referred to the relevant literature (see e.g. Alber, Fan, Fellows, Fernau,
Niedermeier, Rosamond & Stege, 2001; Fellows, 2002; Fellows, McCartin, Rosamond,
& Stege, 2000; Downey & Fellows, 1999; Downey, Fellows & Stege, 1999a, 1999b;
Gottlob, Scarcello, & Sideri, 2002, Khot & Raman, 2000; Prieto & Sloper, forthcoming;
Niedermeier, 2002; Niedermeier & Rossmanith, 1999, 2000; Stege et al., 2002; Stege &
van Rooij, 2003). The relatively informal introduction that I have presented in this
chapter can also aid understanding of this more formal work.

The techniques I have presented in this chapter are simple but powerful. In the
application of complexity theory to cognitive theory, as pursued here, these techniques
can already bring us a long way. I will illustrate this in the following chapters (Chapters

5, 6 and 7), by illustrating each technique in the context of existing cognitive theories.

% Note that this parametric reduction is also a polynomial-time reduction. Thus, since
Independent Set is NP-hard, Lemma 4.2 also proves that Profit Independence is NP-hard
(see also Section 6.3).

79

Chapter 5. Coherence

In this chapter we consider the problem Coherence as defined by Thagard (2000) and
Thagard and Verbeurgt (1998). We start with the problem’s definition and the motivation
for studying this problem. The main part of this chapter will be devoted to complexity
analyses of the problem Coherence (and its variants), both from a classical and from a
parameterized perspective. Note that in interpreting the results we will assume P # NP

and FPT # W[1]. I close with a brief discussion and suggestions for future research.

5.1. Coherence as Constraint Satisfaction
This section presents the notation and terminology to formally define the Coherence
problem. The next section (Section 5.2) describes applications of this problem in
cognitive theory as proposed by, among others, Thagard and Verbeurgt (1998) and
Thagard (2000).

Two sets S; and S are called a partition of aset Sif S=S5; 0 S, and) n S, = L.
We denote a partition of a set S into sets S; and S, by (S U Sz)S . In general, if §
partitions into sets S, S; ..., Sy, withx =22 and §), S, ..., Sy all pairwise disjoint, we write
(S, 08, 0...08,)° Let Pbe a set of elements,*” and let C O P x P denote a set of
unordered pairs of elements in P. A pair (p, g) U C we call a constraint between p and gq.
The set C is partitioned into two sets of constraints C* and C'. We call a constraint (p, q)
0 C" a positive constraint and we say that p and g cohere. We call a constraint (p, ¢) [
C a negative constraint and we say that p and g incohere. Each constraint (p, ¢) U C has
an associated positive integer weight w(p, g).

Note that this information can be thought of as an edge-weighted graph N = (P,
(), with vertex set P and weighted edge set C (cf. Thagard & Verbeurgt, 1998). To stay
as close as possible to the terminology of Thagard and Verbeurgt, I will refer to N = (P,
C) as a network, to the vertices in P as elements and to the edges in C as constraints.

However, I will use standard graph terminology to refer to properties of, and

*" Thagard and Verbeurgt (1998) use the symbol E to refer to the set of elements. I do not
use the symbol E here to avoid confusion with the edge set £ in a graph G = (V, E). 1
choose to use the symbol P instead because in many applications described by Thagard
(2000) elements in this set are propositions.

80

relationships between, elements, constraints, and networks (cf. Appendix A); e.g., I will
speak of the degree of an element, a constraint being incident to an element, the
endpoints of a constraint, two elements being neighbors, the number of components in a
network, networks that are trees, a network being a subgraph of another network, etc.

Elements in P can be either accepted or rejected. A denotes the set of accepted
elements in P and R denotes the set of rejected elements. The sets 4 and R are mutually
disjoint (i.e., we cannot accept and reject one and the same element). We say the sets 4
and R form a partition of P if P= A O R, and write (4 0 R)". A partition (4 O R)" can
satisfy one or more constraints in C. A positive constraint (p, ¢) OC™ is satisfied by
partition (4 0 R)” if and only if (p 0 4 and ¢ 0 A) or (p O R and ¢ O R). A negative
constraint (p, ¢) 0 C7, is satisfied by partition (4 0 R)" if and only if (» 0 4 and ¢ O R)
or (p U R and g [J 4). The set of all (positive and negative) constraints in network N that
are satisfied by partition (4 O R)” is denoted by Sy(4, R). Partitions can differ in the

amount of coherence. Coherence is measured by the function Cohy(4, R) =

Z w(p, q) . Note that the subscript y on the functions Sx(., .) and Cohx(., .) denotes

(P)ESy (4.R)
that they are to be evaluated in the context of a specific network M.
Having introduced the necessary terminology, we can now state the problem
Coherence (Thagard, 2000; Thagard & Verbeurgt, 1998):
Coherence (optimization version)
Input: A network N = (P, C), with (C* 0 C)°. For each constraint (p, ¢) 0 C
there is an associated positive integer weight w(p, g).
Output: A partition of P into 4 and R such that Cohy(A4, R) is maximized.
In the remainder of this chapter we will work with the decision version of Coherence.
Coherence (decision version)
Input: A network N = (P, C), with (C" O C")°. For each constraint (p, g) 0 C
there is an associated positive integer weight w(p, ¢). A positive integer c.
Question: Does there exist a partition of P into 4 and R such that Cohpy(4, R) = ¢?
Keep in mind that there is a close relationship between the decision version and
optimization version. If we know an optimal partition (4 O R)" (i.e., a partition (4 O R)"

such that Cohp(4, R) is maximum), then we also know if there exists a partition with

81

Coha(4, R) 2 ¢, for any c. Conversely, we can determine an optimal partition by solving
the decision version of Coherence for different c. If the answer “yes” is returned for c,

while for ¢ + 1 the answer is “no,” then we can conclude that ¢ is maximum.

5.2. Coherence as Cognitive Theory

According to Thagard (2000; see also Eliasmith & Thagard, 1997; O'Laughlin &
Thagard, 2000; Thagard, 1989, 1999, 2001; Thagard, Eliasmith, Rusnock, & Shelley,
2002; Thagard & Kunda, 1998; Thagard & Shelley, 1997; Thagard and Verbeurgt, 1998),
the Coherence problem (and variants thereof) can be used to model many different
cognitive tasks in various cognitive domains; including domains such as scientific
explanation, legal justification, social judgment, and visual perception. I briefly sketch
applications in each domain below. See Thagard (2000), and the references above, for
more detailed discussions of these and other areas of applications.

Scientific Explanation:*® According to Thagard (2000; see also Eliasmith &
Thagard, 1997; Thagard, 1989, 2000; Thagard and Verbeurgt, 1998), the task of a
scientist (or group of scientists) to decide upon a set of hypotheses that satisfactorily
explains a set of empirical data can be modeled as follows. Let the elements in P
represent propositions describing the empirical observations as well as the different
possible hypotheses about what brought about the data. The set C models the coherence
relationships between pairs of propositions; e.g., if hypothesis g explains observation p
then p and ¢ cohere; if hypothesis ¢ and r each explains observation p, then g and r
incohere; if hypothesis ¢ and » together explain observation p, then g and » cohere. The
task of the scientist is to decide on a set of hypotheses that provides the most coherent
explanation of the data.

Legal Justification: According to Thagard (2000; see also Eliasmith & Thagard,
1997; Thagard, 1989, 2000; Thagard and Verbeurgt, 1998), the task of a jury member to
decide whether a defendant is innocent or guilty can be modeled as follows. Let the
elements in P represent propositions describing factual evidence brought to trial as well

as the different hypotheses one may entertain about the case. Let s L1 P denote the

*® In this context it is of interest to note that Thagard also proposes that his notion of
coherence explains why computer scientists believe that P # NP (Thagard, 1993).

82

proposition ‘defendant is innocent.” The set C models the conceptual relationships
between pairs of propositions; e.g., if evidence p is explained by hypothesis ¢ then p and
g cohere; if hypothesis p and g contradict then p and g incohere. Then, the task of a jury
member is to decide whether it is more coherent to believe that s [] 4 or that s [R.

Social Judgment: Given the example above it is not hard to see how also a social
judgment task can be conceptualized as a coherence problem. Take any form of social
attribution; e.g., ‘X is honest,” ‘X believes Y.’ Then the task of deciding whether the
attribution should (or should not) be made—based upon one’s experiences with a person
and one’s knowledge about states of the world—can be seen as analogous to the task of
deciding whether a defendant is innocent or not (see also O'Laughlin & Thagard, 2000;
Thagard, 1989, 2000; Thagard & Kunda, 1998; Thagard and Verbeurgt, 1998).

Visual Perception: Because sensory inputs typically give incomplete and/or
ambiguous information about a visual scene the visual system faces a problem: How to
interpret sensory information in a reasonable and coherent way? The task of interpreting
a visual scene can be modeled as follows (Thagard, 1989, 2000; Thagard & Shelley,
1997; Thagard and Verbeurgt, 1998). Let the elements in P represent the set of sensory
data and/or possible interpretations of the data. Then set C models the coherence
relationships between data and interpretation and between different interpretations: e.g.,
if sensory datum p supports interpretation g then p and g cohere; if interpretation p and ¢
are inconsistent then p and g incohere. The task of the visual system is to decide on a set
of interpretations that maximizes coherence. Figure 5.1 gives an example of this model

using the Necker Cube (cf. Thagard 1989, p. 439).

In summary, given the wide variety of domains in which Coherence finds
application, the problem is clearly of importance to cognitive science. The remainder of
this chapter is devoted to studying the problem’s complexity. To be clear, I will not
evaluate Coherence, other than with respect to complexity. For other types of evaluations
and critical discussions on Coherence see, for example, Schoch (2000), Millgram (2000),

and Wiedemann (1999).

83

Figure 5.1. Example of a Coherence poblem
(left) The Necker cube can be interpreted in two qualitatively different ways: Either the
face with vertices a, b, ¢ and d is in the front (in which case the face with vertices e, f, g
and 4 is in the back) or the face with vertices e, £, g and 4 is in the front (in which case the
face with vertices a, b, ¢ and d is in the back). The task of disambiguating between the
two possible interpretations can be modeled as a coherence problem: (right) Every vertex
pU{a, b,c,d, e,f, g h} of the Necker cube is modeled by an element p [P. If two
vertices p and ¢ in P are part of the same interpretation of the Necker cube then p, g 0 C*
(solid lines), else p, g 1 C™ (dotted lines). Now a partition of P of maximum coherence
into vertices that are “in the front”, 4, and vertices that are “in the back,” R, will
correspond to one of the two possible interpretations of the Necker cube.
5.3. Coherence is NP-hard
This section recapitulates Thagard and Verbeurgt’s (1998) proof that Coherence is NP-
hard. The reduction is from the graph problem Max-Cut. Max-Cut takes as input an edge
weighted graph G = (V, E). In its optimization version, the goal is to partition the vertex
set V into sets 4 and R such that the sum of the weights on edges that have an endpoint in
A and an endpoint in R is maximum. The decision version of this problem is as follows:
Max-Cut (decision version)
Input: An edge weighted graph G = (V, E). For each edge (u, v) Ul E there is an

associated positive integer weight w(u, v). A positive integer k.

Question: Does there exist a partition of V into sets 4 and R such that Wg(4, R) =
Z w(u,v) 2 k? Here Cutg(R, A)= {(u, v) UE:u U A and v O R}.

(u,v)OCut (4,R)

Max-Cut is known to be NP-complete (Garey & Johnson, 1979). The following lemma

presents a reduction from Max-Cut to Coherence.

84

Lemma 5.1. (Thagard & Verbeurgt, 1998) ¥ Let graph G = (V, E) and positive
integer k form an instance for Max-Cut. We define an instance, consisting of N and ¢, for
Coherence as follows: Let N = (P, C) be a network such that P=V, C=Fand C=C
(i.e., all constraints in C are defined to be negative constraints). Further for all (p, g) U C
set the weight wa(p, q) = Wa(p, q). Finally, let ¢ = k. Then (G, k) is a yes-instance for
Max-Cut if and only if (I, ¢) 1s a yes-instance for Coherence.

Proof: Since C= C", we know that (p, g) U Cutg(4, R) if and only if (p, ¢) U
Sn(A4, R). Further, the edge weights in G and N are identical, and thus Cohp(4, R) =
W(4, R) for any partition (4 O R)”. We conclude that (G, k) is a yes-instance for Max-
Cut conclude if and only if (¥, ¢) is a yes-instance for Coherence. m

The transformation from the instance (G, k) for Max-Cut into a corresponding
instance (N, c) for Coherence described in Lemma 5.1 can be done in polynomial time.
Namely, we can copy every element in /" and £ to P and C = C respectively, in time
O(n*), we set ¢ = k in O(1), and we assign each constraint in C its weight in time O(#?).
We conclude, the reduction in Lemma 5.1 is a polynomial-time reduction, and thus:

Corollary 5.1. (Thagard & Verbeurgt, 1998) Coherence is NP-hard.

Note that the instance for Coherence, created in lemma 5.1, contains only negative
constraints. This means that Lemma 5.1 also describes a reduction from Max-Cut to
Coherence on networks with negative constraints only. Hence we also have:

Corollary 5.2. (Thagard & Verbeurgt, 1998) Coherence on a network N = (P, O),
with C = C", is NP-hard.

Further, it is known that Max-Cut problem remains NP-hard even if all constraints
have weight ‘1’ (Garey & Johnson, 1979). Hence, from the reduction in Lemma 5.1, we
also conclude:

Corollary 5.3. Coherence on a network N = (P, C), with C=C and w(p, q) = 1
for all (p, ¢) U C, is NP-hard.

* 1t should be noted that Thagard and Verbeurgt (1998) give the same reduction as I do
here with the exception that they set ¢ = 2k, instead of ¢ = £. I could not verify the
correctness of their reduction (unless Thagard and Verbeurgt count all (negative)
constraint weights twice in the computation of coherence; which does not seem to fit the
problem’s definition). In any case, Lemma 5.1 gives the correct reduction from Max-Cut
to the Coherence problem, as defined in Section 5.1.

85

5.4. Reflections on the NP-hardness of Coherence

We have seen that the problem Coherence, as defined in Section 5.1, is NP-hard. Note
that this NP-hardness result only holds for the general problem Coherence (with or
without positive constraints). It does not imply that all problems modeled by Coherence
are NP-hard. This difference between ‘a general problem being NP-hard’ and ‘a problem
being generally NP-hard’ is often confused. Consider, for example, the following
synopsis by Thagard (2000, p. 15):*°

“Coherence problems are inherently computational intractable, in the sense that,

(...) [assuming P # NP], there are no efficient (polynomial-time) procedures for

solving them.”

Here Thagard uses the words “coherence problems” to refer to a general class of
problems that can be modeled by Coherence. Hence, the statement suggests that
coherence problems are of exponential-time complexity across-the-board. Clearly the
finding that Coherence is NP-hard does not warrant this conclusion: NP-hardness is not
automatically inherited by every special case, or variant, of an NP-hard problem.

This section discusses in more detail when an NP-hardness result automatically
generalizes to another problem (if the other problem involves a generalization of the
original problem) and when it does not (if the other problem is a special case or a variant
of the original problem). Motivated by the applications described in Section 5.2, |
consider some special cases of Coherence (Section 5.4.1), some generalized versions of

Coherence (Section 5.4.2) and some variants of Coherence (Section 5.4.3).

5.4.1. Special Cases of Coherence

Thagard and Verbeurgt (1998) remark that the special case of Coherence, in which the

network contains only positive constraints (no negative constraints), is not NP-hard.

*% Similarly, Oaksford and Chater (1998) write: “Consistency checking constitutes a
general class of problems in complexity theory called satisfiability problems” (p. 76).
Further, because Cook (1971) has shown that the satisfiability problem SAT is NP-
complete (see also Section 3.2), Oaksford and Chater (1998) conclude that “consistency
checking, like all satisfiability problems, is NP-complete” (p. 77). This statement, like
Thagard’s quoted in the text, is misleading. Clearly, there exist satisfiability problems
that are in P (e.g. 2-SAT; Garey & Johnson, 1979; see also Appendix B).

86

Namely, in that case, we always satisfy all constraints if we set A = P and R = U (or,
equivalently, if we set 4 = [J and R = P). Hence we have the following result:

Observation 5.1. (Thagard & Verbeurgt, 1998). Coherence on a network N = (P,
(), with C=C",isinP.

Proof: Let N= (P, C) be a network such that C= C". Then we can solve
Coherence as follows: Set 4 = P, and R = [(or, alternatively, set R =P, and 4 = [1).
Since, C = C", we have Sy(4, R) = C and thus Cohy(4, R) is maximum (Note: This solves
the optimization version of Coherence; to solve the decision version of coherence, we add
the step that compares Cohy (4, R) to ¢). This procedure runs in time O(|P|). m

Arguably, many interesting coherence problems that arise in practice contain at
least some negative constraints, and thus Observation 5.1 seems to be a trivial special
case of Coherence. Note, however, that there also exist special cases of Coherence in
which the network may contain (possible even many) negative constraints that are also in
P. To illustrate consider again Figure 5.1.

The network depicted in Figure 5.1 has the special property that all its constraints
can be satisfied simultaneously. In general, let us call a network N = (P, C) consistent if it
is possible to satisfy all constraints in »; in other words, N is consistent if there exists a
partition of P into 4 and R such that Sy(4, R) = C. We note the following theorem.

Theorem 5.1. Coherence on consistent networks is in P.

Proof: (Non-constructive) Let a consistent network N = (P, C) and positive

integer ¢ form an instance for Coherence. By the definition of ‘consistent,” if ¢ <

z (h)C w(p,q) the answer is “yes.” On the other hand, if ¢ > z . w(p,q) then the

(p.g)0
answer is “no.” m
The non-constructive proof of Theorem 5.1 is not very helpful, since typically we

would like to know how to partition P in order to obtain a partition of coherence c, for all
< . .
c< Z(p’q)mc w(p,q). In the following I present a constructive argument.
The argument is organized as follows. First, we describe a polynomial-time

algorithm called Consistent Coherence algorithm that takes as input a connected network

and outputs a partition. Second, we show that the Consistent Coherence algorithm always

87

computes an optimal partition on consistent connected networks (Lemma 5.2). Finally,
we conclude a constructive proof of Theorem 5.1.
Consistent Coherence algorithm '
Input: A connected network N = (P, C).
Output: A partition (4 O R)”
[Description of algorithm:] The Consistent Coherence algorithm performs a
breath-first search (BFS) on the input network N. The BFS search considers each
element in V in a particular order as follows: It starts by (0) considering an
arbitrary element p [J N; then (1) it considers each neighbor of p; then (2) for each
neighbor g of p, it considers the neighbors of ¢ that have not yet been considered;
then (3) for each neighbor of each neighbor ¢ of p, it considers the neighbors of
r have not yet been considered; and so on, ... (4)...,(5) ..., (§) ..., until in (k) all
elements in P are considered.™

Note that this BFS search can be thought of as a traversal of the network
that builds a spanning tree 7 of N of depth k. Further, we can see T as a search tree
with each node of 7 being labeled by an element in P. Since each element in P
and each constraint in C need not be considered more than a constant number of
times, the traversal can be done in time O(|P| + |C|), or O(|P[*).

The Consistent Coherence algorithm assigns elements to 4 or R in the
order in which they are considered by the BFS procedure. It does so as follows.
Let s denote the element whose neighbors are presently being considered by the
BFS procedure. The algorithm checks whether s is assigned to 4 or to R; then for
each neighbor ¢ of s the algorithm checks the type of the constraint (s, #) and
assigns ¢ to A or R so as to satisfy constraint (i.e., if s 0 4 and (s, £) O C", then ¢ is
assigned to 4; if s [1 4 and (s, t) I C', then ¢ is assigned to R; if s U R and (s, ¢) U]

> I do not give a description of the algorithm in pseudo code because I think the
procedure is easier to understand when described as [have done here. Furthermore,
pseudo code for Breath First Search (BFS) can be found in many standard computer
science textbooks (see e.g. Goodrich & Tamassia, 2002)

>2 Consider, for example, the graph in Figure A2 in the Appendix A. A BFS search
starting at, say, vertex a, would first (0) consider vertex a, then (1) consider vertices b, c,
d and e, then (2) vertices f, &, and i; then (3) vertices g and j; then (4) £, and finally (5)
vertex /.

88

C", then ¢ is assigned to R; and if s [J R and (s,) J C', then ¢ is assigned to A).

Since this assignment procedure runs in O(1) per assigned element ¢, we conclude

a total running time of O(|P|?) for the Consistent Coherence algorithm. [End of

Description]

The following lemma establishes that, if the input N is a consistent network, then
Consistent Coherence algorithm outputs a maximum coherence partition for N. In other
words, we show that the Consistent Coherence algorithm solves the optimization version
of Coherence for consistent connected networks.

Lemma 5.2. Given a consistent connected network N = (P, C) as input, the
Consistent Coherence algorithm outputs a partition of P into sets 4 and R such that
Coha(4, R) is maximum.

Proof: Let N= (P, C) be a consistent connected network, and let partition (4 [J
R)” be the partition obtained by running Consistent Coherence algorithm on N. Further,
let 7= (P, Cr) denote the spanning tree of N that was traced by the run of the Consistent
Coherence algorithm on N. We show that Sy(4, R) = C.

First, we observe that all constraints in Cy [C are satisfied; this is ensured by the
assignment procedure run during the BFS search. It remains to be shown that also all
other constraints are satisfied. We prove this by contradiction. Let p be the first element
in P considered by the algorithm—i.e., p is the root of 7. Further, let (¢,) Ll C\Crbe a
constraint in C\Cr that is not satisfied. Consider the cycle X [N with X =< (p, qx), (¢x
qi1)s -5 (43, §2), (92, 41), (915 9), (g, 1), (v, 1), (r1, 12), (12, 73), .oy (71, 77), (1, p)> such
that all edges in the cycle, other than (g,), are in C7. We now prove that it is not possible
to satisfy all constraints in X. Imagine traversing the edges in X in order, starting at » and
ending at ¢, and while we visit the elements 7, ri, 2, 73, ..., Fj-1, Tj Py Qs Qi=15 ---» G35 G2,
q1, g, we assign them to 4 or R as follows: We start by assigning 7 to either 4 or R (it
does not matter for the argument which is the case). Every time we visit an element s;,
with preceding element s;-1, such that (s;-1, s;) O C" we do one of the following: (1) if s,
[J A then we assign s;to 4, (2) if s;-; [J R then we assign s;to R. Every time we visit an
element s; such that (s;-1, s;) 0 C” we do one of the following: (3) if s,-; J 4 then we

assign s;to R, (4) if s;-; 1 R then we assign s;to 4. Note that rules (1) — (4) are necessary

89

to ensure that each traversed edge in {(r, 1), (71, 12), (2, 13), ..., (Fj-1, 1)), (75, P) (D> G¥)
(@i gi-1)s -+ (@35 42), (@2, q1), (q1, q)} 1s satisfied by the assignment. The last edge (g, r)
is satisfied if only if it was satisfied by the original partition made by the Consistent
Coherence algorithm. We conclude that the cycle X is not consistent. Since X [J N, we
also conclude that N is not consistent, contradicting the fact that N is consistent. m

We can now derive a constructive proof of Theorem 5.1.

Proof of Theorem 5.1: (Constructive) Let N = (P, C) be a consistent network, and
let N;=(P;, C;), withi=1, 2, ..., x, be the components of N. Then we solve Coherence
for N, by running the Consistent Coherence algorithm on each component N,. This returns

for each component N; an optimal partition (4; [] Ri)P". Wedefine4=4,0 4,0 ... 0 A4,

and R=R, 0 R, O ... O R,, and conclude that Cohy(4, R) is maximum.

For each component the procedure runs in time O(|P|*), and thus the whole
procedure runs in time O(|Py[* + |P5|*+ ... + |P\|). Since |P1| + |[Pa| + ... + |Py| =|P], we
conclude a total running time of O(|P|*). m

Interestingly, Theorem 5.1 implies that, on Thagard and Verbeurgt’s definition of
Coherence, coherence reasoning is difficult only if one’s belief system is inconsistent. As
long as one maintains a consistent belief base, coherence reasoning is tractable.

I close this subsection with a couple of related observations:

Lemma 5.3. Coherence on an instance (N, ¢) with ¢ = Z w(p,q)isinP.”?

(p.g)C

Proof: Let (N, c), with ¢ = Z oC w(p,q), be an instance for Coherence. We

(p

run Consistent Coherence algorithm on N as described in the constructive proof of

Theorem 5.1. Let the resulting partition be (4 O R)". If Cohy(4, R) = Z(p Jc w(p,q)

then (N, c¢) is a yes-instance, otherwise it is a no-instance. m

From Lemma 5.3 we also conclude that we can decide in polynomial-time
whether or not a network N is consistent.

Corollary 5.4. Checking whether or not a network is consistent is in P.

Lemma 5.4. If network N = (P, C) is a tree, then N is consistent.

> Lemma 5.3 also follows from a straightforward reduction from Coherence on
consistent networks to the polynomial-time problem 2-SAT (see Appendix B for problem
definition).

90

Proof: (Sketch). If we run Consistent Coherence algorithm on a tree N = (P, C),
the algorithm will always trace, and thus satisfy, every constraint in C. m

Since a tree on |P| vertices has exactly |P| — 1 edges (Gross & Yellen, 1999), we
also conclude the following corollary.

Corollary 5.5. A network N = (P, C) that is a tree has coherence ¢ = |P|—1.

Lemma 5.4 and Corollary 5.5 will also prove useful in Section 5.6.

5.4.2. Generalizations of Coherence

Recall that in the application of Coherence to scientific reasoning, a distinction was made
between elements representing data (D) and elements representing scientific hypotheses
(H) (cf. the applications to legal justification and social judgment). In this context,
Thagard (2000) adopts the data priority principle. This principle states that elements in D
are “favored” to be in the set 4. Thagard (2000) proposes that this principle can work in
at least two different ways: Either loosely, by assigning weights to elements in D and for
each d [J D counting its weight towards the total coherence of a partition only if d [J 4; or
strictly, by requiring that all d J D be assigned to 4. The first version is called
Discriminating Coherence and the second is called Foundational Coherence.
Discriminating Coherence (decision version)
Input: A network N = (P, C), with (H O D)" and (C" O C"). For each d 0 D there
1s an associated positive integer weight wp(d), and for each (p, g) U C there is an
associated positive integer weight we(p, g). A positive integer c.

Question. Does there exist a partition of P into 4 and R such that DCohy(4, R) =
¢? Here DCohy(4, R) = D wc(p.g)+ D wp(d).

(2.9)0SN (4,R) dO(Dn A)
Foundational Coherence (decision version)
Input: A network N = (P, C), with (H 0 D)" and (C* O C")“. For each (p, ¢) O C
there is an associated positive integer weight w(p, ¢). A positive integer c.
Question: Does there exist a partition of P into 4 and R such that D [1 4 and
Cohn(4, R) = ¢?
Does the fact that Coherence is NP-hard automatically imply that Discriminating

Coherence and Foundational Coherence are NP-hard? Yes! Each of these problems

91

encompassed Coherence as a special case. Namely, Coherence is equivalent to
Discriminating Coherence on inputs with D = [J. Also, Coherence is equivalent to
Foundational Coherence on inputs with D = . In other words, Discriminating Coherence
and Foundational Coherence are generalizations of Coherence, and thus they are “at least
as hard” as Coherence. We conclude:

Corollary 5.6. Discriminating Coherence is NP-hard

Corollary 5.7. Foundational Coherence is NP-hard

The fact that Discriminating Coherence and Foundational Coherence are
generalizations of Coherence means that the results discussed in Section 5.4.1 do not
necessarily apply to these more general problems (though in some cases they might). It
also means that fpt-results, in Sections 5.5 — 5.7, obtained for Coherence do not
necessarily generalize to comparable parameterizations for Discriminating Coherence and

Foundational Coherence (though, again, in some cases they might).

5.4.3. Variations on Coherence

Thagard (2000) not only considers special cases and generalizations of Coherence, but
also variations on the problem (see also Thagard, 1989; Thagard and Verbeurgt, 1998).
Such variations, although seemingly related to Coherence, may have very different
properties, and hence very different complexity, than the Coherence problem itself.

To illustrate I consider the application of Coherence in the domain of legal
justification. Here a jury member wishes to decide whether the belief that the defendant is
innocent coheres at least as much with the evidence as does the belief that the defendant
is guilty.”* These competing beliefs can be modeled as follows (cf. Thagard, 1998, 2000;
Thagard and Verbeurgt, 1998): There is a special element in the network, denoted s,

representing the hypothesis that the defendant is innocent. We interpret s [1 4 as the

>* Note that we are giving the defendant the benefit of the doubt if both propositions
cohere equally with the evidence. One might argue that in jury trials the verdict “guilty”
is justified only if the defendant is found guilty beyond reasonable doubt. Of course, this
aspect of jury decision-making can be incorporated into the model presented here by
defining a critical amount A that represents “reasonable doubt.” Then the jury member’s
task is to decide whether the belief ‘the defendant is innocent’ is at most A less coherent
than the belief ‘the defendant is guilty.” Note that the model we work with in this section
is a special case of this problem with A = 0.

92

belief “the defendant is innocent” and s U R as the belief “the defendant is guilty.” If we
again adopt the data priority principle, either in a strict or loose sense, we obtain the

following two problems:

Single-Element Discriminating Coherence (decision version)

Input: A network N = (P, C), with (H 0 D)” and (C* O C")°. For each d 0 D there
is an associated positive integer weight wp(d), and for each (p, ¢) [C there is an
associated positive integer weight we(p, g). A special element s [1 H and a
positive integer c.

Question: Does there exist a partition of P into 4 and R such that DCohy(4, R) is

maximum and s [J 4?

Single-Element Foundational Coherence (decision version)

Input: A network N = (P, C), with (H 0 D)" and (C* O C")°. For each (p, ¢) O C

there is an associated positive integer weight w(p, ¢). A special element s [] H and

a positive integer c.

Question: Does there exist a partition of P into 4 and R such that Cohy(4, R) is

maximum and D [s J 4?

Note that both problems are decision problems.

Does the fact that Coherence is NP-hard automatically imply that Single-Element
Discriminating Coherence and Single-Element Foundational Coherence are NP-hard?
No! Coherence is not a special case of any of these problems.

Let us consider Single-Element Discriminating Coherence first. Despite the
apparent similarity between Single-Element Discriminating Coherence and
Discriminating Coherence (page 90), the two problems are of quite different flavor. In
Discriminating Coherence the goal is to find a partition of at least coherence ¢, while in
Single-Element Discriminating Coherence we want to know if there exists an optimal
partition for N such that s [] 4. Hence, in Single-Element Discriminating Coherence we
are not interested in finding a partition, nor in how much coherence it might have; all we
care about is whether or not we should accept s.

The difference between Discriminating Coherence and Single-Element

Discriminating Coherence also becomes apparent when we consider the special case of

93

Single-Element Discriminating Coherence with D = [J. Recall that if we set D = [1, then
Coherence and Discriminating Coherence are equivalent, and thus Discriminating
Coherence is NP-hard even if D = [J. On the other hand, if we set D = [, then solving
Single-Element Discriminating Coherence becomes trivial. In that case, the answer is
always “yes,” because there always exist at least two maximum coherence partitions, one
with s [J 4 and one with s [] R, and thus the answer is always “yes.” We conclude this
from the fact that the function Cohy(., .) is symmetric, as shown in Observation 5.2.

Observation 5.2. Let N = (P, C) be a network. Then for any partition (4 O R)”,
and its complement (4’ 0 R")", with 4’ =R and R’ = 4, Cohy(4, R) = Cohn(4’, R").

Proof: The claim follows directly from the definition of the coherence function
Cohy(4, R). Namely, a constraint is satisfied (and counts towards coherence) if both
endpoints are in the same set of the partition (regardless of whether they are both in R or
both in 4), and a negative constraint is satisfied if both endpoints are in opposite sets of
the partition (it does not matter which of the two is in 4 and which is in R). Thus, a
partition (4 O R)”, and its complement (4 0 R’)” satisfy exactly the same set of
constraints. m

Corollary 5.8. Single-Element Discriminating Coherence with D = [J is in P.
Note that all observations made so far for Single-Element Discriminating Coherence also
apply for Single-Element Foundational Coherence. That is, like Single-Element
Discriminating Coherence, Single-Element Foundational Coherence is not a special case
of Coherence. Further, for D = [, Single-Element Discriminating Coherence and Single-
Element Foundational Coherence are the same problem. Hence we also have:

Corollary 5.9. Single-Element Foundational Coherence with D =[] is in P.
Are Single-Element Discriminating Coherence and Single-Element Foundational
Coherence computationally easier to compute than Coherence? At present time, I do not
know the answer to this question. And this is the point of my illustration. Thagard cannot
conclude that problems such as Single-Element Discriminating Coherence and Single-
Element Foundation Coherence are NP-Hard simply because Coherence is NP-hard. Of

course these problems may very well be NP-hard, but knowing so requires a proof.

94

5.5. c-Coherence is in FPT
In this section we consider the parameterized complexity of Coherence when
parameterized by integer c. We show that c-Coherence is in FPT. The argument is build
up as follows. Section 5.5.1 introduces a generalization of the problem Coherence that
allows for more than one constraint between two elements in P. This generalization,
called Double-Constraint Coherence, is then used to formulate a set of reduction rules in
Section 5.5.2. After the application of the reduction rules we know that the input network
is of minimum degree 3. In Section 5.5.3, we show that for each element in P we can
satisfy at least half of its incident constraints, and conclude that every network on #n or
more elements has at least ¢ coherence. This allows us to conclude a kernel of |P| < ¢ and
thus a running time O(2° + |P|).

I remark that the fpt-algorithm presented in this section is not constructive—i.e., it
solves the decision version but not the search version of Coherence. A constructive, but

slower fpt-algorithm for c-Coherence will be discussed in Section 5.6.

5.5.1. Double-Constraint Coherence

In Coherence, for each pair p, g [P there is at most one constraint (p, ¢) U C, with either
(»,q) O C" or (p, g) O C". In the following generalization of Coherence, called Double-
Constraint Coherence, for each pair p, g [] P there may be two constraints; a positive
constraint (p, ¢)° 0 C" and a negative constraint (p, ¢)” 0 C".

Double-Constraint Coherence

Input: A double-constraint network N = (P, C" 0 C"). For each (p, ¢)" O C" there

is an associated positive integer weight w(p, ¢)", and for each (p, g)” O C~ there is

an associated positive integer weight w(p, ¢) . A positive integer c.

Question: Does there exist a partition (4 O R)” such that Cohy(4, R) = ¢?
Note that Coherence is a special case of Double-Constraint Coherence. Hence, an fpt-
result for c-Double-Constraint Coherence also applies to c-Coherence.

In the following, if for two elements p, ¢ U P there exists exactly one constraint
(p, q) O C" O C then we may write (p, q) instead of (p, ¢)" or (p, q)". As for networks,
the degree of an element p in a double-constraint network N, degy(p), is the number of

constraints incident to p, and the neighborhood of an element p in a double-constraint

95

network N, Ny(p), is the set of neighbors of p in N. Note that in a double-constraint
network degn(p) may be larger than [Nx(p)|. Further, for two vertices p and ¢ in a double-
constraint network we say p and g are independent if (p, ¢)' 0 C" and (p, ¢) " 0 C".

5.5.2. Reduction Rules

We present a set of reduction rules for Double-Constraint Coherence. We only apply a
rule if none of the preceding rules applies. Rules (DC 2) — (DC 9) are illustrated in
Figure 5.2.

We start by removing small components from the input with rule (DC 1) as
follows: For each component N; = (P;, C;" O C;"), with |P}| < 3, we compute a partition of
P; with maximum coherence using an exhaustive search: i.e., we compute all 2/ possible
partitions of P;, compute their coherence, and pick the one with maximum coherence.
Since rule (DC 1) is only applied if [P < 3, this rule runs in time O2"") = 0(2%) = O(8) =
O(1), which is constant time.

(DC 1) Small Component Rule: Let the double-constraint network N= (P, C" [
(") and positive integer ¢ form an instance for Double-Constraint Coherence. If N has a
component N; = (P;, C;” O C;”) with |Pj| < 3, then we determine a partition (4; O R;)” such
that Cohpy(4;, R;) is maximum. Then let N* = N'\N; and let ¢* = ¢ — Cohn(4;, R)).

Proof: Since N; is a component of N it is not connected to any element outside P;,
and thus we can determine a maximum coherence partition of P; independent of the
maximum coherence partition of P\P,. m

Rules (DC 2) and (DC 3) eliminate elements that are connected to at most one
other element.

(DC 2) Pendant Rule: Let double-constraint network N= (P, C" 0 C") and
positive integer ¢ form an instance for Double-Constraint Coherence. If there exists an
element p [P such that degy(p) = 1, with Ny(p) = {g}, then let N* = (P* C™* 0O C*),
with P*=P\{p},and C™* 0 C*=(C" O C\{(p, 9)}, and c* = ¢ — w(p, q). Finally, let
(N*, c*) be the new instance for Double-Constraint Coherence.

Proof: We show (N, c) is a yes-instance for Double-Constraint Coherence if and
only if (N*, c*) is a yes-instance for Double-Constraint Coherence, by showing that

constraint (p, q) is satisfied by an optimal partition. The proof is by contradiction.

96

Assume that (4 0 R)” is partition such that Cohy(4, R) is maximum and (p, ¢) 0 Sp(4,
R). We distinguish two cases: (1) Let p 1 4. We set A= A\{p} and R’=R] {p}. Since
(p, q) 1s the only constraint incident to p, we conclude that Sy(4’, R’) = Sp(4, R) U {(p,
q)}. But that means that Cohy(4°, R’) > Cohp(4, R), contradicting that Cohp(4, R) is
maximum. (2) Letp U R. Weset A’ =A4] {p} and R’= R \{p}. Since (p, g) is the only
constraint incident to p, we conclude that Sy(4°, R’) = Spm(4, R) U {(p, q)}. But that
means that Cohy(A4’, R’) > Cohn(A4, R), contradicting that Cohy(4, R) is maximum. m

(DC 3) Degree-2 Single Neighbor Rule: Let the double-constraint network N =
(P, C" O C) and positive integer ¢ form an instance for Double-Constraint Coherence.
Let element p O P, with degy(p) = 2, have one neighbor ¢, such that (p, g)' 0 C" and (p,
g)” 0 C . Then let N*= (P* C* 0 C*), with P*=P\{p},and C* O C"*=(C" 0 C)\
(.9, (p,q)} and c* = c = MAX(W(p, q)", W(p, g))). Finally, let (N*, c*) be the new
instance for Double-Constraint Coherence.

Proof: Let (4 O R)” be a partition such that Cohy(4, R) is maximum. Then we
know that either (p, ¢)" 0 Sp(4, R) or (p, ¢)” O Sy(4, R). Since the partition has
maximum coherence we can assume that the satisfied constraint in {(p, ¢), (p,)"} is the
one with largest weight. Hence, (V, ¢) is a yes-instance for Double-Constraint Coherence
if and only if (N*, c*) is a yes-instance for Double-Constraint Coherence. m

Rules (DC 4) — (DC 9) deal with all elements p in N that have exactly two
neighbors, g and . Each of these rules has the following general form. The part of N that
consists of p, ¢, r and their incident constraints, is replaced in N* by ¢ and r connected by
a positive constraint (¢, #)" and a negative constraint (g, #)_. Further, the weights in N* on
(¢,)" and (g, r)” are set so as to exactly capture the coherence value obtained in a
optimal partition (4 O R)” if (1) both ¢ and » would be in the same set (both in A or both
in R); captured by the weight (¢,)" and if (2) ¢ and » would be in different sets of the
partition (one in 4 and the other in R); captured by the weight (g, r) .

97

sum(x,y,z)

¢ =c—max(xy) sum(z,max(x,y))

Figure 5.2. Illustration of the reduction rules for Double-Constraint Coherence.
Reduction rules (DC 2)—(DC 9) are illustrated. Solid lines represent positive constraints
and dotted lines represented negative constraints. The symbols x, y and z represent
weights. See text for details.

(DC 4) First Degree-2 Disconnected Neighbor Rule: Let double-constraint
network N = (P, C" 0 C") and positive integer ¢ form an instance for Double-Constraint
Coherence. Let element p [P, with degn(p) = 2, have two neighbors ¢ and 7 such that ¢
and 7 are independent and [(p, ¢), (p,) O C" or (p, q), (p, ¥) O C"]. Then let N* = (P*,
C™ 0 C*), with P*=P—-p, C™*=(C"\{(p, q), (p, }) O (g,)", and C* = (C \{(p, q),
(p, ¥)}) O (g,). Further, we set the weights w*(q, 7)" = w(p, ¢) + W(p,) and w*(q,)" =
MAX(w(p, q), w(p, r)). Finally, let (N*, ¢*), with ¢* = ¢, be the new instance for Double-
Constraint Coherence.

Proof: Let (4 0 R)” be a partition such that Cohy(4, R) is maximum. We
distinguish two cases: (1) Let g, » both be in the same set of the partition (i.e., either g, r
A or g, r R). Since (p, q) and (p, r) are the same type of constraint (both positive or
both negative), setting p U A4, or setting p [R, will either satisfy both (p, ¢) and (p, r), or

98

neither of them. Since Cohy(4, R) is maximum we conclude it must be the first option,
and thus {(p, q), (p,)} L Sy (4, R). (2) Let g and r be in different sets of the partition
(i.e., either g J A and » U R, or ¢ LI R and » [J A). Since (p, q) and (p, r) are the same type
of constraint (both positive or both negative), setting p [J 4, or setting p [R, can satisfy
at most one of (p, ¢) and (p, r). Since Cohy(4, R) is maximum we conclude the satisfied
constraint is the one with the largest weight. We conclude that (N, ¢) is a yes-instance for
Double-Constraint Coherence if and only if (N*, c*) is a yes-instance for Double-
Constraint Coherence. m

(DC 5) Second Degree-2 Disconnected Neighbors Rule: Let double-constraint
network N= (P, C" 0 C") and positive integer ¢ form an instance for Double-Constraint
Coherence. Let p [1 P, with degn(p) = 2, be an element with exactly two neighbors ¢,
that are independent, (p, ¢) 0 C" and (p, #) O C". Then let N* = (P* C™* 0 C *), with P*
= P\{p}, C* = (C\{(@, 9), (0. M}) T {(g, 1)}, and C* = (C" \{(@, 9), (0. M}) U {(g,
)"} Further, we set the weights w*(q,)" = MAX(W(p, q), W(p, r)) and w*(q, ¥)” = w(p,
q) + w(p, r). Finally, let (N*, c*), with ¢* = ¢, be the new instance for Double-Constraint
Coherence.

Proof: Let (4 O R)” be a partition such that Cohy(4, R) is maximum. We
distinguish two cases: (1) Let g, » both be in the same set of the partition (i.e., either ¢,
A or g, r LI R). Since (p, g) and (p,) are different types of constraint (one is positive
and the other negative), setting p [J 4, or setting p [R, can satisfy at most one of (p, q)
and (p, r). Since Cohp(4, R) is maximum we conclude that the satisfied constraint is the
one with the largest weight. (2) Let ¢ and » be in different sets of the partition (i.e., either
gUAandr R, or g R and r U A). Since (p, q) and (p, r) are different types of
constraint (one is positive and the other negative), setting p [1 4, or setting p [1 R, will
either satisfy both (p, ¢) and (p, r), or neither of them. Since Cohp(4, R) is maximum we
conclude it must be the first option, and thus {(p, q), (p, r)} U Sm(4, R). We conclude that
(N, c) is a yes-instance for Double-Constraint Coherence if and only if (N*, ¢*) is a yes-
instance for Double-Constraint Coherence. m

(DC 6) First Degree-2 Connected Neighbors Rule: Let double-constraint

network N = (P, C" 0 C") and positive integer ¢ form an instance for Double-Constraint

99

Coherence. Let element p [P, with degx(p) = 2, have two neighbors ¢ and 7 such that (g,
¥)'OC and (g,7)” 0C,and [(p, q), (p, ¥) O C" or (p, q), (p, ¥) O C]. Then let N* =
(P*, C™* O C*), with P*=P\{p}, C"*=C\{(p,q)", (p,)’ },and C"* = (C \{(p, q)", (p,
)"} O {(g,)"} Further, we set the weights w*(q, 7)" = w(p, ¢) + w(p,) + w(g,) and
w*(q, r) = MAX(W(p, q), W(p, r)). Finally, let (N*, c¢*), with c¢* = ¢, be the new instance
for Double-Constraint Coherence.

Proof: Let (4 O R)” be a partition such that Cohy(4, R) is maximum. We
distinguish two cases: (1) Let g, » be in the same set of the partition (i.e., either ¢, » [1 4
or ¢, r I R). Then (g,) J S;(A4, R). Further, since (p, g) and (p,) are the same type of
constraint (both positive or both negative), setting p L1 4, or setting p [J R, will either
satisfy both (p, ¢) and (p, r), or neither of them. Since Cohp(4, R) is maximum we
conclude it must be the first option. In sum, we have {(q, r), (p, q), (p,)} U Sm(4, R). (2)
Let g and r be in different sets of the partition (i.e., either g U4 and » U R, org LU R and r
U A). Then (g, r) U Sx(A4, R). Further, since (p, ¢) and (p, r) are the same type of
constraint (both positive or both negative), setting p [J 4, or setting p L1 R, can satisfy at
most one of (p, g) and (p, r). Since Cohy(4, R) is maximum we conclude the satisfied
constraint is the one with the largest weight. We conclude that (V, c) is a yes-instance for
Double-Constraint Coherence if and only if (N*, c*) is a yes-instance for Double-
Constraint Coherence. m

(DC 7) Second Degree-2 Connected Neighbors Rule: Let double-constraint
network N = (P, C" 0 C") and positive integer ¢ form an instance for Double-Constraint
Coherence. Let element p [P, with degy(p) = 2, have two neighbors ¢ and 7 such that (g,
¥)"0C and(¢g,7) O C",and [(p, q), (p,) O C" or (p, q), (p, r) O C]. Then let N* =
(P*, C™* O C*), with P*=P\{p}, C*=(C\{(p,q)", (p, »') O {(g, ")}, and C*=C"
\{(», q), (p, ¥) "}. Further, we set the weights w*(q,)" = w(p, q) + W(p, r) and w*(q, r)
= w(q, r) + MAX(W(p, q), W(p, r)). Finally, let (N*, c*), with c¢* = ¢, be the new instance
for Double-Constraint Coherence.

Proof: Let (4 O R)” be a partition such that Cohy(4, R) is maximum. We
distinguish two cases: (1) Let g, » be in the same set of the partition (i.e., either ¢, » [4

or g, » U R). Then (g, r) I SM(A, R). Further, since (p, g) and (p, r) are the same type of

100

constraint (both positive or both negative), setting p [4, or setting p [l R, will either
satisfy both (p, ¢) and (p, r), or neither of them. Since Cohp(4, R) is maximum we
conclude it must be the first option, and thus {(p, q), (p, 7)} U Sm(4, R). (2) Let g and » be
in different sets of the partition (i.e., either ¢ [J A and » I R, or ¢ J R and » [J A). Then
(g,) U SMA, R). Since (p, q) and (p, r) are the same type of constraint (both positive or
both negative), setting p [1 A4, or setting p [J R, can satisfy at most one of (p, ¢) and (p, r).
Since Cohy(4, R) is maximum we conclude the satisfied constraint is the one with largest
weight. We conclude that (N, ¢) is a yes-instance for Double-Constraint Coherence if and
only if (N*, c*) is a yes-instance for Double-Constraint Coherence. m

(DC 8) Third Degree-2 Connected Neighbors Rule: Let double-constraint
network N = (P, C" 0 C") and positive integer ¢ form an instance for Double-Constraint
Coherence. Let element p [P, with degn(p) = 2, have two neighbors ¢ and r such that (g,
) O0C and(q,7) OC,and (p,)" OC" and (p, ¢)" O C". Then let N* = (P* C™* O
C™*), with P*=P\{p}, C"*=C"\{(p,)"}, and C"* = (C \{(p,) }) O {(g, r)"}. Further,
we set the weights w*(g,)" = w(g, r)" + MAX(W(p, q)", w(p, r)"), and w*(q,)" = w(p,
q)” +w(p, r)". Finally, let (N*, c*), with ¢* = ¢, be the new instance for Double-
Constraint Coherence.

Proof: Let (4 O R)” be a partition such that Cohy(4, R) is maximum. We
distinguish two cases: (1) Let ¢ and r be in the same set of the partition (i.e., either ¢, » [
A or g, r UR). Then (q, r) U S\(A4, R). Further, since (p, ¢) and (p,) are different types of
constraint (one is positive and the other negative), setting p [1 4, or setting p [J R, can
satisfy at most one of (p, ¢) and (p, r). Since Cohp(4, R) is maximum we conclude that
the satisfied constraint is the one with the largest weight. (2) Let ¢ and r be in different
sets of the partition (i.e., either g 0 4 and » O R, or ¢ Ll R and » [J 4). Then (g, r) [Sp(4,
R). Since (p, q) and (p, r) are different types of constraint (one is positive and the other
negative), setting p [4, or setting p [R, will either satisfy both (p, ¢) and (p,), or
neither of them. Since Cohy(4, R) is maximum we conclude it must be the first option,
and thus {(p, q), (p,)} U Sy (4, R). We conclude that (N, c) is a yes-instance for Double-
Constraint Coherence if and only if (N*, c*) is a yes-instance for Double-Constraint

Coherence. m

101

(DC 9) Third Degree-2 Connected Neighbors Rule: Let double-constraint
network N = (P, C" 0 C") and positive integer ¢ form an instance for Double-Constraint
Coherence. Let element p [P, with degax(p) = 2, have two neighbors ¢ and 7 such that (g,
¥)"0C and(¢q,7)" O0C", and (p, 7)' O C" and (p, ¢)" O C". Then let N*=(P* C™* [
C™*), with P*= P\{p}, C"* = (C"\{(p,)" }) O {(g, »)'}, and C* = C" \{(p, ¢)"}. Further,
we set the weights w*(g, r)" = MAX(W(p, q)°, w(p,)"), and w*(q, r)_ = w(q,)" + w(p,
q)” +w(p, r)". Finally, let (N*, c*), with ¢* = ¢, be the new instance for Double-
Constraint Coherence.

Proof: Let (4 0 R)” be a partition such that Cohy(4, R) is maximum. We
distinguish two cases: (1) Let g and r be in the same set of the partition (i.e., either ¢, » []
A or g, r OR). Then (g, 7) U Sp4A, R). Further, since (p, q) and (p, r) are different types
of constraint (one is positive and the other negative), setting p L] 4, or setting p [I R, can
satisfy at most one of (p, ¢) and (p,). Since Cohy(4, R) is maximum we conclude that
the satisfied constraint is the one with the largest weight. (2) Let ¢ and r be in different
sets of the partition (i.e., either ¢ [1 4 and » J R, or ¢ L1 R and » [0 A). Then (g, r) U Sp(4,
R). Since (p, q) and (p, r) are different types of constraint (one is positive and the other
negative), setting p [4, or setting p [J R, will either satisfy both (p, ¢) and (p,), or
neither of them. Since Cohy(4, R) is maximum we conclude it must be the first option,
and thus {(q, r), (p, 9), (p, r)} 1 Sp(A4, R). We conclude that (N, c) is a yes-instance for
Double-Constraint Coherence if and only if (NV*, ¢*) is a yes-instance for Double-
Constraint Coherence. m

When given an instance (N, c) for Double-Constraint Coherence, we can apply the
polynomial-time reduction rules (DC 1) — (DC 9) until none of the rules applies anymore.
If none of the rules (DC 1) — (DC 9) applies anymore, then we say that the resulting
instance (N, ¢’) is reduced for Double-Constraint Coherence. Note that we can reduce
any instance for Double-Constraint Coherence in time O(|P|). Namely, each reduction
rule runs in constant time. Further, each rule causes an element to be deleted from P.

Thus we never apply more than |P| reduction rules.

102

5.5.3. A Problem Kernel

Let (N, ¢) be a reduced instance for Double-Constraint Coherence. Then we know that N
is of minimum degree 3. Namely, the reduction rules (DC 1) — (DC 9) ensure that all
vertices with degree 0, 1 or 2 are removed from the network. The following lemma uses
this fact to infer a problem kernel for c-Double-Constraint Coherence.

Lemma 5.5. Let (N, ¢), with N= (P, C" 0 C), be a reduced instance for Double-
Constraint Coherence. If |P| = ¢ then (N, ¢) is a yes-instance Double-Constraint
Coherence.

Proof: We show that there exists a partition such that for every element p [] P at
least half of the constraints incident to p are satisfied. Let (4 0 R)" be a partition that
satisfies the most constraints; i.e., [Sy(4, R)| is maximum. We now prove that for every p
[J P at least half of the constraints incident to p are in Sp(4, R). The proof is by
contradiction. Assume that there exists an element p [J P such that strictly less than half
of the constraints incident to p are in Sy(4, R). We define a new partition (4° 0 R’)" and
we distinguish between two cases: (1) Let p [0 4. Thenlet A’ =A\{p} and R’=R U {p};
(2)Letp UR. ThenletA’=A U {p} and R’ = R\{p}. Since, in both (1) and (2), partition
(4’ 0 R")" satisfies all constraints incident to p that are not satisfied by the partition (4 O
R)", we conclude that strictly more than half of the constraints incident to p are in Sy(4’,
R’). Further, the change from partition (4 O R)" to (4’ O R’)” does not affect any of the
other constraints in N. We conclude that the partition [Sp(A4’, R’)| > |Sm(4, R)|,
contradicting the fact that [Sy(4, R)| is maximum.

We have shown that for each element p [P half of its incident constraints can be
satisfied. Further, since the input is reduced, the minimum number of constraints incident
to any element is at least 3. This means that for each element p at least 2 of its incident
constraints can be satisfied.

We note that each constraint has two elements as its endpoints. Thus we conclude

that for any reduced instance on |P| = n elements there exists a partition (4 O R)", such

that Cohy(4, R) =2 27": n. Thus, if (N, ¢) is a reduced instance for Double-Constraint

Coherence and ¢ < n, then the answer is “yes” for (N, ¢). m

From (DC 1)—(DC 9) and Lemma 5.5 we conclude the following theorem.

103

Theorem 5.2. c-Double-Constraint Coherence is in FPT and solvable in time O(2°
+ |P)).

Proof: We describe an fpt-algorithm for c-Double-Constraint Coherence. The
algorithm takes as input an instance (V, c¢) for c-Double-Constraint Coherence and first
reduces it using (DC 1)—(DC 9). For the resulting reduced instance (N’, ¢’) for c-Double-
Constraint Coherence we know that either |P’| <c or |P’| 2 ¢. If|P’| = ¢ then, using
Lemma 5.5, we conclude that (N, ¢) is a yes-instance for c-Double-Constraint Coherence;

in which case the computation has terminated in time O(n). If |P’

< ¢ then we perform an
exhaustive search on all 2! possible partitions of P’. This search runs in O(2”") which is
0(2°), since |P’| < c. The exhaustive search time, combined with the polynomial time to
reduce the instance, gives a total running time of O(2° + |P|) for c-Double-Constraint
Coherence. m

Since Coherence is a special case of Double-Constraint Coherence we also have:

Corollary 5.10. c-Coherence is in FPT and solvable in time O(2° + |P)).

5.6. A Constructive fpt-Algorithm for c-Coherence

In the previous section I have presented an fpt-algorithm solving c-Coherence in time
O(2° + |P|). As remarked earlier, the algorithm is not constructive. Namely, the reduction
rules (DC 2) — (DC 9) all delete element p from N without specifying whether p [1 4 or p
[R. These rules simply use the knowledge that one or the other must be the case to
reduce the instance. Similarly, Lemma 5.5 proves that a reduced instance with more than
¢ elements has at least coherence c, but it does not specify how a partition with that
amount of coherence may be obtained.

In this section I present a constructive fpt-algorithm for c-Coherence. This
algorithm has a running time of O(2.52°+ |P*), and thus it is somewhat slower than the
algorithm presented in the previous section. However, it has the advantage that it not only
solves the decision version of Coherence, but also its search version. The argument is
organized as follows. In Section 5.6.1, we first consider connected networks (i.e.,
networks that consist of a single component). Using the fact that a network on |P|
elements that is a tree has coherence |P| — 1 (Corollary 5.5), we conclude that a connected

network on |P| elements has at least coherence |P| — 1. This implies a problem kernel of

104

size |P| < ¢ for c-Coherence on connected inputs. Then, in Section 5.6.2, we use the
reduction rule (DC 1) to obtain a bound on the number of components. This allows us to

conclude a problem kernel of size |P| < 2.52¢ — 2 for c-Coherence.

5.6.1. A Problem Kernel for Connected Networks

Lemma 5.6. Let (N, ¢), with N = (P, C), be an instance for c-Coherence, such that
N is connected. If |P| = ¢ + 1, then (, ¢) is a yes-instance for c-Coherence.

Proof: Since N is connected, N has a spanning tree 7= (Pr, Cr) with Pr= P and
Cr U C. We consider 7. From Corollary 5.5 we know that (7, ¢) is a yes-instance for c-
Coherence. Since T is a subgraph of N, we conclude that also (¥, ¢) is a yes-instance for
c-Coherence. m

From Lemma 5.6 we conclude a constructive fpt-algorithm for c-Coherence on
connected input networks that runs in time O2° + |P)).

Lemma 5.7. c-Coherence for connected networks is solvable by a constructive
fpt-algorithm that runs in time O(2° + |P)).

Proof: We describe an fpt-algorithm for c-Coherence on connected networks. The
algorithm takes as input an instance (V, c) for c-Coherence, with connected network N =
(P, C). First it counts the elements in P in time O(|P|). We distinguish two cases: (1) Let
|P| 2 ¢ + 1. Then we conclude from Lemma 5.6 that (¥, ¢) is a yes-instance for c-
Coherence. For a constructive result we additionally determine a spanning tree for N in
time O(|P]) (Lemma 5.4, page 89), and we build a partition for 7 with coherence c using
the Consistent Coherence algorithm in time O(|P|). The constructive computation also
terminates in time O(3|P|) = O(|P)). (2) Let |P| < c. Then we perform an exhaustive search
on all possible partitions of P. This exhaustive search runs in O(2") which is O(2°), since
|P| < c. The exhaustive search time, combined with the time to count the elements in P,

gives a total running time of O(2° + |P|) for c-Coherence. m

5.6.2. A General Problem Kernel

We show that using reduction rule (DC 1) and Lemma 5.6 we can conclude a problem
kernel for c-Coherence for general inputs. In the following, we call a network N reduced*

if (DC 1) does not apply to N.

105

We start by observing that a reduced* network N with more than ¢ components
has at least coherence c.

Lemma 5.8. Let (N, ¢), with N = (P, C), be an instance for c-Coherence, such that
N is reduced* and the number of components in N is at least +¢. Then (N, ¢) is a yes-
instance for c-Coherence.

Proof: Let Ni, N, ..., N,, with x 2 1 ¢, be the components in N. Since N is

reduced* we know that |N;| = 4 for each component N;, i =1, 2, ..., x. From Lemma 5.6
we conclude that the minimum coherence per component is 3. Since NV has at least
+ccomponents we know N has at least coherence 31 ¢ = c. Hence, (N, ¢) is a yes-
instance for c-Coherence. m

We now show that, if Lemma 5.8 does not apply, a reduced* network N = (P, C)
with |P| 2 11 ¢ —1 has at least coherence c.

Lemma 5.9. Let (N, ¢), with N = (P, C), be an instance for c-Coherence, such that
N is reduced*, the number of components in N is at most +¢— 1 and |P| 2 1+ ¢—1. Then
(N, c) is a yes-instance for c-Coherence.

Proof: Let N\, N, ..., Ny, withx £ ¢ = 1, be the components in N. From N = (P,
C) we construct a connected network N* = (P*, C*) as follows: We set P*= P and C* =
C U B. Here B is a set of bridges, connecting the components in N, and is defined as B =
{(vi, vir1) : vi O N;and viyy O Ny, =1, 2, ..., x —1}. Note that N* is a connected network
and has exactly x — 1 edges more than N. From Lemma 5.3 we conclude that N* has at

least coherence |[P* — 1 =|P| — 1. Since, there are x — 1 < +¢— 2 edges more in N* then
there are in NV, we conclude that NV has at least coherence |P| =1 =3¢+ 2=|P|—1c+ 1.
Since |[P| 2 11 ¢ -1 it follows that N has at least coherence 1:c—1 —3c+1=c. We

conclude that (W, c¢) is a yes-instance for c-Coherence. m

From Lemma 5.8 and 5.9 we conclude a constructive fpt-algorithm for c-
Coherence that runs in time O(2.52° + |P).

Lemma 5.10. c-Coherence is solvable by a constructive fpt-algorithm that runs in

time O(2.52° + |P]P).

106

Proof: We describe an fpt-algorithm for c-Coherence. The algorithm takes as
input an instance (N, c) for c-Coherence, with N = (P, C), and first reduces* (N, ¢) to (N,
c’), with N’ = (P’, C’). Then it counts the number of components and the number of
elements in P’. All this can be done in time O(|P|). We distinguish three cases: (1) Let the

number of components in N’ be at least 1 ¢'. From Lemma 5.8 we conclude that (N, ¢”),

and thus also (N, c¢), is a yes-instance for c-Coherence. (2) Let the number of components

in N’ be at most +¢'-1 and |P’

> 11 c¢'-1. From Lemma 5.9 we conclude that (N, ¢”),

and thus also (N, ¢), is a yes-instance for c-Coherence. To obtain a constructive result for
cases (1) and (2), we determine a spanning forest /' for N’, and build a partition for F
with ¢’ coherence using the Consistent Coherence algorithm. (3) Let the number of

components in N’ be at most $¢'—1 and |P’| < 15 ¢'-2. Then we perform an exhaustive

search on all possible partitions of P. This exhaustive search runs in O(2""). Since [P’ <

) 1.
1+¢'-2and ¢’ < ¢, we know that 02" is 02 (150 2)). Further, note that
1 — 1 1
02 (E 2)) =0(2'3¢) - 0(2%), which is 0213 €) = 0(2.52°). The exhaustive search

time, combined with the time required for the reduction from (¥, ¢) to (N, ¢”), gives a

total running time of O(2.52° + |P|*) for c-Coherence. m

5.7. |C|-Coherence is in FPT

In this section we consider the parameterized complexity of Coherence when the
parameter is the number of negative constraints in the input network, |C|. The choice of
this parameter is motivated by two observations made at the beginning of the chapter: If
the input network N contains only negative constraints then Coherence is NP-hard
(Corollary 5.2, page 84), but if the input network N contains only positive constraints
then Coherence is in P (Observation 5.1, page 86). A question that naturally arises is the
following. If the input network contains both negative and positive constraints, does the
presence of positive constraints add non-polynomial time complexity over and above the
non-polynomial time complexity due to the presence of negative constraints? In other
words, we ask: Is the parameter |C | sufficient for confining the non-polynomial time
complexity in the general Coherence problem? I will show that the answer is “yes,” by

proving that |C |-Coherence [FPT.

107

The proof is organized as follows. First, Section 5.7.1 presents a generalization of
Coherence, called Annotated Coherence. Section 5.7.2, presents a branching rule that can
be used to build a search tree, with leaves labeled by instances for Annotated Coherence
such that all constraints incident to elements in P are positive constraints. Section 5.7.3
describes how Annotated Coherence for such special instances can be reduced to the
polynomial-time problem Min-Cut. In Section 5.7.4, we conclude an fpt-algorithm for
|C"|-Coherence.

For completeness, I note that a direct consequence of Corollary 5.2 is that [C"|-
Coherence is not in FPT (unless P = NP).

Corollary 5.11. |C’|-Coherence is not in FPT (unless P = NP).

Proof: Assume that |C'|-Coherence is in FPT and P # NP. Then there exists an
algorithm that solves Coherence in time O(f{|C"|) n%), for some function fand some
constant 0. But that means that we can solve Coherence on networks with only negative
constraints in time O(0) n%), which is O(n®); meaning Coherence on networks with only

negative constraints is in P. But then, from Corollary 5.2, we have P = NP. m

5.7.1. Annotated Coherence

In Coherence, any element may be assigned to either side of the partition: i.e., to 4 or to
R. We have seen in Section 5.4.2, that in Foundational Coherence—a generalization of
Coherence—some elements (the ones in D) are pre-determined to be in the set 4. Here, |
generalize Coherence even further by also allowing that some elements are pre-
determined to be in the set R. This generalized problem we call Annotated Coherence.
Annotated Coherence (decision version)
Input: A network N = (P, C), with (P’ 0 4’ O R’ and (C™ O C"). For each (p,
q) O C there is an associated positive integer weight w(p, g). A positive integer c.
Question: Does there exist a partition of P into 4 and R such that 4’ J 4, R’ [R,
and Cohy(4, R) = ¢?
One way to think of Annotated Coherence is as the problem that arises when one is in the
middle of the process of solving Coherence; i.e., some elements in P have already been

assigned (the ones in 4" and R’), but other elements in P still remain to be assigned (the

108

ones in P’).” Using this interpretation of Annotated Coherence I will present a branching
algorithm for Coherence. This algorithm uses the branching rule described in the next

subsection.

5.7.2. Branching into Pos-Annotated Coherence

Let us distinguish between two types of elements in P: the elements that are connected to
at least one negative constraint, denoted P, and the elements that are connected to
positive constraints only, P". Note that P= P~ [0 P". We now define a branching rule,
called (AC 1), that uses the observation that for each p U P, and an optimal partition (4
O R)”, either p 0 4 or p O R. (cf. branching rule (VC 7) in Section 4.3).

(AC 1) The Min-Element-In-4-or-R Branching Rule: Let node s in the search
tree be labeled by instance (N, c) for Annotated Coherence, with N = (P, C), P=P’ [A’
OR’,and P=P 0O P". Further, let p 0 P’ such that p 0 P". Then we create two children
of s in the search tree, called s; and s,, and label s; by (N, ¢;) and label s, by (N, ¢2).
Here N, = (P, C)) with P;’ = P\{p}, A’ =4’ U {p}, R\’ =R’, c; = c,and N, = (P3, ()
with P,” = P’\{p}, A’ =A’, R’ =R U {p}, c» = c.

Proof: We need to show that (I, c) is a yes-instance for Annotated Coherence if
and only if and only if (N}, ¢;) or (IVa, ¢2) is a yes-instance for Annotated Coherence. (=)
Let (N, ¢) be a yes-instance for Annotated Coherence. Then there exists a partition (A4 [
R)’, with 4’ 0 4 and R’ O R such that Cohy(4, R) = c. We distinguish two cases: (1) Let
p U A. Then (N}, ¢1) is a yes-instance for Annotated Coherence. (2) Let p [J R. Then (N,
;) is a yes-instance for Annotated Coherence. (U) Let (N, ¢;) or (N2, ¢2) be a yes-
instance for Annotated Coherence. We distinguish two cases: (1) Let (NVy, ¢1) be a yes-

instance for Annotated Coherence. Then there exists a partition (4; [Rl)P I with 4," 0
Ay and R’ O Ry such that Cohy, (41, R1) = ¢;. But then also Cohy(A41, R1) = ¢;=c. We

conclude (N, ¢) is a yes-instance for Annotated Coherence. (2) Let (N, ¢2) be a yes-

instance for Annotated Coherence. Then there exists a partition (4, U Rz)PZ, with 4, O

> In the design of fpt-algorithms it is often practical to work with annotated versions of a
problem (see e.g. Alber, et al., 2001, Stege and van Rooij, 2003).

109

Az and R, [0 R, such that Cohy, (42, Rz) = c;. But then also Cohy(A42, Ry) = c;=c. We
conclude (N, ¢) is a yes-instance for Annotated Coherence. m

The branching rule (AC 1) can be used to construct a search tree as follows. We
take as input an instance (N, c¢) for Annotated Coherence and apply (AC 1) to (V, ¢) until
it cannot be applied anymore (in which case we know that P = P"). When branching
terminates, each leaf s; of the search tree 7 is labeled by an instance (V,, ¢;) with all
elements in P;’ connected to positive constraints only. Further, the application of (AC 1)
results in a search tree 7 with fan(7) = 2, and the depth(7") < |P |, and thus, the size of T
is 02""M.

Note that we have not yet solved Annotated Coherence: all we did so far is create
a search tree with 2”1 leaves such that each leaf is labeled by a special case of Annotated
Coherence in which all “unassigned” elements in P are incident to positive constraints
only. We call this special case Pos-Annotated Coherence.

Pos-Annotated Coherence

Input: A network N = (P, C), with (P’ 0 4’ 0 R and (C" O C")°. For every (p,

q)U0C,p,qU0A UOR’. For each (p, g) U C there is an associated positive integer

weight w(p, q). A positive integer c.

Question: Does there exist a partition of P’ into 4 and R such that 4" [J 4, R’ I R,

and Cohy(4, R) = ¢?
Next we show that Pos-Annotated Coherence is solvable in polynomial time O(|P'[*) by

reducing it to the known polynomial-time problem Min-Cut.

5.7.3. Pos-Annotated Coherence is in P

Here we show a polynomial-time reduction from Pos-Annotated Coherence to a problem
called Min-Cut (cf. Max-Cut discussed in Section 5.3). The problem Min-Cut takes as
input an edge-weighted graph G = (V, E), with two special vertices s, ¢ [1 V, where s is
called source and ¢ is called sink. In its optimization version, the goal is to partition the

vertex set V into sets 4 and R, such s [J 4, ¢ J R, and the sum of the weights on edges that

>% T thank Allan Scott and Parissa Agah for useful discussions on the problem Pos-
Annotated Coherence. I am indebted to Allan Scott for the idea that Pos-Annotated
Coherence reduces to Min-Cut.

110

have one endpoint in 4 and one endpoint in R is minimum. The decision version of this
problem is as follows:
Min-Cut (decision version)
Input: An edge weighted graph G = (V, E). A source s [J V" and a sink ¢ [J V. For
each edge (u,v) U E there is an associated positive integer weight w(u, v). A
positive integer k.

Question: Does there exist a partition of V into disjoint sets A and R such that, s [J

A, t R, and Wq(4, R) = Zw(u,v) < k? Here Cutg(R, A= {(u,v) UE : u [

(u,v)0OCutg (4,R)

Aand v U R}.

It is known that Min-Cut is solvable in time O(|V']?) (see e.g. Cormen, Leiserson, &
Rivest, 1990).”

The reduction from Pos-Annotated Coherence to Min-Cut involves a couple of
steps. I first present two reduction rules, (AC 2) and (AC 3); see Figure 5.3 for an
illustration. After having applied these reduction rules to an instance (N, c) for Pos-
Annotated Coherence we know that for the reduced instance (V;, ¢;) there only exist one
element s [1 4;” and one element # [J R;’. I then present a reduction from reduced
instances for Pos-Annotated Coherence to Min-Cut.

The reduction rule (AC 2) for Annotated Coherence is based on the observation
that for constraints with both endpoints in 4’ [J R’ we can simply check whether or not
they are satisfied by the assignment 4’ [J R’, delete them from the network, and update c
accordingly. Namely, for those constraints it is predetermined whether or not they will be

satisfied in the final partition.

>"1 thank Minko Markov for bringing to my attention the classic result that Min-Cut is
equivalent to a problem called Max-Flow. Algorithms for Min-Cut/Max-Flow can be
found in many introductory textbooks on algorithms and/or graph theory (e.g. Cormen,
Leiserson, & Rivest, 1990; Gross & Yellen, 1990; Gould, 1988; Foulds, 1992).

111

Figure 5.3. Illustration of reduction rules (AC 2) and (AC 3).

Here the rules (AC 2) and (AC 3) are applied to an instance for a Pos-Annotated
Coherence. Positive constraints are indicated by solid lines and negative constraints by
dotted lines. The black dots represent elements in 4°, the white dots represent elements in
R’, and the gray dots represent elements in P’. Application of (AC 2) to the instance
results in the removal of all constraints with both endpoints in 4’ [1 R’, and subsequent
application of (AC 3) results in merging all elements in 4 into one element s, and in
merging all elements in R’ into one element ¢. The bold lines in the bottom figure
indicate that the weights of those constraints have been changed in the merge procedure
of (AC 3). Note that the instance at the bottom is an instance for the Min-Cut problem.

112

(AC 2) Delete Pre-Determined Constraints Rule: Let (/, ¢) be an instance for
Annotated Coherence. If there exists a constraint (p, g) [1 4’ [R’, then let P* = P, and
C*= C\(p, q) and further,

(1) if (p,) O C and p, g 04’ or p, ¢ OR’ then c*= ¢ — w(p, q),

(2) if (p,q) U C and p, g 4" or p, g R’ then c* =,

(3) if (p,) O C"and (p 04’ and ¢ OR’) or (p OR’ and ¢ 04) then c* = c,

(4) if (p,q) U C and (p 14" and ¢ LJR") or (p LUR " and g L14’) then c* = c — w(p, q).
Finally, let the resulting instance, (N*, c*), be the new instance for Annotated Coherence.

Proof: Annotated Coherence is defined such that for any candidate solution (4 O R)”,
A’ A and R’ [R. Thus the weight of an edge (p, ¢) U A" [0 R’ will count towards
coherence if and only if condition (1) or condition (4) is met. m

The second reduction rule, (AC 3), is applied only if rule (AC 2) does not apply.
The rule (AC 3) is based on the observation that for all elements in A’ we can merge them
into one single element s without affecting the amount of coherence in the network;
similarly, for all elements in R’ we can merge them into one single element ¢.

(AC 3) Merge Pre-Assigned Elements Rule: Let (/, ¢) be an instance for
Annotated Coherence such that (AC 2) does not apply. If there exist two elements p and ¢
such that p, g 0 4" or p, g 00 R’, then let P* = P\{q}, C* = (C\Rn(q)) U C,, where C,, =
{(p,7r): (g,) O RMq)}, and c* = c. Further, we update the weight function w*(.) for each
constraint (x, y) [C* as follows:

(1) if (x, y) O C*\Cyp then w*(x, y) = w(x, x),
(2) if (x, y) O Cyp and (x, y) O Ra(g) then w*(x, y) = w(x,)
(3) if (x, y) U Cyp and (g, y) U Rx(g) then w*(x, y) = w(x, y) + w(g,).
4) if (x, y) U Cyp and (x, g) U Ry(q) then w*(x, y) = w(x, y) + w(x, q).
Finally, let the resulting instance, (N*, c*), be the new instance for Annotated Coherence.

Proof: Since (AC 2) does not apply, we know that for any two elements p, g [1 4’
U R, (p, q) U C. Hence, deleting g from P does not cause deletion of a constraint
between p and g. By (1) re-connecting all constraints that previously connected P’ to g

such that they now connect to p instead of g, and (2) setting the weight for each constraint

113

(p, r) U C*as w*(p, r) =wl(p, r) + w(g, r) (here we define w(q, r) =0, if (¢, r) U C), we
ensure that (N, c) is a yes-instance for Annotated Coherence if and only if (NV*, c*) is a
yes-instance for Annotated Coherence. m

We say an instance (&, ¢) for Annotated Coherence is reduced if and only if (AC
2) and (AC 3) do not apply (N, ¢). The following lemma presents a polynomial-time
reduction from reduced instances for Pos-Annotated Coherence to Min-Cut.

Lemma 5.11. Let (N, ¢), with N = (P, C), be a reduced instance for Pos-
Annotated Coherence, with 4" = {s} and R’ = {¢}. Let (G, k), with G = (V, E) such that

=Pand E = C, for every (u, v) U E, wg(u, v) = wa(u, v) and k = Z w(p,q)—c.

(p.g)0C
Then (N, c) is a yes-instance for Pos-Annotated Coherence if and only if (G, k) is a yes-
instance for Min-Cut.

Proof: Since (N, c) is a reduced instance for Pos-Annotated Coherence we know
C=C"=E.Let(4 0R)"=(4 0R)" be any partition. Then for every (p, ¢) 0 C =E, (p,
q) U Cutg(4, R) if and only if (p, g) LI SM(4, R). In other words, C = Cuts(4, R) 11 Sn(4,
R). Thus we have Cohy(4, R) = z(p,q)mc w(p,q)— Wa(4, R). We conclude that (N, ¢) is a

yes-instance for Pos-Annotated Coherence if and only if (G, k) is a yes-instance for Min-

Cut. m

5.7.4. An fpt-algorithm for |C"|-Annotated Coherence

Given the observations made in Sections 5.7.2, and 5.7.3, we are now in a position to
construct an fpt-algorithm for |C |-Annotated Coherence. The algorithm works as
follows: It takes as input an instance (V, ¢) for Annotated Coherence, and recursively
applies branching rule (AC 1) until no longer possible. Then each leaf i, withi=1, 2, ...,

271 in the resulting search tree is labeled by an instance (N;, ¢;) for Pos-Annotated
Coherence. Subsequently, the algorithm reduces each (V,, ¢;) using rules (AC 2) and (AC
3). Finally, it solves the Min-Cut problem for each reduced instance (V;, ¢;’).

Since the search tree size is bounded by 02" 7), the reduction rules (AC 2) and

(AC 3) can be applied in time O(|P[*), and Min-Cut can be solved in time O(|P[*), we

conclude that the whole algorithm runs in time OQ2" 1(|P]* + |P]*)) which is 02" 1|P]%).

Because this running time is fpt-time for parameter |P | we conclude Theorem 5.3.

114

Theorem 5.3. | P |-Annotated Coherence is in FPT.
Since |P7| < |C7| we know that 02" 1|PP) is 02/ !|PP),
Corollary 5.12. |C |-Annotated Coherence is in FPT.
Since, Coherence is a special case of Annotated Coherence, we also conclude:
Corollary 5.13. |P |-Coherence is in FPT.
Corollary 5.14. |C |-Coherence is in FPT
Note that Theorem 5.3 presents a stronger result than Corollary 5.12. It shows that
although the number of negative constraints is sufficient for capturing the non-
polynomial time complexity inherent in Annotated Coherence, it is not necessary—i.e.,
the number of elements that are incident to at least one negative constraint suffices as

well.

5.8. Conclusion

In this chapter I have illustrated techniques for complexity analysis by considering the
problem Coherence as defined by Thagard (2000) and Thagard and Verbeurgt (1998).
Section 5.3 illustrated the use of polynomial-time reduction to prove that Coherence is
NP-hard. Section 5.4 discussed and illustrated the conditions under which this NP-
hardness result generalizes to other coherence problems. Sections 5.5 and 5.6 presented
two different ways to use reduction and kernelization rules to derive a problem kernel for
c-Coherence. Finally, Section 5.7 illustrated how a branching rule and reduction rules can
be combined to construct a bounded search tree for |C |-Coherence.

Besides illustrating techniques, the analyses have lead to some interesting
observations about Coherence. Among other things, we have found that Coherence is
computationally easy (1) if it is possible to satisfy all constraints, (2) if the amount of
coherence that one is aiming for is not too high, and (3) if the number of negative
constraints in the network is not too large. Further, we observed that result (2) also holds
for the more general problem Double-Constraint Coherence, and that result (3) also holds
for the more general problem Annotated Coherence (including also Foundational
Coherence as a special case).

Many open questions remain. As I noted in Section 5.4, it remains to be shown

whether or not Single-Element Discriminating Coherence and Single-Element

115

Foundational Coherence are NP-hard. Also, it is of interest to study the classical
complexity of other special cases and variants of Coherence than the ones considered in
Sections 5.4.1 and 5.4.3. In this chapter, I have presented several fpt-algorithms for
Coherence: two for parameter ¢, one for parameter |P |, and one for parameter |C|. Future
research may investigate whether it is possible to obtain even faster fpt-algorithms for
these parameterizations. Further, Coherence and its generalizations have many implicit
parameters that [have not considered. For some such parameters it is easily determined
whether or not they are sufficient to capture the non-polynomial time complexity in
Coherence (e.g., the parameter |D| in Discriminating Coherence and Foundational
Coherence) but for others this is far from trivial (e.g., the parameter |H| in Discriminating
Coherence and Foundational Coherence).”® Lastly, since one ideally aims for low

incoherence (i.e., a small number of unsatisfied constraints), a parameter that may be of

particular interest is the relational parameter | = Z w(p,q)—c.Is 1-Coherence in

(p,¢)0C
FPT? As explained in Section 4.4.2, the fact that c-Coherence U FPT does not answer

this question.

¥ Note, however, that if elements in D are connected to elements in H by positive
constraints only (as generally seems to be the case in applications discussed by Thagard
(2000), then |H|-Foundational Coherence is in FPT by Theorem 5.3 (page 114), since
then D O P".

116

Chapter 6. Subset Choice

In this chapter we consider the problem Subset Choice, a generalization of a model by
Fishburn and LaValle (1996). I start by describing the general problem Subset Choice as
defined by van Rooij, Stege and Kadlec (2003). Then I discuss applications of Subset
Choice in human decision-making. The main part of this chapter is again devoted to
classical and parameterized complexity analyses of the problem. As before, in
interpreting the results we assume P # NP and FPT # W[1]. I will close with a brief

discussion and suggestions for future research.

6.1. Subset Choice as Hypergraph Problem
Subset choice denotes the situation in which a decision maker is presented with a set of
choice alternatives and is asked to choose a subset from the available set. Here we
consider subset choice problems in which the goal is to choose a subset with satisfactory
(subjective) value. Fishburn and LaValle (1996) presented a model of the value of sets
(and subsets) using weighted graphs. In the following, I present a generalization of their
model using weighted hypergraphs (see also van Rooij et al., 2003).

A hypergraph is a generalization of the concept of a graph. In a graph G = (V, E),
the set £ consists of unordered pairs of distinct vertices, 1.e., E L1 V' X V. In a hypergraph
H=(V, E), the set E consists of unordered A-tuples of distinct vertices, 2 <h < |V] (i.e., E

0 U V", where V" denotes the h-fold product of V). In other words, a graph is a special

2<hg|V|
type of hypergraph—viz., one in which E contains only 2-tuples of vertices. In a
hypergaph, we call an element in £ a hyperedge.

In the context of Subset Choice, every vertex v [] JV represents a choice
alternative, and a hyperedge (vi, va, ..., vi) U E, 2 < h < |V], represents the presence of an
h-way interaction between choice alternatives vi, va, ..., v;. Each vertex v [J J has an
associated vertex weight wvy(v), and each hyperedge e = (vi, va, ..., vi), e U E, has

associated hyperedge weight wg(e). For simplicity, we assume that wy(v) U Z, and wg(e)

>% Parts of this chapter also appear in a manuscript submitted for publication by L. van
Rooij, U. Stege and H. Kadlec (2003), entitled Sources of Complexity in Subset Choice.

117

U Z\{0} (here Z denotes the set of integers, and Z \{0} denotes the set of non-zero
integers).®” A vertex weight wy(v) represents the value of choice alternative v when
evaluated in isolation. A hyperedge weight wg(e), with e = (vy, va, ..., v3), represents the
added value of the combination of vertices vy, v, ..., v, over and above the value of the
singular elements vy, v, ..., and v, and over and above the value of all hyperedges that are
combinations of at most 4 — 1 vertices in {vi, va, ..., Vi}.

We assume that a decision-maker, when presented with a set of choice
alternatives V, embodies a (latent) value-structure that can be modeled by a weighted
hypergraph H = (V, E). The value associated with choosing subset '’ L1 J for a value-
structure H is then given by:

valuey (V)= D w,(n+ Y wi(e), (1)

v e (V)
where Ex(V’) = {(vi, va, ..., vi) U E | vi, vo, ..., vy O V73

Having introduced the necessary terminology, we can now define the general
Subset Choice problem:

Subset Choice

Input: A weighted hypergraph H= (V, E), E] U V" . Forevery v [V there is a

2<hgV|
weight wy(v) [Z and for every e [] E there is a weight wg(e) L1 Z \{0}. A positive
integer p.

Question: Does there exist a subset J” [1 V' such that valuey(V’) = p?

6.1.1. Notation and Terminology

We define notation and terminology specifically for hypergraphs: We say a vertex v U V/
is incident to hyperedge e = (v, v2, ..., ;) and, conversely, e is incident to v, if e [J £ and
v U {vi, va, ..., vi}. The degree of a vertex v [1 V' is the total number of hyperedges in H
that are incident to v, denoted degy(v). The span of an hyperedge e = (v, va, ..., Vi) 18
denoted by span(e) = 4. Two vertices u, v [1 V are neighbors in H if there exists an

hyperedge (vi, va, ..., vi) U E with u, v U {v|, va, ..., vi}. The (open) neighborhood Ny(v)

% All results reported in this chapter generalize straightforwardly to value-structures with
any values of fixed precision, simply by scaling the weights and results by the precision
factor.

118

is the set of neighbors of v in H, and the closed neighborhood is denoted Ny[v] = Ng(v)
[{v}. Note that in graphs we have degs(v) = [Ng(v)| for every v [I V, but in hypergraphs
degp(v) may be larger or smaller than [Ny(v)| for every v [V. Further note that for any
specific hypergraph H = (V, E) there exists a positive integer € < |V] such that spang(e) <
€.

In our analyses we will sometimes consider the special case that € =2 (i.e., the
special case that the hypergraph is a graph; cf. Fishburn & LaValle, 1996). Further, we
will consider value-structures that can be represented by hypergraphs with special
weighting functions. We define the following classes for hypergraphs. Let H = (V, E) be a
weighted hypergraph. Then we say: (1) H is a unit-weighted hypergraph if wy(v) U {-1,
+1} for all v U Vand wg(e) U {1, +1} for all e U E; (2) H is an edge-weighted
hypergraph if wy(v) U {—1, +1} for all v J V' and wg(e) Ll Z\{0} foralle U E; (3) His a
vertex-weighted hypergraph if wy(v) U Z and wg(e) U {-1,+1} foralle UE; (4) Hisa
conflict hypergraph if wy(v) 20 for all v I V'and wg(e) < —1 foralle U E; (5) His a
surplus hypergraph if wy(v) < 0 for all v [J V" and wg(e) = +1 for all e [] E. Intersections
of these classes define further special cases considered in our analyses. Table 6.1 gives an

overview of the special value-structures that we will consider.

Table 6.1. Overview of special value-structures.

value-structure wy(v) wg(e) span(e)
unit-weighted conflict graph (UCG) +1 -1 2
unit-weighted surplus graph (USG) -1 +1 2
edge-weighted conflict graph (ECQG) +1 <-1 2
vertex-weighted conflict graph (VCG) >1 -1 2
conflict graph (CG) >1 <-1 2
unit-weighted conflict hypergraph (UCH) +1 -1 < |V
conflict hypergraph (CH) >1 <-1 < |V
surplus hypergraph (CH) <-1 >1 4

Note: wy(v) denotes the weight of vertices, wg(e) denotes the weight on hyperedges, and
span(e) denotes the span of hyperedges in the value-structure.

119

In our analyses we also consider several explicit, implicit and relational parameters of the

input. Table 6.2 presents an overview of all parameters considered in this chapter.

Table 6.2. Overview of input parameters for Subset Choice.

Parameter Definition
€ Forall e I E, spany(e) < €
Qv Forall v OV, wy(v) £ Qy
Wy Forallv OV, wy(v) 2 —y
Qe For all e J E, wg(e) < Qg

We Forall e 0 E, wg(e) < —0x
A Forall v UV, degu(v) < A
0 ForallvO V,Ny(v) <9

P
q

A positive integer

q =p — valuey(V)

6.2. Subset Choice as Cognitive Theory

The problem Subset Choice arises in a many different settings (see e.g. Bossert, 1989,
Farquhar & Rao, 1976; Fisburn & LaValle, 1993, 1996; Kannai & Peleg, 1984),
including medical decision-making, management, voting and consumer choice. Below |
will briefly sketch applications in each domain. See also Table 1 in Farquhar and Rao
(1976) for an overview of many more applications.

Medical Decision-making: The task of a physician to prescribe a combination of
medications to a patient with multiple ailments can be modeled as follows. Let each
vertex v [V' represent a medication, and its vertex weight wy(v) represent the benefits for
the patient of taking medication v when considered in isolation. Further, let each
hyperedge e = (vi, va, ..., v), e 1 E and its weight wg(e) model the beneficial or
detrimental effects of taking medications vy, vy, ..., v, in combination. The physician’s
task may then be to prescribe a subset of medications such that the overall benefit to the
patient is satisfactory. Similarly, a physician’s choice of medical tests to diagnose a

patient can be modeled as a Subset Choice problem (see also Farquhar & Rao, 1976).

120

Management: The task of forming a committee (or a work team) can be modeled
as follows. Let each vertex v [1 V' represent a candidate for the committee, and its vertex
weight wy(v) represents the (judged) individual contribution of candidate v to the group

(e.g., his/her individual skills and abilities). Further, each hyperedge e = (vi, va, ..., v), e

[E, models an interdependency between candidates vy, vy, ..., v, with a positive weight
wg(e) meaning that combining the candidates vy, vy, ..., v;, leads to increased productivity,
and a negative weight wg(e) meaning that combining vy, vy, ..., v, leads to reduced

productivity (cf. Fishburn & LaValle, 1996). The goal is to choose a set of candidates
such that the overall level of productivity is satisfactory. Similarly, the problem of
selecting a set of job applicants can be modeled as a Subset Choice problem (see also
Figure 6.1 for an illustration).

Voting: The task of electing a set of political representatives can be modeled
analogously to the task of forming a committee and/or selecting job applicants described
above (cf. Haynes, Hedetniemi, & Slater, 1998). Also, voting in an approval voting
system constitutes a subset choice problem (e.g. Falmagne & Regenwetter, 1996;
Regenwetter, Marley, & Joe, 1998).61

Consumer Choice: Many consumer choice problems are subset choice problems.
Consider, for example, a consumer that wants to buy a pizza and must decide on a set of
pizza toppings (or, any other menu selection task; see also Farquhar & Rao, 1976). Then
each vertex weight wy(v) represents the individual taste value of topping v. Further, for
each hyperedge e = (v, va, ..., 1), a positive weight wg(e) means that toppings vi, va, ...,
vy, compliment each other, while a negative weight wg(e) means that toppings vy, va, ...,
vy, clash. The goal of the consumer is to choose a set of toppings of satisfactory tastiness.
Similarly, when purchasing a computer, the task of choosing a subset of satisfactory
value from among all computer options (monitor, software, printer, scanner, DVD, CD

burner, etc.) is a subset choice problem (see also Fishburn & LaValle, 1996).

%! In an approval voting system, the voter is to indicate for each political candidate
whether or not s/he approves of the candidate, and the candidate with the most approval
votes wins.

121

wy(a) =20.2 we(a, b) = -3.8 wg(b, e) =—0.8
wy(b) =22.5 we(a, ¢)=-2.4 we(c, d)=-0.9
wy(c) =19.6 we(a, e) =—1.2 we(d, e) = =3.8
wy(d) =18.4 wi(b, ¢)=-1.2 we(a, b,)= 0.8
wy(e) =16.3 we(b, d) = —4.1 we(b, d, e)=0.7

Figure 6.1. Example of a Subset Choice problem.

A university department has available a set of 3 professor positions, and a search
committee has to choose from among 5 applicants, called a, b, ¢, d, and e, to fill the
positions. The example assumes that applicants are being evaluated solely in terms of the
new contributions that they bring to a department. The figure on the left gives a
schematic representation of the applicants’ fields of specialization and their overlap. The
hypergraph H (on the right) and the vertex and hyperedge weights (on the bottom) model
the situation as follows. Each vertex p in H represents an applicant, and each hyperedge
(»1, p2, ..., pn) In H represents an overlap between the fields of applicants p, p2, ..., ps.
Each applicant p has an associated value, denoted wy(p), representing the judged
contribution of person p to the department when evaluated independently of the other
applicants. If there is overlap between the fields of two applicants p and ¢, then hiring
both p and ¢ will contribute less to the department than the sum of their respective
contributions (viz., then a part of what p contributes is also contributed by ¢, and vice
versa). This is represented by a negative weight wg(p, g). If there is an overlap of three
fields (e.g., in this example, fields of a, b and ¢ overlap), we define a positive weight for
their combination. This weight corrects for the over-counting due to the lower order
weights. For example, weight wg(a, b, ¢) is set so as to compensate in the computation of
valuey({a, b, c}) for the fact that in the sum wy(a) + wy(b) + wy(c) + wg(a, b) + wg(a, c)
+ wg(b, ¢) the overlap between a, b and ¢ has been removed once to often.

I close this section with a comment on the relationship between Subset Choice
and Coherence. Note that Coherence can be seen as a variant of Subset Choice; viz., one
in which the value function depends on both the set of chosen alternatives (the set 4 in

Coherence) and the set of rejected alternatives (the set R). Further, like Subset Choice,

122

Coherence can be naturally extended to networks that are hypergraphs (see e.g. Schoch,
2000). Due to the similarities between the two problems, their respective areas of
application may overlap and they may then serve as competing models. The relationship
between Coherence and Subset Choice will be further illustrated in a reduction from

Coherence to Subset Choice presented in Section 6.3 (Lemma 6.3, page 126).

6.3. Subset Choice is NP-hard
In this section we prove the following theorem.

Theorem 6.1. Subset Choice is NP-hard.

For illustrative purposes, I present three different proofs of Theorem 6.1. The first of
these proofs, in Lemma 6.1, is an adaptation of the reduction from Independent Set to
Profit Independence as presented in Section 4.6 (page 77). The second, in Lemma 6.2, is
due to Fishburn and LaValle (1996) and also involves a polynomial-time reduction from
the problem Independent Set. The third proof involves a reduction from Coherence
(Lemma 6.3). Later in this chapter, even a fourth proof of Theorem 6.1 will appear (in
Lemma 6.5, page 138). This latter proof involves yet another reduction from Independent
Set.

I present multiple proofs of Theorem 6.1 for several reasons. First, I wish to
illustrate that many different polynomial-time reductions are possible to prove that a
problem is NP-hard. This is not surprising, of course, since all NP-hard problems are all
directly or indirectly reducible to each other, and thus we know there exist at least as
many reductions between any two NP-hard problems as there are NP-hard problems.
What Lemma 6.1 and 6.2 (see also Lemma 6.5 in Section 6.5.2) illustrate, however, is
that even multiple more-or-less direct reductions from one problem to another may exist.
Second, the first proof (unlike the proof due to Fishburn & LaValle, 1996) has as a
corollary that Subset Choice is NP-hard even in the very restricted case when the value-
structure is a unit-weighted conflict graph. This result serves as the basis for the
parameterized complexity analyses in Sections 6.4 and 6.5. Third, in the present context
it is useful to illustrate the close relationship between Coherence and Subset Choice. This
also sets up the possibility for generalizing certain results for Subset Choice to

Coherence.

123

We start with the first reduction from Independent Set to Subset Choice (cf.
Lemma 4.3, page 77).

Lemma 6.1. Let the graph G = (V, E) and the positive integer k£ form an instance
for Independent Set. Then we define an instance for Subset Choice, consisting of a
weighted hypergraph G* with span € =2 (i.e., G* is a graph) and positive integer p, as
follows. Let G* = (V*, E*) with V* =} and E* = E. Further, for every v I V* let wy(v) =
+1 and for every e [E* let wg(e) =—1. Let p = k. Then G and k form a yes-instance for
Independent Set if and only if G* and p form a yes-instance for Subset Choice.

Proof: (=) Let (G, k) be a yes-instance for Independent Set. Then there exists an
independent set V' [V for G with |V’| 2 k. This means that Eq(}’) = [J and therefore

Eg«(V') = 0. Thus valueg«(V') = > w (V) + Y w(e) =|V|—[Ee(V)|=|V2 k=p.

V' e g ()
Therefore, (G*, p) is a yes-instance of Subset Choice.
(O) Let (G*, p) be a yes-instance for Subset Choice. Then there exists a subset
VO V* with valueg«(V’) =2 p. We distinguish two cases: (1) If Eg«(}V’) = U then Eg(}") =
[J and therefore V'’ is an independent set for G, with |V’| = p = k. We conclude that (G, k)
is a yes-instance of Independent Set. (2) If Eg«(V") # U then Eg(V”) # J. We transform
V'’ into an independent set V' for G using the following algorithm:
. V2V
2. while E¢(V”) # U do
3. pick an edge (1,v) O Eg(V”)
4. V7 <« V'\{v}
5. end while
6. return V"’

The algorithm considers each edge in G at most once and thus runs in time O(|E])
or O(|V%). Note that every call of line 4 results in the removal of at least one edge from
Es(V”). Hence, valueg«(V”’) = valueg«(V’) 2 p. Furthermore, when the algorithm halts
then Eg(V”) = U and thus V" is an independent set of size at least p = k for G. We

conclude that (G, k) is a yes-instance for Independent Set. m

124

Note that the reduction in lemma 6.1 is a polynomial-time reduction. Namely, we
can copy every element in 7 and E to V'* and E* respectively in time O(|V]%), we can set p
= k in time O(1), and we can assign each vertex in V' the weight ‘1’ and assign each edge
in E the weight ‘=1” in time O(|V?). Further, the algorithm that, given a subset with value
at least p, computes an independent set of size at least k = p, runs in time O(|V]*). Since
Independent Set is known to be NP-complete (e.g. Garey & Johnson, 1979), Lemma 6.1
proves Theorem 6.1.

Observe that, in the proof of Theorem 6.1, G* is always a unit-weighted conflict
graph (i.e., wy(v) = 1 for all v I V" and wg(e) = —1 for all e [] E). Thus the proof shows
that Subset Choice is NP-hard even in the restricted case where the value-structure can be
represented by a unit-weighted conflict graph. ®® I will refer to this special case as Unit-
weighted Conflict Graph (UCG) Subset Choice.

Corollary 6.1. UCG Subset Choice is NP-hard.

I remark that, since for any unit-weighted conflict graph G = (V, E) and any

subset V" 0OV, valueg(V') = Y w,(v)+ > wi(e) =|V'|—|Eq(V")| = profitp o(V"), the

vy OB (V)
problem UCG Subset Choice is equivalent to the problem Profit Independence introduced
in Chapter 4 (page 68).

Lemma 6.2 presents the reduction from Independent Set to Subset Choice
proposed by Fishburn and LaValle (1996, p. 189). I note that Fishburn and LaValle did
not present a proof of their reduction. It turns out that the proof of Lemma 6.1 also works

identically for Lemma 6.2. It is possible, however, to prove the “only if” direction in

62 Note that any value-structure G = (V, E), E O V*, with integer weight wy(v) = o, for
constant a = 1, and wg(e) = — wy(v), for all v [V' and all e U E, can be represented by a
unit-weighted conflict graph G* = (V*, E*), with w*y(v) =1 for all v U V" and w*g(e) =
—1 for all e L1 E. In general, any value structure H = (V, E) with wy(v) U Z forall v O V'
and wg(e) U Z\{0} for all e [] E, can be modeled by a hypergraph H* = (V*, E*), with
why(v) =2 for all v O V* and w*g(e) = “2 for all e O E*, where d is a common
divisor of all vertex and hyperedge weight values in H. There exist a subset V' [J V" with
valuey (V) = p for H if and only if valuey«(V") = £ for H*.

125

Lemma 6.2 with a simpler argument than the one used for Lemma 6.1. I will present this
simpler argument in the proof below.

Lemma 6.2. Let the graph G = (V, E) and the positive integer k£ form an instance
for Independent Set. Then we define an instance for Subset Choice, consisting of a
weighted hypergraph G* with span € =2 (i.e., G* is a graph) and positive integer p, as
follows. Let G* = (V*, E*) with V* =} and E* = E. Further, for every v [I V* let wy(v) =
+1 and for every e O E* let wg(e) = —|V]*. Let p = k. Then G and k form a yes-instance for
Independent Set if and only if G* and p form a yes-instance for Subset Choice.

Proof: (=) Identical to the proof of Lemma 6.1. (L]) Let (G*, p) be a yes-
instance for Subset Choice. Then there exists a subset V'’ [1 V'* with valueg«(V’) = p. We
observe that the size of 7’ is bounded by |V]. We show that Eg«(}") = [1. Assume that
Eg«(V") # U then valueg«(V’) < 0. Since p is a positive integer and valueg«(V") 2 p we
reach a contradiction. We conclude that Eg«(V”’) = L. Then Eg(¥”) = U and therefore V"’
is an independent set for G, with |V 2 p = k. We conclude that (G, k) is a yes-instance
for Independent Set. m

The next lemma presents a reduction from Coherence to Subset Choice (Lemma
6.3). The reduction in Lemma 6.3 is illustrated in Figure 6.2, and uses the strategy of
local replacement (Garey & Johnson, 1979, cf. the reduction from Vertex Cover to
Dominating Set presented in Chapter 3, page 37). The basic idea is as follows: Given an
instance (N, c) for Coherence with network N = (P, C), we define a graph G = (V, E) with
VU Pand E U C. For each constraint (u, v) in N we define a special substructure in G on
edge (u, v) U E; this substructure is of one form for positive constraints and of another
form for negative constraints. The transformation ensures that (N, c¢) is a yes-instance for

Coherence if and only if (G, p), with p = ¢, is a yes-instance for Subset Choice.

%3 Note that the proof of Lemma 6.2 also supports a reduction from G to G* in which all
hyperedge weights in G* are set to —|V] instead of —|V]*.

126

Instance (V, c) Instance (G, p), p =c,
for Coherence for Subset Choice

Figure 6.2. Illustration of the reduction in Lemma 6.3.

(Left) An instance (V, c¢) for Coherence. For simplicity, the example assumes that all
constraints in N have weight ‘1°. Note that this special case of Coherence is also NP-hard
(Corollary 5.3, page 84). The solid lines represent positive constraints in N, and the
dotted lines represent negative constraints in N. (Right) The instance (G, p) for Subset
Choice obtained on the transformation from (#, c¢) in Lemma 6.3. Here white and light
gray vertices have weight ‘0’ and dark gray vertices have weight ‘+1°; solid edges have
weight ‘“+1” and dotted edges have weight ‘—1°. Note that (V, ¢) is a yes-instance for
Coherence if and only if (G, p) is a yes-instance for Subset Choice.

Lemma 6.3. Let network N = (P, (), with weight function wc(.), and the positive
integer ¢ form an instance for Coherence. Then we define an instance for Subset Choice,
consisting of a weighted graph G = (¥, E) and positive integer p, as follows.

(1) For each element v L1 P there is a corresponding vertex v [V.

(2) For each positive constraint (u, v) 0 C", there is a corresponding edge (u, v) 0 E.
Further we create in G a vertex x,,, and we attach x,, to both © and v with the edges
(xuv, 1) and (x,,, v). Finally we set vertex weights wy(u) = wy(v) = 0, and wy(x,,) =
wc(u, v), and we set edge weights we(u, v) = we(u, v), and Wg(x,,, u) = Wg(Xyy, V) =
-wc(u, v).

(3) For each negative constraint (u, v) [C", there is a corresponding edge (u, v) LI E.
Further we create in G two vertices x, and x,. We attach x, to u with edge (x,, u); we

attach x, to v with edge (x,, v); and we attach x, and x, to each other with edge (x,, x,).

127

Finally we set vertex weights wy(u) = wy(v) = wy(x,) = wy(x,) = 0, and we set edge
weights wg(u, v) = we(x,, x,) = — wc(u, v), and wg(x,, u) = We(x,, v) = wc(u, v).
(4) Finally, we set p = c.
Then (N, ¢) is a yes-instance for Coherence if and only if (G, p) is a yes-instance for
Subset Choice.

Proof: (=) Let (N, c) be a yes-instance for Coherence. Then there exists a

partition (4 O R)”, with Cohp(4, R) = z w . (u,v) 2 c. We consider the constraints in

()OS (4,R)
Sn(4, R) one by one, and we build a set V'’ 1 4, V' I V, with valueg(V’) = c. Let (1, v) U
Sn(A4, R): (a) ifu, v A, then letu, v V’; (b) ifu, v IR, then let x,, U V7; (c)ifu A
and v J R, then let u, x,,J V’; (d) if u L R and v U 4, then let v, x, J V". Note that in case
(a) (u, v) 1s a positive constraint (otherwise it would not be in Sy(4, R)), and thus
valueg({u, v}) = wy(u) + wy(v) + Wy(xi) = Wy(xw) = We(u, v); in case (b) (u, v) is a
positive constraint, and thus valueg({x,,}) = wc(u, v); in case (c) (u, v) is a negative
constraint, and thus valueg({u, x,}) = wc(u, v); and, in case (d) (1, v) is a negative
constraint, and thus valueg({v, x,}) = wc(u, v). We conclude that valueg()’) = Cohn(4,
R) = ¢ = p, and thus (G, p) is a yes-instance for Subset Choice.

() Let (G, p) be a yes-instance for Subset Choice. Then there exists a subset V'’
0 V' with valueg(V”) = p. Assume that the size of /" maximum. We consider the elements
in P, and we build a partition (4 0 R)" as follows. Let v 0 P. If v 0 V", then let v 0 4
otherwise let v [0 R. We now consider each edge (1, v) 0 C: (a) Let (1, v) O C". By the
construction of G, the weight wc(u, v) counts towards valueg(V”) if and only if [u, v U V"
and x,, J V] or [u, v U V" and x,, J V], and thus wc(u, v) counts towards Cohp(4, R) if
and only if [u, v V" and x,, 0 V'] or [u, v V" and x,, O V’]. (b) Let (1, v) O C". By the
construction of G, the weight wc(u, v) counts towards valueg(V”) if and only if [u, x, O V'~
and v, x, O V] or [u, x, U V" and v, x, U V], and thus wc(u, v) counts towards Cohy(A4, R)
if and only if [u, x, 0 V" and v, x, 0 V'] or [u, x, 0 V" and v, x,, J V’]. We conclude that

Cohn(4, R) = valueg(V’) = p 2 ¢, and thus (N, ¢) is a yes-instance for Coherence. m

128

6.4. Subset Choice on Unit-weighted Conflict Graphs

In the previous section we have seen that Subset Choice is NP-hard even for the special
case where the value-structure can be modeled by a unit-weighted conflict graph, called
UCG Subset Choice (Corollary 6.1). In this section we investigate the parameterized
complexity of UCG Subset Choice for two different parameters. The first parameter is the
natural parameter for UCG Subset Choice, the positive integer p. The second parameter is
the relational parameter g, where ¢ is defined as follows: Let (H, p), with H= (V, E), be
an instance for Subset Choice; then g = p — valuey(V). As we can rewrite p = valuegy(V) +
g, the criterion ¢ is naturally interpreted as the requirement that the value of the chosen
subset V'’ should exceed the value of /' by amount g.

First, in Section 6.4.1, we will show that p-UCG Subset Choice is not in FPT
(unless FPT = W[1]). In Section 6.4.2, I explain in more detail how the relational
parameter g for Subset Choice relates to the natural parameter p, by introducing a
problem called Subset Rejection. Then, in Section 6.4.3, we will show that g-UCG Subset
Choice is in FPT.

6.4.1. p-UCG Subset Choice is W[1]-hard

The following theorem shows that p-UCG Subset Choice is not in FPT (unless FPT =
W([1]). The proof involves a reduction from the known W[1]-complete problem, -
Independent Set (Downey & Fellows, 1999).

Theorem 6.2. p-UCG Subset Choice U FPT (unless FPT = W[1]).

Proof: Reconsider the proof of Lemma 6.1. Lemma 6.1 presents a polynomial-
time reduction in which we transform any instance (G, k) for Independent Set to and
instance (G*, p) for Subset Choice, with G* a unit weighted conflict graph and p = k. In
other words, Lemma 6.1 presents a parametric reduction from k-Independent Set to p-
UCG Subset Choice. Since, the problem k-Independent Set is known to be W[1]-
complete, we conclude that p-UCG Subset Choice is W[1]-hard. m
Since UCG Subset Choice is a special case of Subset Choice we conclude:

Corollary 6.2. p-Subset Choice [J FPT (unless FPT = W[1]).

129

Corollary 6.2 shows that the desire to obtain a satisfactorily large subset value (i.e., we

want a value of at least p) is, in itself, not a crucial source of complexity in Subset

Choice.

6.4.2. Subset Rejection and Parameter ¢
This section explains in more detail the relational parameterization of Subset Choice,
when parameterized by g = p — valuey(V). To facilitate thinking in terms of the parameter
g (instead of p) we define a new value function on subsets of vertices in a weighted
hypergraph: Let H = (V, E) be a hypergraph and let V" [J V' be a subset. Then the
improvement in value of '\J’, relative to the value of V, is called rejection value of V"’
and is defined as:

rejecty(V’) = valueg(V/V’) — valuey(V)

{waﬂ ZWE@J —[Zwv(v)+ Zwﬁ(e)J

vary! eE,; (V\V") vy elE, (V)

—IEEZWV(V) + ZWE(Q)}

vy eOR ,; (V')

where Ry(V") = {(vi, va, ... vi) U E | vior v 0r ... or v; L V'}.

Note that a vertex v has positive rejection-value if its weight p/us the sum of the
weights of its incident hyperedges is negative. In other words, a choice alternative has
positive rejection-value if it strongly clashes with other choice alternatives in the set of
available alternatives. More generally, a subset /'’ [J V" has positive rejection-value if the
sum of the values of its elements pl/us the sum of the weights of all hyperedges incident to
a vertex v [J V'is negative. Thus, removing a rejection set V'’ with positive rejection-value
from V entails the removal of negative value from H.

We can now state a new problem, called Subset Rejection:

Subset Rejection

Input: A weighted hypergraph H= (V, E), E [] U V", forevery v O V a weight

2<h<|V)
wy(v) U Z, for every e [E a weight wg(e) [J Z \{0}, and a positive integer g.

Question: Does there exist a subset V'’ [V' such that rejecty (V) = ¢?

130

While the problem Subset Choice asks for the subset V'’ that we want to choose, the
problem Subset Rejection asks for the subset /" that we want to reject (in the latter case
J\V” is the subset that we want to choose). Note that there exists a subset V'’ [V' with
rejecty(V’) =2 g = p — valuey(V) if and only if there exists a subset V* = J\}J” with
valueg(V*) 2 p = g + valuey(V). Thus, the natural parameterization of Subset Rejection
(denoted g-Subset Rejection) is a relational parameterization for Subset Choice (denoted

(p — valuey(V))-Subset Choice or, simply, g-Subset Choice).

6.4.3. ¢g-UCG Subset Choice is in FPT

Above we have seen that g-Subset Choice is a relational parameterization for Subset
Choice. In this section, we consider the parameterized complexity of g-Subset Choice on
unit-weighted conflict graphs, i.e., g-UCG Subset Choice. We prove the following
theorem.

Theorem 6.3. g-UCG Subset Choice L] FPT.

For simplicity, we work with the version Subset Rejection instead of Subset Choice. That
is, we consider the problem as one of deciding whether or not a subset V'’ with rejecty (V)
= p — valuey(V) = g exists; instead of deciding whether or not a subset V* = \J” with
valuey(V*) 2 p exists. Keep in mind, though, that the two conceptualizations are
equivalent; i.e., the answer is “yes” for the one if and only if the answer is “yes” for the
other.**

The proof of Theorem 6.3 is organized as follows. We start with two
observations: The first is a general observation that holds for conflict hypergraphs
(Observation 6.1), the second applies specifically to unit-weighted conflict graph
(Observation 6.2). Using Observations 6.1 and 6.2, we define a branching rule, (UCG 1),

that can be used to construct a bounded search tree for g-Subset Rejection, and thus also

64 Although it is true that the search versions of Subset Choice and Subset Rejection ask
for a different solution subset (i.e., if V’UJ V' is a solution for the one problem, then NV’ is
a solution for the other), this difference is insubstantial for present purposes. Namely, the
transformation from a set V'’ to its complement J\}J”’ can be done in polynomial-time and
thus does not affect the (classical and parameterized) complexity classification of Subset
Choice/Subset Rejection. Further, since V' is given as part of the input, one can build the
sets V" and \V’ simultaneously by deleting a vertex v from V as soon as v is included in
J’; the remaining vertices in } together form NV,

131

for g-Subset Choice. Finally, we conclude an fpt-algorithm that solves g-Subset Choice in
time OQ2|V)).

Observation 6.1 applies to general conflict hypergaphs. It shows that a vertex v
with non-positive rejection-value (i.e., its weight plus the weights of its incident edges is
positive), in a conflict hypergraph, never needs to be rejected (i.e., always can be chosen).
Namely, if rejecty({v}) < 0, then there always exists a subset }” with maximum rejection-
value such that v L1 V.

Observation 6.1. Let conflict hypergraph H = (V, E) and positive integer g form
an instance for Conflict Hypergraph (CH) Subset Rejection. Further, let v [J V' be a vertex
such that rejecty({v}) < 0. Then (H, g) is a yes-instance for CH Subset Rejection if and
only if there exist a subset V'’ with rejecty(V’) =2 gand v LI V.

Proof: (=) Let (H, q) be a yes-instance for CH Subset Rejection. Then there
exists a subset V* [V with rejecty(V*) = g. We show that there exist a subset V' [V'*
with rejecty (V) = rejecty(V*) = g and v 1 V°. We distinguish two cases (1) Let v [V*,
Then V'’ = V* proves the claim. (2) Let v J V'* Then consider the subset V*\{v}. Since H
is a conflict hypergraph (i.e., it has only negative edges and positive vertices) and
rejecty({v}) < 0, we know that rejecty(V*\{v}) = rejecty(V*) = g. Then V' = V*\{v}
proves the claim. (1) Let (H, g) be an instance for CH Subset Rejection and let V'’ [V
with rejecty (V') 2 g and v [V. Then (H, q) is a yes-instance for CH Subset Rejection. m

Observation 6.2 applies to unit-weighted conflict graphs. It shows that for every
edge (u, v) in a unit-weighted conflict graph we may reject u or v. Namely, in that case,
there always exists a subset /'’ with maximum rejection-value with at least one of u or v
in V"

Observation 6.2. Let G = (V, E) and g form an instance for UCG Subset
Rejection and let (u, v) U E. Then (G, g) is a yes-instance for UCG Subset Rejection if
and only if there exists V" [1 V with rejectg(V)=2gandu UV’ or v V.

Proof: (=) Let (G, g) be a yes-instance for UCG Subset Rejection and let (u, v) [
E. Then there exist a subset V* [1 V with rejectg(V*) = g. We show that there exist a
subset V' [V* with rejectg(V”) = rejectg(V*) = g such that v [V. We distinguish two
cases (1) Let u O V*or v U V* Then the V= V* proves the claim. (2) Let u, v [J V'*.

132

Then (u, v) U Rg(V*). Since wy(u) = 1 and wg(u,v) = —1 we can conclude rejectq(V* U
{u}) 2 rejectg(V’) + (—wv(u) — we(u,v)) = rejectg(V’) 2 g. Then V' =V* 1 {u} proves
the claim. (U) Let (G, ¢) be an instance for UCG Subset Rejection and let V" [] V' with
rejectg(V’)=gand u U V7 or v U V. Then (G, ¢q) is a yes-instance for UCG Subset
Rejection. m

From Observation 6.2, we know that for every edge in a unit-weighted conflict
graph we can include at least one of its endpoints in /” without loss in rejection-value.
From Observation 6.1 we now that we only need to include endpoints if they have
positive rejection-value in V. The rule (UCG 1) uses these observations to branch on
edges in a unit-weighted conflict graph.

(UCG 1) The Positive Endpoint Edge-Branching Rule. Let s be a search tree
node labeled by an instance (G, g), G = (V, E), for UCG Subset Rejection and let (vi, v2)
U E with rejectg ({v;}) > 0 for at least one vertex v; U {v;, v»}. Then for each v; U {v;, v»}
with rejectg ({v;}) > 0 we create a child s; of s and label it by (G;, ¢;), where G; = (V\{v:},
E\R({vi})), g: = q — rejecta({vi}).

Note that (UCG 1) only applies if there exists an edge (v, v2) in G with
rejectg({vi}) > 0 or rejectg({v2}) > 0. Thus application of (UCG 1) to a node in the search
tree always leads to the creation of at least one child of that node. If only one of v, and v,
has positive rejection-value then exactly one child is created, and if both v, and v, have
positive rejection-value then exactly two children are created.

To prove that (UCG 1) is a valid branching rule for UCG Subset Rejection, we
need to show that (G, g) is a yes-instance for UCG Subset Rejection if and only if at least
one of the children of s is labeled by a yes-instance for UCG Subset Rejection.

Proof of (UCG 1): Let (G, g) be a yes-instance for UCG Subset Rejection and let
(v1, v2) O E with rejectg ({v;}) > 0 for at least one vertex v; L1 {v;, v»}. We distinguish two
cases. (1) Let both v; and v, have positive rejection-value. Then application of rule
(UCG 1) to edge (v1, v2) leads to the creation of two instances (G, q1) and (G2, g2), where
(G1, q1) represents the possibility that vi U V" and (Ga, g2) represents the possibility that
v, 0 V. From Observation 6.2 we know that there exists a subset V' 1 V' with maximum

rejection-value such that v J V7’ or v, U V’. We conclude that (G, gq) is a yes-instance for

133

(UCG 1)

N

(G, q1), ¢, = q — reject({v}) (Gy, 42), 4, = g — reject;({u})

®

Figure 6.3. Illustration of branching rule (UCG 1) for
UCG Subset Choice.

The rule (UCG 1) is applied to an instance (G, g) for
UCG Subset Rejection. The top figure illustrates
braching on an edge (u, v) in G where both endpoints
u and v have positive rejection-value. The left figure
illustrates branching on an edge (v, w), where only

one endpoint, v, has positive rejection-value. In the
l | (UCG 1)

first case two new instances (G, q1) and (G, ¢») are
created, while in the second case only one new

(G, 91), 1 = q —reject ({v}) instance (Gj, ¢q;) is created (in other words, in the
latter case (USC 1) works as a reduction rule). Note
© that, in unit-weighted conflict graphs, vertices with

& non-positive rejection-value are singletons or pendant
vertices (e.g. w, x, y, and z). This means that we
cannot apply (UCG 1) if and only all vertices left in
the graph are of this type. Note that including any of
these vertices in a subset can never improve its
rejection-value (see Observation 6.1).

134

UCG Subset Rejection if and only if (G, g1) or (G2, ¢2) is a yes-instance for UCG Subset
Rejection. (2) Let only one of v; and v, have positive rejection-value. W.l.o.g. let
rejectg({vi}) > 0 and rejectg({v2}) < 0. Then application of rule (UCG 1) leads to the
creation of only one instance (G, ¢1) representing the assumption that v; [J V. From
Observation 6.2 we know that there exists a subset V'’ J J with maximum rejection-value
and vi O V" or v, O V. Further, from observation 6.1 we know that there exists a subset
)7 O V with maximum rejection-value such that v, [1 V. We conclude that (G, ¢) is a
yes-instance for UCG Subset Rejection if and only if (G, ¢1) or (G2, ¢2) 1s a yes-instance
for UCG Subset Rejection. m

With the following lemma we conclude an fpt-algorithm for g-UCG Subset
Rejection that runs in time O(2|V)).

Lemma 6.4. ¢-UCG Subset Rejection can be solved in time O(2|V)).

Proof: We describe an fpt-algorithm for g-UCG Subset Rejection. The algorithm
takes as input an instance (G, ¢g) and creates a search tree 7 by recursively applying (UCG
1) to (G, g) until either an instance (G, ¢’) is encountered with ¢’ < 0 (in which case the
algorithm returns the answer “yes”) or (UCG 1) cannot be applied anymore. If the
algorithm halts without returning the answer “yes” then we know that each leaf s; in the
search tree 7 is labeled by an instance (G;, ¢;), such that all vertices in G; have non-
positive rejection-value. Then, from Observation 6.1, we can conclude that (G, ¢) is a no-
instance. We now prove that the algorithm halts in time OQ2%|V)).

First, to apply (UCG 1) to an instance (G, g), G = (V, E), we need to find a vertex
v 1 V' with rejectg({v}) = 1. To find such a vertex we need to consider at most |V]
vertices. Further, whenever we consider a vertex that has non-positive rejection-value we
spend no more than O(1) time to compute its rejection-value. Hence, we can find a vertex
with positive rejection-value (or know that none exists) in time O(|V]). If we find a vertex
v with rejectg({v}) = 1, then we branch on any edge (v, w) incident to v. For each new
search tree node s; that we create we spend at most O(|V]) time to label it by (G, ¢,).
Namely, we spend time O(deggs(v)) to compute the value rejectg({v}), and we need time
O(degg(v)) to delete v and its adjacent edges from G. Thus each node in the search tree

can be labeled in time O(degg(v)). Since degg(v) < |V] — 1, we conclude that O(degg(v)) <
o(¥)).

135

Second, observe that each application of (UCG 1) leads to the creation of at most
2 new branches in the search tree, and thus, fan(7) < 2. Further, whenever (UCG 1)
creates a node labeled by (G, ¢°) for a parent labeled by (G, ¢) then ¢’ < g — 1. Thus, we
have depth(7) < g. We conclude that the size of the search tree is at most O(27).
Combined with the running time needed for applying (UCG 1) we can conclude the
algorithm runs in time O(2%7)). m

Since, the parameterized problem g-UCG Subset Rejection is equivalent to g-
Subset Choice, we also have:

Corollary 6.3. g-UCG Subset Choice can be solved in time O(2%|V)).
Since, O(29V)) is fpt-time for parameter ¢, Corollary 6.3 proves Theorem 6.3.

6.4.4. Improved Results for g-UCG Subset Choice

In the previous section we have shown how we can solve g-UCG Subset Choice in fpt-
time O(27|V]). The arguments we used to derive this result are intended to provide an easy
to follow illustration. I remark that, with the use of different techniques and a better
running-time analysis, it is possible to derive a much faster fpt-algorithm for g-UCG
Subset Choice that runs in time O(1.1519 + g|V)). This result follows from work by Ulrike
Stege and myself on the parameterized problem p-Profit Cover (see e.g. Stege et al.
2002). Here I briefly sketch how our results obtained for p-Profit Cover translate to g-
UCG Subset Choice.

Let G = (V, E) be a unit-weighted conflict graph. Then for any subset V' [V, we

have rejectg(V’) = —[Zwv(v) + Y wi(e)| = [Ra()| = |V = profitec,g(¥). This means

vy eOE, (V')

that (G, g) is a yes-instance UCG Subset Rejection if and only if (G, p), withp =g, is a
yes-instance for Profit Cover. In other words, the parameterized problems g-UCG Subset
Rejection and p-Profit Cover are equivalent. This means that any result for p-Profit Cover
directly translates to g-UCG Subset Rejection, for ¢ = p, and thus also to g-UCG Subset
Choice.

In Stege et al. (2002), it is shown that p-Profit Cover has a problem kernel of size
|V] < 2p for connected input graphs, and a problem kernel of size |V] < 3p — 3 for

disconnected input graphs. Hence we can conclude:

136

Corollary 6.4. g-UCG Subset Choice has a problem kernel of size |V] < 2g for
connected input graphs, and a problem kernel of size |V]| < 3¢ — 3 for disconnected input
graphs.

The kernelization procedure of Stege et al. (2002) runs in time O(p|V]). From
Corollaries 6.3 and 6.4 we conclude that g-UCG Subset Choice is solvable in time
0(2(3q - 3) + q|V)), which is O(2%g + g|V)]). Since it is possible to re-kernelize the input
after each application of branching rule (UCG 1), using an analysis technique by
Neidermeier and Rossmanith (1999), we conclude the following improvement in the
running time for g-UCG Subset Choice:

Corollary 6.5. g-UCG Subset Choice can be solved in time O(27 + ¢|V)).
Moreover, with the use of reduction rules, kernelization, a different branching rule, re-
kernelization after each branching, and detailed case analyses, it is possible to conclude a
bounded search tree for p-Profit Cover whose size is O(1.1517) (Stege et al., 2002).

Corollary 6.6. ¢-UCG Subset Choice can be solved in time O(1.1517 + ¢|V]).

6.5. Generalizing g-UCG Subset Choice
Theorem 6.3 shows that if a decision-maker has a value-structure that can be represented
by a unit-weighted conflict graph, and s/he aims to choose a subset with a value that is at
least ¢ more than valueg(V), then the task is practically feasible for large |V] as long as ¢
is not too large. In this subsection we study to what extent this result generalizes to value-
structures that form generalizations of the unit-weighted conflict graph. Specifically, we
will consider Subset Choice on edge-weighted conflict graphs (ECG Subset Choice), on
vertex-weighted conflict graphs (VCG Subset Choice), on conflict graphs (CG Subset
Choice), and on conflict hypergraphs (CH Subset Choice). For problems I and I1°, let
M” O I denote that IM” is a special case of 1. Then we have UCG Subset Choice [J ECG
Subset Choice [1 CG Subset Choice [1 CH Subset Choice; and also UCG Subset Choice
[VCG Subset Choice [CG Subset Choice LU CH Subset Choice.

The investigation in Sections 6.5.1-6.5.4 takes the following form. Each
subsection considers one of the aforementioned problems. For each considered problem
M we ask: Is g sufficient to capture the non-polynomial complexity inherent in [1? If the

answer is “no,” we attempt to find a superset K [1 g, such that K- [J FPT. In Section 6.6,

137

we will review to what extent the analysis in this section has led to the identification of

crucial sources of complexity as defined in Section 4.5.

6.5.1. g-ECG Subset Choice is in FPT

Here we show that g-ECG Subset Choice is in FPT. First note that Observation 6.1 also
applies to ECG Subset Choice (viz., edge-weighted graphs are a special type of conflict
hypergraphs). Further, Observation 6.2 for unit-weighted conflict graphs directly
generalizes for edge-weighted conflict graphs, as shown in Observation 6.3.

Observation 6.3. Let G = (V, E) and ¢ form an instance for ECG Subset
Rejection and let (u, v) U E. Then (G, g) is a yes-instance for ECG Subset Rejection if
and only if there exists V" [I V with rejectg(V)=2gandu U V' or v V.

Proof: Analogous to the proof of Observation 6.2, with G being an edge-weighted
conflict graphs instead of unit-weighted graph. m

From Observations 6.1 and 6.3 we can conclude that the algorithm described for
¢-UCG Subset Choice also solves g-ECG Subset Choice in time O(27|V]).

Corollary 6.7. g-ECG Subset Choice [J FPT.
Corollary 6.7 shows that the presence of edge-weights in a conflict graph, in itself, does
not add non-polynomial time complexity to subset choice on conflict-graphs over and

above the non-polynomial time complexity already captured by g.

6.5.2. g-VCG Subset Choice is W[1]-hard
Here we show that, although ¢ is sufficient for capturing the non-polynomial time

complexity in ECG Subset Choice, the same is not true for VCG Subset Choice (unless
FPT = W[1)).

Theorem 6.4. g-VCG Subset Choice U FPT (unless FPT = W[1]).
To prove Theorem 6.4, we present a parametric reduction from k-Independent Set to g-
VCG Subset Choice in Lemma 6.5 (see Figure 6.4 for an illustration). For simplicity, in
this reduction we assume that the input graph for k-Independent Set is of minimum
degree 1 (i.e., G contains no singletons). Since k-Independent Set (with or without
singletons) is known to be W[1]-complete (Downey & Fellows, 1999) the reduction
shows that g-VCG Subset Choice is W[1]-hard.

138

Lemma 6.5. Let (G, k), G = (V, E), be an instance for k-Independent Set, where G
contains no singletons. We build an instance (G*, ¢q), with G* = (V'*, E*), for g-VCG
Subset Choice as follows. G* has the same edges and vertices as G but is a vertex-
weighted conflict graph. Therefore let J'* =} and E* = E. We define the weights for G*
as follows: for every v [J V*let wy(v) = degg«(v)—1 and for every e L] E* let wg(e) =—1.
Note that rejectg«({v}) =1 for all v 0 V*, Furthermore let ¢ = k. Then G has an

independent set of size at least k& if and only if there exists V'’ [V* with rejectg«(V’) = k.

Figure 6.4. Illustration of the reduction in Lemma 6.5.

The reduction transforms G into G* The unweighted version of the figure
represents graph G, and the weighted version of the figure represents the graph
G*. Only the vertex weights are shown for G*; since G* is a vertex-weighted
conflict graph, all edge weights are set ‘—1.” Note that wy(v) = degg(v) — 1 for
each vertex v in G*. This property ensures that G has an independent set of size k
if and only if there exists a subset V" [I V, with rejectg«(V’) 2 g = k.

Proof of Lemma 6.5: (=) Let V'OV, V' = {v|, va, ..., v}, be an independent set
for G. This means that no two vertices v;, v; [{vi, v», ..., v} share an edge in G and since
V'="V* also no two vertices v;, v; I {vi, v, ..., v} share an edge in G*. Thus rejectg+(V")
= rejectg«({v1}) + rejectg«({v2}) + ... + rejectg«({wi}) = k.

(O) Let V" I I* with rejectg«(V”) 2 g. We show G has an independent set of size
at least g. We distinguish two cases: (1) If V7’ is an independent set for G* then V"’ is an
independent set for G. Assume V'’ = {vi, v, ..., &}. Then rejectg«(V’) = rejectg«({vi}) +

rejectg«({2}) + ... + rejectg«({v}) = ¢, and thus k= ¢. (2) If V'’ is not an independent set

139

for G*, we transform V'’ into an independent set V' for G* with the algorithm described
in the proof of Lemma 6.1 (page 123). Note that line 4 of the algorithm always results in
the removal of at most degg+(v) —1 edges from Rg«(7”). Hence, in line 4, rejectg«(V"\{v})
2 rejectg«(V”") — wy(v) — (degg+«(v) —1) = rejectg«(V") — (degg«(v) —1) + (degg+(v) —1) =
rejectg«(V”), and thus in line 6, rejectg+(V ") 2 g. Furthermore, when the algorithm halts
J is an independent set for G* and therefore for G. Thus case (1) appliesto V'=V"". =

I comment that the above reduction runs in polynomial-time, and thus Lemma 6.5
also constitutes a proof that Subset Choice is NP-hard (Theorem 6.1). Further, since VCG
Subset Choice is a special case of CG Subset Choice, which in turn is a special case of
CH Subset Choice, we also conclude:

Corollary 6.8. g-CG Subset Choice Ul FPT (unless FPT = W[1]).

Corollary 6.9. g-CH Subset Choice Ul FPT (unless FPT = W[1]).

6.5.3. {q, Qv}-CG Subset Choice is in FPT

We consider another parameter for Subset Choice: The maximum vertex weight, denoted
by Qvy. Note that for every instance (H, q), H = (V, E), for Subset Choice, there exist a
positive integer value Qy such that for all v U V, wy(v) < Qy. Thus, Qy is an implicit
parameter for Subset Choice. In the following we will show that, although ¢g-CG Subset
Choice is W[1]-hard (Corollary 6.8), the parameter set {g, Qv} is sufficient for capturing
the non-polynomial time complexity inherent in CG Subset Choice.

Theorem 6.5. {g, Qy}-CG Subset Choice [FPT
The proof of Theorem 6.5 is organized as follows. First we observe that for every vertex
in a conflict graph with positive rejection-value we can always either reject that vertex or
reject at least one of its neighbors (Observation 6.4 below). Using Observation 6.4 and
Observation 6.1 (see page 131) we define a branching rule that can be used to construct
an fpt-algorithm for {g, A}-CG Subset Choice (here A denotes the maximum vertex
degree). Then we show that there exists a function f{Qy, ¢) such that A < f{Qy, ¢). This

allows us to conclude the existence of an fpt-algorithm for {g, Qv}-CG Subset Choice.

140

Observation 6.4 shows that, for an instance (G, ¢g) for CG Subset Choice and a
vertex v with positive rejection-value, if a subset /'’ [J J"has maximum rejection-value
and v [V"’ then v has at least one neighbor u U V' with u U V.

Observation 6.4. Let G and g form an instance for CG Subset Choice and let v [
V with rejectg(v) > 0. Then G and g form a yes-instance for CG Subset Choice if and only
if there exists V'’ U V' with rejectg(V’) = g, and at least one vertex u [Ng[v], with u [V.

Proof: (=) Let (G, q) be a yes-instance for CG Subset Choice and let v [J with
rejectg(v) > 0. Then there exists V* [V with rejectg(V*) = g. We show there exists V' [
V' such that rejectg(V”) = rejectg(V*) = ¢ and at least one vertex u [Ng[v], with u (0 V.
We distinguish two cases: (1) There exists a vertex u [1 Ng[v] with u [J V'*. Then V" = V'*
proves the claim. (2) There does not exist u [1 V* with u [J Ng[v]. Then v I V'*, since v [
Ng[v]. Further, since rejectg({v}) = 1 we know that rejectqg(V* U {v}) = rejectg(V*) +
rejectg({v}) = rejectg(V*) + 1 > g, and thus V' = V* U {v} proves the claim. (Il) Let G
and ¢ form an instance for CG Subset Choice and let V’ [J V' be any subset with
rejectg(V’) 2 g. Then (G, g) is a yes-instance for CG Subset Choice. m

From Observation 6.1 (page 131) we know we can exclude vertices with non-
positive rejection-value from consideration for a solution subset for CG Subset Rejection.
From Observation 6.4, we know that a subset with maximum rejection-value for a vertex-
weighted conflict graph contains at least one vertex in Ng[v] for each v in G with positive
rejection-value. The rule (CG 1) uses these observations to branch on vertices with
positive rejection-value in a vertex-weighted conflict graph (refer to Figure 6.5 for an
illustration). Note how (CG 1) allows us to construct a bounded search tree for {g, A}-CG
Subset Choice (cf. branching rule (IS 1) for Independent Set discussed in Chapter 4, page
70).

(CG 1) The Positive Vertex-or-At-Least-One-Neighbor Branching Rule #1.
Let s be a search tree node labeled by an instance (G, g), G = (V, E) for CG Subset
Choice and let v I V, with rejectg({v}) > 0 and Ng(v) = {v1, ..., W}, kK < A. Then for each
v; U Ng[v] with rejects({v;}) > 0 we create a child s; of s and label it by (G;, g,), G; =
(N{vif, ERG({vi})), gi = q — rejects({vi}).

141

Proof: Let (G, q) be a yes-instance for CG Subset Rejection and let v [J V, with
rejectg({v}) >0, Ng(v) = {v1, ..., vi}. Application of (CG 1) results in the creation of an
instance (G,, q,) for each u [J U, with U = {v; [0 Ng[Vv] : rejectg({v:}) > 0}. Here, each
instance (G, g,) represents the assumption that [1 ’. From Observation 6.4 we know
that there exists a subset V'’ [J J with maximum rejection-value and V'’ n U # [.
Further, from observation 6.1 we know that there exists a subset ¥’ [0 V' with maximum
rejection-value and v; O 7 for all v; [0 Ng[v] with rejects({v;}) < 0. We conclude that (G,
q) is a yes-instance for CG Subset Rejection if and only if at least one of (G,, ¢,) is a yes-
instance for CG Subset Rejection. m

Application of (CG 1) to a search tree node s leads to the creation of at most
degs(v) + 1 <A+ 1 children of s. Further for each newly created instance (G;, ¢), we
have |G| < |G|, Ai< A, g; < g — 1. Thus we can use (CG 1) to build a search tree with
fan(7) < A +1 and depth(7) < g.

Lemma 6.6. {A, ¢}-CG Subset Rejection can be solved in time O((A +1)7|7)).

Proof: Analogous to the proof of Lemma 6.5, we define an fpt-algorithm for {A,
q}-CG Subset Rejection: The algorithm takes as input an instance (G, ¢g) and recursively
applies (CG 1) to some vertex v in G with rejectg{v) > 0 until either a “yes”’-answer is
returned or (CG 1) cannot be applied anymore. If the algorithm halts without returning
the answer “yes” then we know that each leaf s; in the search tree 7T is labeled by an
instance (G, ¢;), such that all vertices in G; have non-positive rejection-value. Then, from
Observation 6.1, we can conclude that (G, g) is a no-instance.

We next prove that the algorithm halts in time O(27V]). To find a vertex v to
branch on (or know that none exists), and label a new node in the search tree, we need at
most in time O(]V]). Since each application of (CG 1) leads to the creation of at most A +
1 new branches in the search tree, we know that fan(7) < A +1. Further, whenever (CG 1)
creates a node labeled by (G, ¢°), for a parent labeled (G, ¢), then ¢’ < g — 1, and thus
depth(7) < g. We conclude that the size of the search tree is at most O((A +1)7).
Combined with the time spent per node of the search tree we conclude that the algorithm

runs in time O((A +1)7|7]). m

142

‘uonduosap 10y 9ed 1xou 998 (T D)) 9t Surydueiq Jo uoneNsN[[[‘¢'9 NI

({4})°Pr00fox— b ="h ({x})°100l01—- b =*h ({m})Pr00f01 - b =%h ({n})Pyolor—b="h ({a})P100fox - b =9
%) b D) @ %) (') 5 %9)

143

Figure 6.5. Illustration of branching rule (CG 1).

Here (CG 1) 1s applied to an instance (G, g) for CG Subset Rejection. The instances
obtained after branching rule application on vertex v in G, are denoted (G;, ¢;) with i =0,
1, 2, ..., degg(v). For clarity, the vertex and edge weights are not depicted for; but the
reader may assume that, in this example, each of the vertices u, v, w, x, and y, has positive
rejection-value in G. The rule (CG 1) assumes that v or at least of its neighbors u, w, x,
and y can be included in V. In this example, degs(v) = 4, thus (at most) five new
instances are created by (CG 1).

The following lemma shows that for any instance (G, g) for CG Subset Rejection we can
bound the vertex degree by a function f{Qy, q).

Lemma 6.7. Let (G, ¢g) be an instance for CG Subset Rejection and let Qy be the
maximum vertex weight in G. If there exists a vertex v [J V' with degg(v) =2 ¢ + Qv then
(G, q) is a yes-instance.

Proof: We know for every v U V, rejectg({v}) = —[wv(v) + ZWE(Q)] >-Qy+

R ({v))
deggs(v). Let v 1 V'be a vertex with degg(v) = ¢ + Qy. Then rejectg({v}) = g and thus (G,
q) 1s a yes-instance for CG Subset Rejection. m

From Lemma 6.7 we conclude a refinement of the search tree algorithm described
above for Lemma 6.6: As soon as we encounter a node labeled by (G, ¢), such that A > ¢
+ Qy, we terminate the search and return the answer “yes.” This way we ensure that for
the resulting bounded search tree 7, fan(7) < A+ 1 < g + Qv . We conclude the following
corollary.

Corollary 6.10. {g, Qv}-CG Subset Choice can be solved in time O((g +
Qu)In).

Since time O((g + Qv)7|V)) is fpt-time for {g, Qv}-CG Subset Choice, Corollary
6.10 proves Theorem 6.5. Note that, since VCG Subset Choice is a special case of CG
Subset Choice, all results discussed above for CG Subset Choice also apply to VCG
Subset Choice.

6.5.4. {q,Qy, £}-CH Subset Choice is in FPT

Here we consider Subset Choice on general conflict hypergraphs. Recall that a hypergaph

is a generalization of a graph (Section 6.1, page 116). Like a conflict graph has positive

144

weighted vertices and negative weighted edges, so a conflict hypergaph has positive
weighted vertices and negative weighted hyperedges.

In this section we prove the following theorem.

Theorem 6.6. {g, €, Qv}-CH Subset Choice is in FPT
Recall that € denotes the maximum span in a hypergraph. Since, for every hypergraph H
= (V, E), there exists a positive integer € such that span(e) < € for every e [] E, the integer
€ is an implicit parameter for CH Subset Choice.

The proof of Theorem 6.6 is organized as follows. First, we observe that
Observation 6.4 for conflict graphs directly generalizes to conflict hypergraphs
(Observation 6.5). Then we consider a new input parameter 0, denoting the maximum
neighborhood of any vertex in H (i.e., 0 is a positive integer, such that for every v in
INg(v)| £ 6). Using Observation 6.1 and 6.4, we derive a branching rule (CH 1) that can
be used to construct an fpt-algorithm for {g, 6}-CH Subset Rejection. We will show that
there exists a function (€, A) with 0 < f(€, A). This allows us conclude an fpt-algorithm
for {q, €, A}-CH Subset Rejection. Finally, we show that there exists a function g(Qy, g),
with A £ g(Qy, ¢), and conclude an fpt-algorithm for {g, €, Qy}-CH Subset Choice.

Note that the proof of Observation 6.5 is the same as the proof of Observation 6.4,
using as instance (H, ¢q), such that H is a conflict hypergraph instead of conflict graph.

Observation 6.5. Let H and g form an instance for CH Subset Choice and let v [
V" with rejecty(v) > 0. Then H and ¢g form a yes-instance for CH-Subset Choice if and
only if there exists V'L V, with rejecty(V’) 2 g, and at least one vertex u [l Ny[v], with u
av.

Proof: (=) Let (H, q) be a yes-instance for CH Subset Choice and let v [J with
rejecty(v) > 0. Then there exists V* [V with rejecty(V*) = g. We show there exists V' [
V' such that rejecty (V) = rejecty(V*) = g and at least one vertex u [Ny[v], with u (0 V.
We distinguish two cases: (1) There exists a vertex u [1 Ngy[v] with u J V*. Then V" = V'*
proves the claim. (2) There does not exist u [1 V* with u [J Ny[v]. Then v I V'*, since v I
Ng[v]. Further, since rejecty({v}) = 1 we know that rejecty(V* U {v}) = rejectuy(V*) +
rejecty({v}) = rejecty(V*) + 1 > g, and thus V= V* U {v} proves the claim. (U) Let H

145

and ¢ form an instance for CH Subset Choice and let V’ [V' be any subset with
rejecty(V’) = g. Then (H, g) is a yes-instance for CH Subset Choice. m

From Observations 6.1 and 6.5 we conclude a branching rule (CH 1) for CH
Subset Choice that allows us to construct a bounded search tree T, with size(T) < f(g, 0).
Note that (CH 1) is identical to (CG 1) with the exception that it takes as input a conflict
hypergraph instead of a conflict graph.

(CH 1) The Positive Vertex-or-At-Least-One-Neighbor Branching Rule #2.
Let s be a search tree node labeled by an instance (H, q), H = (V, E) for CH Subset
Rejection and let v O V, with rejecty({v}) > 0 and Ny(v) = {vy, ..., v}, k< 6. Then for
each v; 0 {v, vy, ..., v} with rejecty({v;}) > 0 we create a child s; of s and label it by (H,, g
D), Hi= (N{vij, ERu({vi})), gi = q — rejectu({vi}).

Proof: Analogous to the proof of (CG 1), using as instance (H, ¢), such that His a
conflict hypergraph instead of a conflict graph, and using Observation 6.5 instead of
Observation 6.4. m

We now show how (CH 1) can be used to define an fpt-algorithm for {¢g, 6}-CH
Subset Rejection.

Lemma 6.8. {g, 0}-CH Subset Rejection can be solved in time O((8 +1)!|V]%).

Proof: Analogous to the proofs of Lemmas 6.5 and 6.6, we define an fpt-
algorithm for {g, 8}-CH Subset Rejection. The algorithm takes as input an instance (H,
q) and recursively applies (CH 1) to a vertex v in H until either a “yes”-answer is returned
or (CH 1) cannot be applied anymore (in which case, by Observation 6.1, we return the
answer “no”).

We can find a vertex v to branch on (or know that none exists), and label a new
node in the search tree, in time O(|V]%) (the labeling can no longer be done in linear time,
because a vertex in a hypergraph may have as many as ((|V] — 1)(]¥] — 2))/2 incident
hyperedges). Since (CH 1) creates a bounded search tree T with fan(7) <0 + 1 and
depth(7) < g, we conclude that size(7) < O((6 +1)7). In sum, we can decide {g, 8}-CH
CH Subset Rejection in time O((0 + 1)?| V). m

Note that unlike Ng(v), Ng(v) may be larger than degq(v), and thus 0 is not
bounded by a function f{A) in hypergraphs. Since spany(e) < € for all e UJ E, we do know

146

that, for every v O V, [Ng(v)| < (€ —1)deggn(v), and thus 0 < (¢ —1)A. This observation
allows us to conclude the following lemma.

Corollary 6.11. {g, €, A}-CH Subset Rejection can be solved in time O(((€ —1)A
+ 1)V,

To show that A is bounded by some function g(Qy, g), we observe that Lemma
6.7 for conflict graphs generalizes directly to Lemma 6.9 for conflict hypergraphs.

Lemma 6.9. Let (H, q), with H= (V, E), be an instance for CH Subset Rejection
and let Qv be the maximum vertex weight in H. If there exists a vertex v J V" with
degn(v) =2 g + Qy, then (H, q) is a yes-instance.

Proof: We know for every v U V, rejecty({v}) = —1 EEWV)+ Z We (e)J -

elR ; ({v})

—Qy + degu(v). Let v U V' be a vertex with degi(v) =2 ¢ + Qy. Then rejecty({v}) = g and
thus (H, g) is a yes-instance for CH Subset Rejection. m

Using Lemma 6.9 we can refine the algorithm in Lemma 6.8: We terminate the
search as soon as we encounter an instance (G, g) with A = g + Qv and return the answer
“yes.” This ensures that for the resulting search tree 7, fan(7) < g + Qy —1, and we
conclude the following corollary:

Corollary 6.12. {g, €, Qy}-CH Subset Choice can be solved in time O(((€ — 1) (g
+Qy =1+ D! 1P).

Since time O(((e —1) (g + Qv —1) + 1)?|VP) is fpt-time for {g, €, Qv}-CH Subset
Choice, Corollary 6.12 proves Theorem 6.6.

6.6. Crucial Sources of Complexity

In Sections 6.4 and 6.5 we have investigated the parameterized complexity of different
parameterizations of Subset Choice on conflict hypergraphs. Many subset choice
problems that arise in practice may be of this type. To illustrate, consider again the
consumer that has to decide on a set of pizza toppings: Assume a person p likes
pepperoni (which has, say, value x > 0 for p) and likes mushrooms (value y > 0). Let z
denote the value for of having both pepperoni and mushrooms on a pizza. Even if p think

that pepperoni and mushrooms taste well together, we may nevertheless have z <x +y

147

(cf. the notion ‘diminishing marginal utility’ in economic theory; e.g. Parkin & Bade,
1997). Loss in value due to combining alternatives may also happen when alternatives
represent different activities or events that conflict in space and/or time (see e.g. footnote
11 on page 11) or when alternatives share some of their value-supporting features (cf.
Figure 6.1).

In this section, we reconsider some of the results obtained in the previous
sections, with the aim of identifying crucial sources of complexity in Subset Choice for
value-structures that are conflict hypergraphs. We start by reconsidering the result that
{q, €, Qv}-CH Subset Choice [1 FPT (Corollary 6.12). Is the parameter set {g, €, Qv} a
crucial source of complexity for CH Subset Choice? Recall from Section 4.5 (page 73)
that we can conclude that {g, €, Qv} is a crucial source of complexity for CH Subset
Choice if and only if K-CH Subset Choice [J FPT for every K [J {g, €, Qy}. In other
words, we need to know if {q, €, Qv} is a minimal parameter set for CH Subset Choice.
What do we know about the parameterized complexity of K-CH Subset Choice for
different K [{qg, €, Qv}? To answer this question, in the following we first reconsider
Theorem 6.2 (page 128) and then Theorem 6.4 (page 137).

Theorem 6.2 states that p-UCG Subset Choice is not in FPT (unless FPT = W[1]).
We next show how this theorem implies the fixed-parameter intractability of K-Subset
Choice for the parameter set K = {p, €, Wy, Qv, W, Qg}. Here, p, € and Qy are defined as
before (i.e., the positive integer in the input, the maximum span, and the maximum vertex
weight). The new parameters Wy, W, Qp are defined as follows: Let H= (V, E) be a
weighted hypergraph, Then wy = 0 denotes the absolute size of the most negative vertex
weight, W = 1 denotes the absolute size of the most negative hyperedge weight, and Qg >
1 denotes the largest positive hyperedge weight. Note that for every instance H = (V, E)
for Subset Choice, there exist values wy, Qv, Wg, and Qg such that for all v O V, —wy <
wy(v) £ Qy and for all e [E, -0 < wg(e) < Qg. Hence, wy, Qy, wg, and Qg are all
implicit parameters for Subset Choice.

For UCG Subset Choice the input hypergraph is a unit-weighted conflict graph. In

other words, in UCG Subset Choice, the values €, wy, Qv, W, Qf are all constants;

148

specifically we have € =2, wy =0, Qv =1, wg =1, Qg = 1. This means that we can
conclude the following corollary from Theorem 6.2.

Corollary 6.13. {p, €, Wy, Qv, e, Qr}-CH Subset Choice [l FPT (unless FPT =
WI1)).

Proof: The proof is by contraction. Assume {p, €, Wy, Qv, W, Qr}-CH Subset
Choice U FPT and FPT # W[1]. Then there exists an algorithm solving Subset Choice in
time O(fp, €, Wy, Qv, We, Q)n®). In UCG Subset Choice we have =2, wy =0, Qv =1,
we =1, Qg = 1, and thus we can solve UCG Subset Choice in time O(f(p, €, Wy, Qv, Wg,
Qp)n®) = O(fip, 2,0, 1, 1, 1)n®) = O(Ap)n®). This means that p- UCG Subset Choice []
FPT. But then, from Theorem 6.2, we can conclude that FPT = W[1]. m

Recall from Section 4.5 (page 73) that, for a problem I and parameter set K, if K-
M O FPT then k’-IN O FPT for all K> [J K. Thus, from Corollary 6.13 we conclude that K-
Subset Choice U FPT, for all K U {p, €, wy, Qv, wg, Qr} (unless FPT = W[1]). In other
words, we can conclude from Corollary 6.13 that K-CH Subset Choice [J FPT, for K =
{e}, K={Qy}, and K = {€, Qv} (unless FPT = W[1]).

We now reconsider Theorem 6.4. This theorem states that g-VCG Subset Choice
is not in FPT (unless FPT = W[1]). Since VCG Subset Choice is a special case of CH
Subset Choice, such that € =2, wy =0, wg = 1, Qg = 1, we conclude the following
corollary.

Corollary 6.14. {g, €, Wy, W, Qg}-UC Subset Choice [J FPT (unless FPT =
WI1)).

Proof: Analogous to the proof of Corollary 6.13.

From Corollary 6.14, we conclude that K-CH Subset Choice [J FPT, for K = {¢g}, and K =
{q, €} (unless FPT = W[1]).

In sum, from the above analyses, we know that K-CH Subset Choice is not in FPT
(unless FPT = W[1]) for five of the six possible K [{g, €, Qv}. The only proper subset
that was not considered is K = {g, Qv}. It remains an open question whether or not {g,
Qy}-CH Subset Choice is in FPT. Hence, at present time, we do not know whether {q, €,

Qy} or {g, Qv} is a crucial source of complexity in CH Subset Choice.

149

Despite the open question posed above, I note that we did succeed in identifying
crucial sources of complexity for some special cases of CH Subset Choice. Namely, from
Theorem 6.3 (page 130) we know that g-ECG Subset Choice [FPT. Since {¢g} contains
only one element it is minimal, and thus we know that {¢g} is a crucial source of
complexity for ECG Subset Choice (and thus also for UCG Subset Choice). Further, from
Corollary 6.8 we know g-CG Subset Choice [J FPT (unless FPT = W[1]), from Corollary
6.13 we know Qy-CG Subset Choice [l FPT (unless FPT = W[1]), and from Theorem
6.3 (page 130) we know {g, Qv }-CG Subset Choice [1 FPT. We conclude that {g, Qv} is
a crucial source of complexity in CG Subset Choice (and thus also for VCG Subset

Choice).

6.7. Surplus Subset Choice

In Sections 6.4 — 6.6 we have considered special cases of Subset Choice with conflict
hypergraphs as input. Here I briefly discuss the special cases of Subset Choice with
surplus hypergraphs as input, called SH Subset Choice. Recall that in surplus
hypergraphs all vertices have negative weights and all hyperedges have positive weights.
Arguably, like CH Subset Choice, also SH Subset Choice often arises in practice. To
illustrate, consider again the situation in which a consumer needs to decide on a set of
computer parts. Since each part (e.g. computer, monitor, printer, scanner) costs money—
and by itself is useless—we may assume that each part when evaluated alone has
negative value. In combining parts, however, we may obtain a value surplus. For
example, a computer alone, a monitor alone, and a printer alone may all have negative
value, but the computer-monitor-printer combination may have positive value.

In the following we consider the special case of SH Subset Choice where the
value-structure is modeled by a unit-weighted surplus graph (i.e., span € = 2, all vertices
have weight ‘—1,” and all edges have weight ‘+1). We will refer to this special case as
USG Subset Choice. In Section 6.3, we have seen that Subset Choice is NP-hard even on
unit-weighted conflict graphs. Note that the only difference between unit-weighted
conflict graphs and unit-weighted surplus graphs is a reversal in sign of vertex- and edge-
weights. Interestingly, this reversal in sign leads to a different complexity classification.

Theorem 6.7. USG Subset Choice [J P.

150

To prove Theorem 6.7 we prove Lemma 6.10 below. The lemma implies that we
can solve USG Subset Choice by simply choosing all the vertices in every component of
G that contains at least one cycle; we then check whether this set of vertices has at least
value p in G. Since the components and cycles in a graph can be found in polynomial
time (Brandstadt, Le, & Spinrad, 1999; Gross & Yellen, 1999), Theorem 6.7 follows.

Lemma 6.10. Let G = (V, E) be an instance for USG Subset Choice. Let C; = (1,
E)), 1 i<, be the components of G. Let U denote the set of components of G that
contain at least one cycle. Thenthe set V'={v O V|v U V;and C;U U, 1 <i <!} has
maximum value.

Proof: Let V’={v U V|vOV,and C;U U, 1 <i<!}. We show in two steps that
valueg(V”’) is maximum. We show that (1) we cannot improve the value of any vertex set
V* [V by including vertices from \V’ in V*. We conclude that there is a vertex set with
maximum value that does not contain any vertices from J\V". Then we show that (2)
there does not exist a set V* [1 V'’ with valueg(V*) > valueg(V").

(1) Let 7* O V. Consider the subgraph F of G induced by vertex set J\}J’". Then
by the definition of V', F'= (J\V”, Eg(V\V")) is a forest. In any forest the number of edges
is smaller than the number of vertices (for a proof of this basic property see e.g. Gross &
Yellen, 1999, see also page 90). Since every subgraph of a forest is also a forest, we
know that for any subset V" L AV, [Eq(V"”")| <|V”|. Therefore, for any subset V' [
NV, valueg(V”") = |[Ec(V")| — |[V] < 0. Consider V* O V. Then valueg(V* O V") <
valueg(V*). In other words, we can never improve the value of a vertex set V'* [1 V' by
including vertices in N\,

(2) From the above we know that if the value of V'’ is not maximum, then there
must exist a set V* [V7’ with valueg(V*) > valueg(V’). We show by contradiction that
such a set cannot exist. Let J* [J J” be a largest vertex set with valueg(V*) > valueg(V”).
Then at least one of the following two situations is true. (a) There exists a vertex v [
V\V* such that v has at least one neighbor « U V*. But then valueg(V* [{v}) 2
valueg(V*) + [Ec({v, u})| - [{v}| = valuec(V*) + [{(v, u)}| - [{v}| = valueg(V*)+(1-1)
= valueg(V*), contradicting the claim that V'* is a largest vertex set with valueg(V*) >

valueg(V”). (b) There exists a cycle < vy, va, ..., Vi, vi> with vy, v, ..., v O V\V* But then

151

valueg(V* U {vi, va, ..., }) 2 valueg(V*) + |Ec({v1, V2, ..oy Vi })| = |{V1, V2, ooy Vi}| 2
valueg(V*) + k — k = valueg(V*), again contradicting the claim that V'* is a largest vertex
set with valueg(V*) > valueg(V’). m

Theorem 6.7 shows that Subset Choice is computationally easy for value-
structures that can be modeled by unit-weighted surplus graphs. It remains an open

question, however, whether Subset Choice for general surplus hypergraphs is in P.

6.8. Subset Choice when Size Matters

Throughout this chapter we have assumed no restrictions on the size of the to-be-chosen
subset. Clearly, in many real-world settings size restrictions do apply (see also Figure
6.1); e.g., there may be an exact bound (as when you have exactly k& job positions to fill),
an upper-bound (as when you can afford at most & toppings on your pizza), or a lower-
bound (as when you require at least £k members in a committee) on the size of the to-be-
chosen subset. In this section I offer a word of caution: We cannot assume that the results
for subset choice without size restrictions automatically generalize to subset choice with
size restrictions. To illustrate, we consider the problem Exact-bound Subset Choice:

Exact-bound Subset Choice

Input: A weighted hypergraph H = (V, E), U V' for every v 0 V a weight

2<h]V|

wy(v) U Z, for every e [J E a weight wg(e) UJ Z \{0}, and positive integers p and k.

Question: Does there exist a subset V'L V such that valuey(V’) 2 p and |V’| = k?
Recall that USG Subset Choice without size restrictions is in P (Theorem 6.7, page 149).
In contrast, we have the following theorem for Exact-bound Subset Choice on unit-
weighted surplus graphs.

Theorem 6.8. USG Exact-bound Subset Choice is NP-hard.
To prove Theorem 6.8 we reduce from the NP-complete problem Clique (Garey &
Johnson, 1979). For a graph G = (V, E) and a subset V" [V, we say V' is a clique for G if
for every two vertices u, v U1 V°, (u,v) O E.

Clique (decision version)

Input: A graph G = (V, E) and a positive integer k.

Question: Does there exist a clique V' U V for G with | V| = k?

152

For a graph G = (V, E) and a positive integer k, we make two observations. First, if V" is
a clique for G then any subset V'’ [J V" is also a clique for G. We conclude Observation
6.6.

Observation 6.6. If G and & form a yes-instance for Clique then there exists V" []
V' such that 1 is a clique and | V'] = .

Further, for any set V'’ [V, with |V’| = k, the number of possible pairs of vertices

k(k-1)

is given by . We conclude Observation 6.7.

Observation 6.7. Let ' U V' with |V’ = k. Then V" is a clique if and only if

()= LD,

Using Observations 6.6 and 6.7, we now prove Theorem 6.8.

Proof of Theorem 6.8: Let graph G = (V, E) and positive integer k constitute an
instance for Clique. From G and k& we build an instance for USG Exact-bound Subset
Choice consisting of G*, p and k as follows: let G* = (V*, E*) be a weighted graph such
that V* =V and E* = E. For every v [J V'* let wy(v) = —1 and for every e [E* let wg(e) =

k(k —1)
2

+1 (i.e., G*is a unit-weighted surplus graph). Further, let p = —k . This

transformation can be done in time O(|¥]%). It remains to be shown G and k form a yes-
instance for Clique if and only if G* p and k form a yes-instance for Exact-bound Subset
Choice. Because Clique is NP-hard even for k£ = 5, in the following we can assume that &
>5.

(=) Let G and & form a yes-instance of Clique. Then, from Observation 6.6, we
know there exists V'’ [V, such that V" is a clique and |V’| = k. Since valueg«(V’) =

w0+ Ywg(e) = [Eg(r) - 1= LD

vy eOE - (V") 2

—k =p, we conclude that G* p and

k form a yes-instance for USG Exact Bound Subset Choice.
(U) Let G* p and k form a yes-instance for USG Exact Bound Subset Choice.
Then there exists V' [V= V*with |V’| = k and valueg«(V") = |Eg«(V")| = |V'|2p =

153

-1
k=D _ k . But that means that |[Eq(V")| = |Eg«(V")| =

and thus, from

k(k-1)
2

Observation 6.7, we conclude that V7’ is a clique for G of size k. m
Note that the polynomial-time reduction in the proof above also happens to be a
parametric reduction from A-Clique to {k, p}-USG Exact Bound Subset Choice, with p =
k(k-1)
2
reduction establishes that {k, p}-USG Exact Bound Subset Choice is W[1]-hard.
Corollary 6.15. {k, p}-USG Exact Bound Subset Choice UJ FPT (unless FPT =
WI[1)).

Theorem 6.7 and 6.8 illustrate that classical complexity results do not

—k . Since k-Clique is known be W[1]-complete (Downey & Fellows, 1999), the

automatically generalize to subset choice under subset-size restrictions. The same holds
for parameterized complexity results. To know which results do generalize, and which do

not, a case-by-case analysis will need to be performed.

6.9. Conclusion
In this chapter I have illustrated techniques for complexity analysis by considering the
problem Subset Choice, a generalization of a model proposed by Fishburn and LaValle,
(1996; see also van Rooij et al., 2003). Section 6.3 presented multiple polynomial-time
reductions to prove that Subset Choice is NP-hard. Sections 6.4 and 6.5 presented
parameterized complexity analyses of Subset Choice on conflict hypergraphs. The results
obtained in these sections were then used, in Section 6.6, to illustrate the notion of
‘crucial source of complexity.” Section 6.7 contrasted UCG Subset Choice with USG
Subset Choice and showed that, while the former is NP-hard, the latter is in P. Finally,
Section 6.8 considered Subset Choice with subset-size restrictions, and illustrated that
results obtained for subset choice problems without subset-size restrictions do not
necessarily generalizes to subset choice problem with subset-size restrictions.

Besides illustrating techniques, the analyses have lead to some interesting
observations about Subset Choice. Among other things, we have found that Subset
Choice is computationally easy (1) on unit-weighted conflict graphs if g is not too large,

(2) on conflict graphs if ¢ and Qy are not too large, (3) on conflict hypergraphs if g, €,

154

and Qy are not too large, and (4) on unit-weighted surplus graphs. In contrast, Subset
Choice on unit-weighted surplus graphs is computationally hard if there is an exact bound
on the size of the chosen subset. Further, we have found that the parameter sets {p, €, Wy,
Qy, wg, Qg} and {g, €, Wy, We, Qp} do not constitute crucial sources of complexity for
Subset Choice—not on general hypergraphs, and not on conflict hypergraphs.

Many open questions remain. As noted in Section 6.5, it remains to be shown
whether {g, Qv} or {q, €, Qv} is a crucial source of complexity in Subset Choice on
conflict hypergaphs. In other words, does the span of a value-structure (i.e., the degree of
interaction between choice alternatives) add non-polynomial complexity over and above
q and Qv? Further, we do not know yet whether Subset Choice on surplus hypergraphs is
in P. Also the effect of subset-size restriction on the computational complexity of Subset
Choice remains to be explored.

In this chapter I have chosen to distinguish between conflict hypergaphs and
surplus hypergaphs. These choices were motivated by (1) the belief that there exist real-
world value-structures that conform to one of these two types of hypergraphs, and (2) the
search for useful classical and/or fixed-parameter tractability results for special cases of
Subset Choice. Conflict hypergraphs and surplus hypergraphs are, of course, just two
examples of value-structures that may arise in practice. Future research may aim to study
also other types of value-structures that arise in real-world situations (e.g, value-

structures that can be modeled by ‘intersection hypergraphs” as in Figure 6.2).

155

Chapter 7. Cue Ordering and Visual Matching

Chapters 5 and 6 presented detailed complexity analyses of the problems Coherence and
Subset Choice. Both Coherence and Subset Choice are (modeled as) hypergraph
problems. Complexity analysis is of course not restricted to that particular class of
problems—it extends to all combinatorial problems (see e.g. Downey & Fellows, 1999).
To illustrate, this chapter discusses two very different problems; the first is a permutation
problem and the second is a number problem. The permutation problem is called Min-
Incomp-Lex and was formulated by Martignon and Schmitt (1999; Schmitt, 2003) in the
domain of binary-cue prediction. The number problem is called Bottom-up Visual
Matching and was formulated by Tsotsos (1989, 1990) in the domain of visual search.
We consider each problem in turn and sketch how the parameterized complexity
techniques introduced in Chapter 4 also apply to these types of problems. The chapter

closes with a combined discussion.

7.1. Min-Incomp-Lex

Here we consider the problem Min-Incomp-Lex, as formulated by Martignon and Schmitt
(1999; Schmitt, 2003). Section 7.1.1, explains the application of this problem in the
domain of binary-cue prediction (see also Martignon & Hoffrage, 2002). Section 7.1.2
presents notation, terminology and the exact problem definition of Min-Incomp-Lex.
Finally, in Section 7.1.3, we discuss the result by Martignon and Schmitt (1999; Schmitt,
2003) that Min-Incomp-Lex is NP-hard, and sketch some preliminary fpt-results.

7.1.1. Motivation: Binary-Cue Prediction

Martignon and Schmitt (1999; see also Gigerenzer & Goldstein, 1996; Martignon &
Hoffrage, 2002; Todd & Gigerenzer, 2000) studied the cognitive task of predicting the
ordering of two objects (is @ > b? or is b > a?) based on information about relevant
features of the objects. As an example, consider the following scenario. You are asked
which of two cities (the objects), say, Amsterdam and The Hague, has the larger
population (the ordering). You are further given the following information (the features):

Amsterdam has an international airport while The Hague does not, both cities have a

156

street-car system, Amsterdam is the capital of the Netherlands, Dutch government is
stationed in The Hague. Note that each feature takes on a binary value (e.g., a city either
1s a capital city or it is not; a city either has an airport or it does not). Further, the features
serve as (fallible) cues to the relationship between the two cities with respect to their size
(e.g., capital cities tend to be larger than other cities, government cities are typically
larger than other cities).

If the presence (absence) of a feature serves as a cue that the object is likely
“large,” then we code the presence (absence) of that feature as ‘1,” and code the absence
(presence) of that feature as ‘0.” For example, in Figure 7.1, we are given a set of objects
A= (ay, ay, ..., as) and set of features F'= {f1, f2, ..., fio}. Each object a;] 4 has a value
(either ‘1° or ‘0’) for each of the 10 features, f1, f, ..., fi0. Further, for simplicity, objects
are labeled according to size, with a; > a, > ... > a¢ Note that, in the task of binary-cue
prediction this ordering is unknown, and the task is to predict the order for any given pair
based on the feature values. Since the feature values are fallible cues the prediction may

be incorrect.

Ji fo fs fa Fs fe J1 fs o Jio
a1 0 1 1 0o 1 1 1 1 1
a1 1 1 1 0 1 1 0 0 1
a0 1 1 0 0 0 1 1 0 O
a,] 1 0 0 1 0 1 0 1 0 1
as|] 0 0 0 0 0 1 0 0 0 O
agl0 0 0 0 0 I 0 0 0 0

Figure 7.1. Illustration of a binary-cue prediction task.

A set of objects 4 = (ay, ay, ..., as) and set of features F'= {f],
J2, ..., f10}. The binary-value (0 or 1) of object a; on feature f; is
listed in cell (i,/) of the matrix. Objects are labeled according to
size, i.e., @) > ay > ... > ae. The ordering of objects is unknown
to the person performing the binary-cue prediction task.

Say you are given the pair of objects (a;, az) J A X 4 from Figure 7.1. How would you
use the information about the features of a; and a3 to predict which is the larger of the

two? There are several reasonable strategies one may take. One strategy described by

157

Martignon and Schmitt (1999) is the lexicographic strategy (see also Gingerenzer &
Goldstein, 1996; Todd & Gigerenzer, 2000; Martignon & Hoffrage, 2002; cf. Payne et al.
1993). This strategy works as follows: For a given pair of objects we compare their
features values, considering features in a pre-specified order, and as soon as a feature is
encountered for which the two objects take a different value, we predict that the object
with value ‘1’ on that feature is the larger of the two.

To illustrate, consider again Figure 7.1. We define a fixed permutation T(F) of n
features, T(F) = < fry, fro, ..., fm,>. For example, for = {f1, f5, ..., fio} in Figure 7.1 let

us set T(F) =<fs, fs, f2, f4, f1, f7, f6, 10, fo, /3. This permutation is then used to compare
every possible pair in 4 x 4 as follows. For each pair we consider the features in the
order specified by TI(F); as soon as we encounter a feature that takes a different value for
the two objects, search is terminated and we return the object with the value ‘1’ on that
feature (the returned object is predicted to be the larger of the two). For example, let (a;,

a3) U A x A be the pair that we are comparing at this moment. We start by considering the
first feature fr; = fg in our predetermined feature permutation T(F). We note that a; and a3

both take the same value on this feature (both have value ‘1°), so the feature does not

serve as a cue to the order of these two objects (we say fs does not distinguish between a,
and a3). We continue by considering the second feature in the permutation, fr, = fs.
Because fs also does not distinguish between a; and a; we continue to consider the third
feature in the permutation, fr; = 2, and find that a; and a; have a different value on this
feature (one has value ‘1’ and the other value ‘0’). Because a3 is the one with value ‘1,
we predict as is the larger object.

In our example, using the feature permutation T(F) = <fs, fs, f2, ..., fo, f5>, We
predicted that as is larger than a;. This is an incorrect prediction, since a; > a3. We could,
of course, change the feature permutation so that pair (@, a3) would be compared
correctly (e.g., we could set T(F) = <fs, fs, f1, ..., fo, f> instead), but this may cause

other pairs to be compared incorrectly (e.g., pair (a3, as) is compared incorrectly by the

new permutation, while it was compared correctly by the original permutation).

158

Clearly, when using the Lexicographic strategy as described here, the total
number of incorrect paired-comparisons one will make for a given set of objects 4 (i.e.,
the total number summed over all possible m(m —1)/2 pairs for |4| = m objects) depends
on how the permutation T(F) is defined. Martignon and Schmitt (1999) studied the task
of determining an optimal feature permutation—i.e., one that leads to a minimum number
of total incorrect comparisons. They called this task Min-Incomp-Lex.*> The next section

defines this problem more formally.

7.1.2. Notation, Terminology and Problem Definition

We start by defining notation and terminology. Let 4 = {ay, a, ..., a,} denote a set of
objects and let F = {f}, f5, ..., f»} denote a set of features, with |4| = m and |F| = n. For
each a U A4 there is an associated value b{a) U {0, 1} denoting the binary-value that
object a takes on feature f;, i = 1, 2, ..., n. The vector [bi(a;) ba(a;) ... by(a;)] we call the
feature vector of a; and the vector [bj(a1) bj(az) ... bi(an)] we call the object vector of
feature f;. For example, in Figure 7.1 feature vectors appear in the rows, and object
vectors appear in the columns (e.g. object a, has feature vector [1 11101100 1] and
feature f4 has object vector [1 1 0 1 0 0]).

There is a complete ordering S(A) on the elements in 4: i.e., for any two objects
a;, a; 1 A, i # j, we have either a;> a; or a;< a; in S(4). Unless otherwise noted, objects in
A are labeled in order: i.e., a1 > ax > a3 > ... > a,,.°° We say a feature f; distinguishes a
pair of objects (a;, aj) U 4 X 4, if by(a;) # bi(a)). Further, if bi(a;) > bi(a)) then f; is said to
predict that a; > a;, and if i <j we say the prediction is correct (by this we mean that the

prediction matches the order of a;, a; in S(A). A permutation of features F'= {f1, f5, ..., fu}

is denoted by T(F) = <fr, fros -+ > fr,>
We next define the Lexicographical (LEX) algorithm. LEX is an algorithm that
takes as input a set of objects 4 = {ay, a, ..., an}, a complete ordering S(4) = (a; > ay >

as> ...>ay) of objects in 4, a set of features F'= {f1, f2, ..., fx}, a set of pairs of distinct

6 Min-Incomp-Lex stands for minimum number of incorrect comparisons under the
lexicographic strategy.

% The only exception to this rule appears in the proof of Theorem 7.1, where the labeling
of objects in 4 is driven by the reduction.

159

objects P 1 4 X 4, and a permutation T(F) = <fry, frp, ...,.fr,>. LEX considers each

feature '] F in the order specified by the permutation T(F). For each such feature f [F,
LEX tests for each pair (a;, @) U P, whether f distinguishes between a; and a;. If it does,
then LEX predicts that the object with value ‘1’ on feature fis the larger of the two, and
the pair is removed from P (for any given pair we never make a prediction more than
once). Meanwhile, LEX keeps track of the number of incorrect predictions it makes (see
the variable ‘error’ in the algorithm).

Lexicographical (LEX) algorithm

Input: A set of objects 4 = {ay, ay, ..., a,}, a complete ordering S(A4) = (a; > a, >

as> ...>ay) of objects in 4, a set of features F'= {f1, f2, ..., [}, a set of pairs of

objects P [1 4 x 4, and a permutation T(F) = <fr, frp, ..., [,

Output: A prediction (either a; > ag; or a; < a;) for each pair (a;, a;) U P that is
distinguished by at least one feature in F, and the value error.
1. error:=0
2. while (P#0) do
3. pick a pair (a;, aj) O P
4. x=1
5. while (x <n) do
6. if br(a;) > br(a)) then
7. predict and output a;> g;
8. ifi>j
9. error =error+1
10. end if
I1.x:=n
12. end if
13. if br(a;) < br(a)) then
14. predict and output a; < g;
15.if i <j
16. error .= error + 1

17. end if

160

18.x:=n
19. end if
20.x=x+1
21. end while
22. P:=P\{(ai, a))}

23. end while

24. return error
Note that for some pairs in P the algorithm LEX may not output a prediction. This means
that we cannot distinguish these pairs based on the features in F. Note that such
undistinguished pairs do not contribute to the error count. Further, note that LEX runs in
time O(nm?): There are in the worst case m(m —1)/2 pairs of objects to compare and
features to consider per pair. We define the function Erroryex(4, S(A), F, P, T(F)) =
error, where error is the value returned in line 24 of LEX when run on input (4, S(4), F,
P, T(F)). Note that 0 < Errorpgx(4, S(4), F, P, T(F)) < |P|. Using this definition of the
function Error gx(4, S(4), F, P, T(F)) we define the problem Min-Incomp-Lex as
follows:

Min-Incomp-Lex (optimization version)

Input: A set of objects 4 = {ay, as, ..., an} and a set of features F = {f1, f2, ..., fu}-

Each a [J 4 has an associated value b,(a) I {0, 1},i=1, 2, ..., n, denoting the

value that a takes on feature f; [F. A complete ordering S(4), with a; >a, > ...>

-

Output: A permutation T(F) = <f, fr, ..., fm,>, such that Error gx(4, S(4), F, P,

T(F)) is minimized. Here P [1 4 X A denotes the set of all pairs of distinct objects

inAd.%
In the analyses we again work with the problem’s decision version:

Min-Incomp-Lex (decision version)

Input: A set of objects 4 = {ay, az, ..., an} and a set of features F = {f1, f2, ..., fu}-

Each a [J 4 has an associated value b,(a) Ul {0, 1},i=1, 2, ..., n, denoting the

7 Two objects a;, a; U 4 are said to be distinct if i # .

161

value that a takes on feature f; [F. A complete ordering S(4), with a; >a, > ...>

an. An integer k = 0.
Question: Does there exist a permutation T(F) = <fr,, fr, ..., fr,~, such that

Errorrex(4, S(A), F, P, T(F)) < k? Here P [1 A4 X A denotes the set of all pairs of
distinct objects in 4.
In the remainder of this section an instance for Min-Incomp-Lex will be denoted by a 4-

tuple (4, F, S(4), k).

7.1.3. Classical and Parameterized Complexity

The problem Min-Incomp-Lex has been shown to be NP-hard (Martignon & Schmitt,

1999; Schmitt, 2003).
Theorem 7.1. Min-Incomp-Lex is NP-hard (Martignon & Schmitt, 1999).

The proof of Theorem 7.1 involves a reduction from Vertex Cover. I sketch the reduction

below. For the details of the proof the reader is referred to (Schmitt, 2003).
Sketch of proof for Theorem 7.1. Given an instance (G, k), G = (V, E), for Vertex
Cover we create an instance (4, F, S(4), k) for Min-Incomp-Lex as follows: Let F' =
{15 /25 - fur fnr1} be a feature set with |[F] =|V] + 1 =n+ 1. We define one special
object ag 0 A with b(ag) =1, forx =1, 2,, n and b,+1(ap) = 0. Then, for every
vertex v; 1 V, we define a; [1 4 with b(a;) = 0 for x =i, and b(a;) = 1 for all x # i, and
let a; > aoin S(4); and for every edge (v;, v;) U E, we define a;; 1 A with b(a;;) =0
for x =i, and x =, and b(a;) = 1 for all x # 7, j, and let a;; < ap in S(4). Note that so
far we have defined only a partial order on the elements of 4. We complete the order
as follows: For all pairs (ay, a,) for which the order is not yet defined, if g </ then let
ag > ay, if g > h then let a, < a;. On this transformation (G, k) is a yes-instance for
Vertex Cover if and only if (4, F, S(A4), k) is a yes-instance for Min-Incomp-Lex. m

Martignon and Schmitt (1999, p. 574; see also Martignon & Hoffrage, 2002, p. 39)

contend that, with Theorem 7.1, it is proven that there are no essentially simpler

strategies for solving Min-Incomp-Lex than by searching through all n! possible

162

permutations of n features.®® Since, Error; gx(4, S(4), F, P, T(F)) can be computed in
time O(nm?) per permutation T(F), the proposed exhaustive search would run in time
O(n! nm?). In the following we qualify the claim by Martignon and Schmitt.

Although Martignon and Schmitt are correct in saying that Theorem 7.1
establishes that no polynomial-time algorithm can solve Min-Incomp-Lex (unless P =
NP), there may still exist algorithms with running times that are polynomial in n = |F]
(albeit non-polynomial in other aspects of the input). In other words, there may exist an
fpt-algorithm that runs in time O(g(K)n®), where o is a constant, K is some input
parameter of Min-Incomp-Lex, and function g depends only on K (not on 7). A first
obvious input parameter for Min-Incomp-Lex is the size of the set of objects, |4| = m.
Next we show there exists an fpt-algorithm for m-Min-Incomp-Lex that runs in time
O(g(m) n), with g(m) =2"m* and a = 2.

Consider again Figure 7.1, and observe that, for example, the object vectors for f;
and f4 are the same; i.e., both are [1 1 0 1 0 0]. This means that for each pair (a;, a;) U P,
both features f; and f; make the same prediction (either both predict a; > a; or both predict
a; < a;), or both make no prediction. Since in the computation of the function Errorygx(4,
S(A4), F, P, T(F)) we never consider a pair in P more than once, only one of f; and f; can
contribute to the error count. This means that deleting one of them from F does not affect
the answer to the problem Min-Comp-Lex. This observation leads to the following
reduction rule:

(MIL 1) Feature Duplicates Rule. Let (4, F, S(4), k) be an instance for Min-
Incomp-Lex. Further, let £, f, L1 F be two features such that for every pair (a;, a;) U P
features f, and f, make the same prediction or both features make no prediction. Then let
(A4, F*, S(4), k) with F'*= F\{ f,}, be the new instance for Min-Incomp-Lex.

We call an instance (4, F, S(4), k) for Min-Incomp-Lex reduced if (MIL 1) does
not apply to (4, F, S(4), k). How many features can a reduced instance have? It can have

at most |F] < 2" features, since with m objects we can have at most 2" different object

% I note that, assuming P # NP, an NP-hardness proof is sufficient to conclude at least
exponential time complexity of a problem (i.e., a complexity on the order of a” for
constant O, or worse), but not a complexity on the order of n!.

163

vectors. We reduce an instance in time O(n°m),*” and we can solve Min-Incomp-Lex in
time O(|F|! n*m)—simply by checking all possible permutations of F—we conclude that
Min-Incomp-Lex is solvable in time O(2"nm” + n’m), which is O(2™! n’m?). Since O(2™!
n’m?) is fpt-time for m-Min-Incomp-Lex, we conclude that m-Min-Incomp-Lex 0 FPT.

Now, a critical reader may contest that in many applications for the Min-Incomp-
Lex problem |4| is larger than |F]. In such applications 2"! >> n!, making the running
time O(2™! n*m?*) worse than the original O(n! nm?). In this case, I have two comments:
(1) Since the size of parameters depends on the particulars of the application, knowing
the size of parameters goes beyond complexity analysis per se. (2) Admittedly 2! is a
horrible function and a running time O(2™! n°m?) is unfeasible even for m as small as 5.
The point of the illustration, however, was merely to show that it is possible to have a
running-time that is polynomial in #. Furthermore, it may very well be possible to bound
|F] by a much slower growing function of |4]| than the one I have presented here. I leave
this for future research to determine.

A second point of criticism might be that, although we have shown that it is
possible to have a running time for Min-Incomp-Lex that is polynomial in n, the strategy
used is still not essentially different than checking all possible permutations on |F]
features. That is, although we introduced a reduction rule (MIL 1) that potentially shrinks
the size of F, as well as bounds |F] in a function of |4], if (MIL 1) does not apply
(anymore) we still proceeded with an exhaustive search on all |F]! possible feature
permutations. In other words, the main strategy for solving Min-Incomp-Lex has
remained basically the same; only our analysis changed. Next we derive a more strategic
algorithm. To do so we first define an annotated version of Min-Incomp-Lex as follows:

Annotated Min-Incomp-Lex

Input: A set of objects 4 = {ay, ay, ..., an} and a set of features F = {f1, f2, ..., fu}.

Here F partitions into F1 = { fi, 5, ..., fu;} and F> = {fu,+1, fa2, ---» fu}- Bach a O

A has an associated value b(a) 1 {0, 1},i=1, 2, ..., n, denoting the value that a

takes on feature f; [1 F. A complete ordering S(4), with a; >a, > ...> a,, and a

permutation of the features in /|, T{F). An integer k = 0.

% To compare two object vectors we need to make at most m = |4| comparisons; and
there are at most n(n — 1)/ 2 = |F|(JF] —1)/2 pairs of features to check.

164

Question: Does there exist a permutation of the features in /5, T(F>), such that

Error gx(4, S(A), F, P, T(F3)) < k? Here P [J A x A denotes the set of pairs of

distinct objects in A that are not distinguished by any feature in F}.

We denote an instance of Annotated Min-Incomp-Lex by a 5-tuple (4, (F; O F»)", S(4),
T(F), k). Note that Min-Incomp-Lex is a special case of Annotated Min-Incomp-Lex
with F; = [J. Annotated Min-Incomp-Lex can be thought of as the problem that arises
when we are in the process of solving Min-Incomp-Lex: The features for the first n;
positions of the permutation T(F’) for Min-Incomp-Lex have already been determined
(these are the features in Fj, and their order is given by T(F)). The remaining n — n;
positions need to be filled with the features in F5.

We observe that the previously described reduction rule (MIL 1) for Min-Incomp-
Lex directly generalizes to the reduction rule (AMIL 1) for Annotated Min-Incomp-Lex.

(AMIL 1) Feature Duplicates Rule. Let (4, (F, O F»)", S(4), T(F)), k) be an
instance for Annotated Min-Incomp-Lex. Further, let £, f, U [, be two features such that
for every pair (a;, a;) U P, feature £, and f, make the same prediction or both features
make no prediction. Then let (4, (F; U Fz*)F*, S(4), T(F), k), with F>* = Fo\{ f,}, be the
new instance for Annotated Min-Incomp-Lex.

We next derive a second reduction rule for Annotated Min-Incomp-Lex. Consider
again Figure 7.1, and assume we have decided on the first two positions of our
permutation, given by TU(F), with F; = {f2, f3}. Observe that f, and f; together distinguish
the pairs (a1, a2), (a1, a3), (a1, as), (az, as), (a3, as), (ai, as), (az, as), (a3, as), (a1, as), (az,
as), and (as, ag).” Recall that in the problem Annotated Min-Incomp-Lex P is the set of
all pairs of distinct objects that are not distinguished by any feature in . Thus, in this
example, P = {(az, a3), (as, as), (a4, ae), (as, ag)}. Now inspect f;. Even though f} by itself
makes an incorrect prediction for pair (a3, as), placing f; in the 31 position of our
permutation (i.e., after f, and f3) cannot lead to an incorrect prediction anymore. Namely,
(as, as) O P, and for all other pairs in P the feature f; by itself makes either no prediction

or the correct prediction. In general, if there exists a feature /] F that for all pairs in P

7 Note that which pairs are distinguished by {f3, 3} does not depend on T({f, f3}).

165

either makes no prediction or makes the correct prediction, then we can safely place fin
the (1, +1)™ position of our permutation. This leads to the following reduction rule:

(AMIL 2) Never-Wrong Feature Rule. Let (4, (F, O F»)", S(4), T(F)), k), with
S(4)=(a; > a, > ... > a,), be an instance for Annotated Min-Incomp-Lex. If there exist a
feature f, U F, such that for every pair (a;, ;) U P, i <j, we have by(a;) = b«(a)) then let
Fy*=F)\{f}, let F1* = F; O {f}, and let T(F*) = < T(F)), f, >. Finally, let (4, (F,* U
Fo*)"", S(A), T(F*)), k) be the new instance for Annotated Min-Incomp-Lex.

When solving Annotated Min-Incomp-Lex for an instance (4, (F; O F»)", S(4),
TU(F), k) we apply reduction rules (AMIL 1) and (AMIL 2) for as long as possible. If the
rules do not apply anymore we call an instance (4, (Fy O F»)", S(4), T(F)), k) reduced*.
Now observe that reduced* instances for Annotated Min-Incomp-Lex have a useful
property: Every feature in F, makes an incorrect prediction for at least one pair in P
(otherwise (AMIL 2) would apply). We can use this observation to build a search tree
whose depth 1s bounded by a function of &. We do so using branching rule (AMIL 3).
This branching rule takes as input a reduced* instance (4, (F, O F»)", S(4), T(F}), k). For
each /'] F; the rule (AMIL 3) creates a new node in the search tree representing the
possibility that in an optimal permutation for (4, (F; O F»)", S(4), T(F)), k), feature fis in
position n; + 1. At every node we update £ to reflect the number of incorrect predictions
made by feature f for pairs in P.

(AMIL 3) Feature In-or-Out Rule. Let search tree node s be labeled by an
instance (4, (F; O F»)", S(4), T(F)), k) for Annotated Min-Incomp-Lex. Then, for every f
[F, create a child syof node s and label it by (4, (F*; U F*%), S(4), T(F*)), k*). Here
Fy* =\, Fir*=F, O {f}, WF*) =<T10(F)), >, and k* = k — Error_gx(4, S(4), {f}, P,
T({/}))-

We now solve Min-Incomp-Lex using the following algorithm: The algorithm
takes as input an instance for (4, (F; O F»)", S(4), T(F)), k) for Annotated Min-Incomp-
Lex. We initialize F'; = [J, and start by applying reduction rules (AMIL 1) and (AMIL 2)
until no longer possible. Then we recursively apply branching rule (AMIL 3) (while
always reducing®* before applying (AMIL 3) again), until either P = [J (in which case we

166

return the answer “yes”), or F, = [l (in which case we also return the answer “yes”),71 or
k < 0. If the algorithm halts without returning the answer “yes” then we return the answer
“no.”

Note that on each application of (AMIL 3) k* <k — 1 and |[F>*| < |F,| — 1, with |F]
< |F] = n. Thus, the " application of (AMIL 3) leads to the creation of at most n — (i +1)
new search tree nodes, and we never apply (AMIL 3) more than & times. This means that

the size of the search tree is bounded by n(n — 1)(n — 2) ...(n — (k —1)), which is

!
O((n.k)'j . Together with the time spent at each node of the search tree, to label the
n—k)!

node and reduce* an instance before branching, we conclude a total running time of

0] " n*m? |.
(n—k)!

The described algorithm is an fpt-algorithm for {n, k)-Min-Incomp-Lex. Recall,

however, that the goal was not to show that {n, k}-Min-Incomp-Lex [J FPT. This we
already knew. Namely, as remarked at the beginning of this subsection (page 162), the
problem Min-Incomp-Lex is solvable in time O(n! nm?), and thus {n}-Min-Incomp-Lex
U FPT. Since, {n, k} U {n}, it follows that also {n, k}-Min-Incomp-Lex [FPT (see
Section 4.5, page 73). The goal here was to describe a strategy that is better than the
naive exhaustive search proposed by Martignon and Schmitt (1999). The algorithm that I

. . . o n!
have sketched here is not only more strategic, but also its running time O((Y nim zj
n—k)!

is better than O(n! nm?) for k < n (albeit still impractical for moderately sized n and k).

"I Reminder: The pairs in P that cannot be distinguished by any feature in F, are ignored
in the error count.

167

7.2. Bottom-up Visual Matching

Here we consider the problem Bottom-up Visual Matching, formulated by Tsotsos (1989,
1990, 1991). Section 7.2.1, explains the application of this problem in the domain of
visual search. Section 7.2.2 presents the exact problem definition of Bottom-up Visual
Matching. Finally, in Section 7.2.3, we discuss the result by Tsotsos (1989, 1990) that
Bottom-up Visual Matching is NP-hard, and we show how a known result for this

problem can be interpreted as an fpt-result.

7.2.1. Motivation: Visual Search

Tsotsos (1990) studied the complexity of visual search tasks. In a visual search task one
is presented with a visual display containing a set of stimuli (e.g. a collection of green
circles). The goal is to decide whether or not a target stimulus is present among them,
where a target is defined as a stimulus that is different in some respect from all other
stimuli in the display (e.g. a green square, or a red circle). In other words, the target is the

“odd-man-out.” Figure 7.2 presents an illustration.

Figure 7.2. Illustration of a visual search task.

The target is the “odd man out;” i.e., a visual object that is different from all
other visual objects in the display. Note that in the display on the left no
such target is present, while in the display on the right there is.

Tsotsos argues that, to perform the visual search task, the perceptual system not only has
to search through a set of visual objects and potential targets, but it also has to determine
for each visual object and each potential target whether or not they match. The latter
subtask of visual search, Tsotsos calls visual matching. Since visual input is noisy, visual
matching is not a trivial task. Consider, for example, Figure 7.3. There, on the left, a

visual object is displayed (called the test image) and a hypothesized target is presented on

168

the right (called the farget image). Both test image / and target image 7 are sets of
pixels.”” A pixel p is a 3-tuple p = (x, y, b), where x, y specify the location of the pixel in a
Euclidean coordinate system, and b is a positive integer representing the brightness level
of pixel p. The images / and 7T use the same coordinate system and the origins coincide

for 7 and T. Thus, for each pixel p; [I, p; = (x, v, b;), there is a corresponding p,] T, with
D= (x’ Y, bl‘)

Figure 7.3. Illustration of a visual matching task.

A noisy test image / (left) and a target image 7 (right). Here, pixels take on four

different brightness levels: (1) white, (2) light gray, (3) dark gray, and (4) black.
Do the two images in Figure 7.3 match sufficiently to warrant the response “yes, the
target is present”? To determine this, Tsotsos proposes, the visual system computes for
each pixel p; = (x, y, b;) U I, (1) the difference in brightness of p; and p, = (x, y, b)),
defined as diff(p;) = |b; — b4; and (2) the correlation in brightness for p; and p, = (x, y, b)),
defined as corr(p;) = b;b,. Figure 7.4 illustrates the computation of these functions for the

test and target image in Figure 7.3.

> My characterization of the matching task here is a simplification of the one by Tsotsos
(1989, 1990). The three main simplifications are as follows: (1) Here we assume that
each pixel has only one task relevant feature (brightness), while Tsotsos’ model allows
pixels to have multiple features (e.g. color, depth, motion). (2) Here we assume that
brightness values are represented by non-negative integers, while Tsotsos allows them to
take on any non-negative value of fixed precision. (3) Here we assume |/| = |7], while
Tsotsos allows 7 to be larger than 7 or vice versa. Note that the restrictions that apply
here are for simplicity of exposition only and do not alter the nature of the task in any
fundamental way (see also Tsotsos, 1991).

169

b b,
4111114 411|114
113]2(3]1 114]1]14]1
1(1]4(1]1 1(1]4]1]1
3111311 1(1]4]1]1
1(2121]2 1(1]4]1]1
diff(p,) corr(p,)

0(0[0(0]O0 16|11 |1]16
O(1(1(1]0 111212 |12] 1
000|000 L1161]1
210{1(0]0 311121111
0(1(2(0]1 1128|112

Figure 7.4. Illustration of Top-down or Bottom-up Visual Matching

The two matrices at the top give a numeric representation of the brightness values in
the image / (top-left) and the target 7T (top-right) from Figure 7.3. The matrices at the
bottom show for each of the 25 pixels in 7, the absolute difference of the brightness
value of that pixel and its corresponding pixel in 7' (bottom-left), and the product of
the brightness value of that pixel and its corresponding pixel in 7' (bottom-right).

Then, one possible way of determining whether or not a satisfactory match exists is as

follows:

(1) Compute the sum of all difference values, ZPD[diff(p), and the sum of all
correlation values, ZPDI corr(p).

(2) Set two criteria 6 and @ (Here O represents that largest satisfactory total difference

between test and target, and @ represents the smallest satisfactory total correlation

between test and target image).

3) If mez diff(p) < 0 and ZPDI corr(p) 2 @, then we return the answer “yes” (i.e., we

conclude a satisfactory match between test and target) and “no” otherwise.
Because in step (1) the boundary of the test/target image is used to guide the computation
of the match, Tsotsos calls this approach Top-down Visual Matching. Top-down Visual
Matching is computationally easy and solvable in time O(|{]) (or in time O(|T)), since || =

|7]). In contrast, the problem Bottom-up Visual Matching is computationally much

170

harder. Here the task is to decide whether there exist any arbitrary’> subset of pixels I’ [J

1, such that me' diff(p)< B and zpmr corr(p)= @. In other words, in Bottom-up Visual

Matching, unlike in Top-Down Visual Matching, the boundaries of the image and/or the
target are not used to guide the search for a match. Clearly, we can solve Bottom-up
Visual Matching in time 0(2“‘).74 But the question is: Can we solve Bottom-up Visual

Matching more efficiently? Section 7.2.3 discusses Tsotsos’ answer to this question, and

Kube’s (1990, 1991) critique of it.

7.2.2. Notation, Terminology and Problem Definition
Let 7 denote an image, and let 7 denote a target. Both 7 and T are sets of pixels, with |/| =
|T]. A pixel p is a 3-tuple p = (x, y, b). Here coordinates (x, y) represent the location of p
in a Euclidean coordinate system that is the same for both 7 and T; and b is a non-negative
integer representing the brightness level of p. For each pixel p; U I, p; = (x, y, b;), there is
a corresponding p,] T, with p, = (x, y, b;). For each such pair of pixels, we define the
function diff(p;) = |b; — b,| and the function corr(p;) = b;b;. Then, the problem Bottom-up
Matching is defined as follows:
Bottom-up Visual Matching
Input: An image [and a target 7. Each pixel p; = (x, y, b;), p: U I, with p, = (x, y,
b,), p:J T, has an associated value diff(p;) = |b; — b/ and an associated value
corr(p;) = b;b,. Two positive integers 6 and @.

Question: Does there exist a subset of pixels /° [l / such that zlﬂ,diff (p)<Ho

and me corr(p)= @?

Note that, for each p [I, the values diff(p) and corr(p) are part of the input, and need not

be computed anymore. This assumption is made to simplify the discussion and is adopted

from Tsotsos (1989, 1990).

> Tsotsos explicitly allows I’ to be a subset of pixels that are not spatially contiguous
(see e.g. Tsotsos, 1990, p. 429).

™ Compute the functions Z,,D,.diff (p)and zpm- corr(p) for all of the 2" possible

subsets /’ [J 7and compare them to @ and 0 respectively.

171

7.2.3. Classical and Parameterized Complexity

The problem Bottom-Up Visual Matching has been shown to be NP-hard (Tsotsos,
1989).

Theorem 7.2. (Tsotsos, 1989) Bottom-Up Visual Matching is NP-hard
The proof by Tsotsos (1989) involves a reduction from the known NP-hard problem

Knapsack. The decision version of this problem is as follows.

Knapsack
Input: A finite set U. Each u 0 U has a size s(u) 0 Z" and a value v(x) 0 Z".
Positive integers B and K.

Question: Does there exist a subset U’ [J U such that ZS(”) < B and

u0U"

Zv(u)ZK?

W’
The problems Bottom-up Visual Matching and Knapsack are clearly very related. The
only difference between the two problems is the following. In Knapsack, for each u UJ U,
s(u) and v(u) can take arbitrary integer values, while in Bottom-up Visual Matching, for
any p; U I, the value that corr(p;) can take is constrained by diff(p;), and vice versa.
Consider, for example, corr(p;) =12. Then we can have at most 3 different values for
diff(p;). We can have diff(p;) = 1 (if b; = 3, b, = 4, or vice versa), or diff(p;) = 4 (if b; = 2,
b, = 6, or vice versa), or diff(p;) = 11 (if b; =1, b, = 12, or vice versa). This means that we
cannot have arbitrary integer values for diff(p;,) go with arbitrary integer values for
corr(p;), as in Knapsack. As a consequence of this difference, Bottom-up Visual
Matching is a special case of Knapsack, and thus the NP-hardness of Knapsack does not
directly imply that Bottom-up Visual Matching is NP-hard. Nevertheless, Tsotsos has
shown that there exists a polynomial-time reduction from Knapsack to Bottom-up Visual
Matching, hence proving Theorem 7.2. Because the proof is quite elaborate I will not
repeat it here. The interested reader is referred to Tsotsos (1989) for the proof.
In his 1990 paper, Tsotsos wrote that Theorem 7.2 implies that the complexity of

Bottom-up Visual Matching is inherently exponential in the number of pixels in the
image, i.e., 0(2‘”). In a commentary, Kube (1990; see also Kube, 1991) replied that

Tsotsos claim is incorrect because Bottom-up Visual Matching is not NP-hard “in the

172

strong sense.” To explain we consider the strategy for solving Bottom-up Visual
Matching described by Kube (1991).
The strategy used by Kube (1991) is generally known as dynamic programming
(e.g. Goodrich & Tamassia, 2002). The basic idea of dynamic programming is that the
optimal solution to a problem contains an optimal sub-solution. Using the known
optimality of the sub-solutions within sub-solutions the algorithm recursively builds an
optimal solution. I sketch the algorithm by Kube (1991) below:
Kube’s Algorithm
Input: An instance (Z, T), with I = {p1, pa, ..., pn}, for Bottom-up Visual Matching
Output: “yes” if (1, T) is a yes-instance for Bottom-up Visual Matching, and “no”
otherwise.
[Description of algorithm:] Let BEST(7, j) be a function that outputs the
maximum value of corr(/’) over all subsets I’ U I with I = {py, p2,, pr}, k< i,
and diff(/’) <. Note that, if we know the value of BEST(|/|, 0), then we have
solved Bottom-up Visual Matching. Namely, if BEST(|/|, 0) = @ then we know
that the answer is “yes” (there exists a subset I’ [J / with corr(/’) 2 @and diff(!’) <
0), and if BEST(|/|, ©) = @ the answer is “no.” We compute BEST(|/], 8) as
follows:
(1) We define BEST(i, j) = —oo foralli< 0 andj < 0.
(2) Forj=1,2, ..., 0 we do the following: If diff(p;) < then we define
BEST(1, j) = corr(p)), else we define BEST(1, j) = 0.
(3) Weseti=|l|andj = 0.
(4) We recursively apply the rule BEST(7, j) = MAX(BEST(i-1, j), corr(p;) +
BEST(i-1, j =diff(p/))).”

> To see that the rule is valid consider the following: Let I’ be a subset of pixels such that

corr(/’) is maximum and diff(/”) <. In other words, BEST(i, j) = corr(/’). We distinguish

two cases:

(1) Let p; U I’. Then corr(I’) = BEST(i, j) = BEST(i—1, j), since BEST(i—1, j) outputs the
maximum value of corr(/*) over all subsets /* [1 [, with I = {py, p»,, pi-1}, and
diff(I’) <.

173

If the computed value BEST(|/], 6) is such that BEST(|/|, 6) = @, then we output
“yes,” else we output “no.” [End of description]

In the recursion sketched above we compute BEST(7, /) only for values 0 <i<|/]and 0 <
j < 0. Hence Kube’s algorithm computes BEST(|/], 0) in time O(|/] 8). This function is not
exponential in |/|, so indeed the statement by Tsotsos that the time-complexity of Bottom-
up Visual Matching is inherently exponential in |7] is hereby refuted. ’® Kube (1991) goes

on to argue that Bottom-up Visual Matching is only hard if brightness values are very

large. Let A denote the largest brightness value (i.e., for all p; J I, we have b; < A). Then
Z,,m diff (p) < AJIl. Now observe that, if me diff(p) < All| <86, then the problem

Bottom-up Visual Matching is trivial.”” Thus we conclude that for any non-trivial
instance we have 0 < A|/], and thus Bottom-up Visual Matching is solvable in time
O(/I*\). In sum, if A or O is small, then Bottom-up Visual Matching is practically
feasible.

Although running times like O(|7|0) and O(//*\) may look like polynomial
running times, it is important to realize that they are not.”® Recall from Chapter 2 (page
28) that the complexity of an algorithm is measured in terms of the length of the input
when encoded in a reasonable way. Since 0 and A are numbers, a reasonable encoding of
them would be in n-ary with n = 2. Then the size of the encoding of 6 is O(log,,0), and
O(]1]8) is not bounded by any polynomial of O(|/] log,0), n = 2. Similarly, the size of the
encoding of A is O(log,\), and O(|]*\) is not bounded by any polynomial of O(//]* log,\),
n =2 (see also Garey & Johnson, 1979).

(2) Let p; O I’. Then corr(I’) = BEST(i, j) = corr(p;) + BEST(i —1, 6 —diff(p;)), since
BEST(i -1, 06 —diff(p;)) outputs the maximum value of corr(/*) over all subsets /* [1 1
= {p1, p2,, pi-1} with diff(/*) < 6 —=diff(p;).

Since corr(/’) is maximum we conclude that BEST(7, j)) = MAX(BEST(i-1, j), corr(p;) +

BEST(i -1, 6 —diff(p,))).

7% In his response to Kube (1991), Tsotsos (1991, p. 770) wrote that he “thought this was

a good way of making the point for a noncomputational audience,” even though it

“sweeps much under the rug.” Although I understand Tsotsos’ motivation, in the present

context [will have to go with Kube’s criticism.

" Then we set I’ = I, and if ZPDII corr(p) =2 @we return “yes,” and otherwise “no.”

"8 Note that if they were, then Kube’s algorithm, together with Theorem 7.2, would have
proven P = NP.

174

However, if we were to place some bound on 0 or A, then O(//|8) and O(|I]*\)
would be polynomial-time functions. Importantly, this would even be the case if the
bound were a polynomial function of |/]. For this reason, algorithms with this type of
running time are called pseudo-polynomial time algorithms (Garey & Johnson, 1979).
NP-hard problems that are not solvable by any pseudo-polynomial time algorithm (unless
P = NP) are called strong NP-hard.”

I would like to bring to the reader’s attention that a pseudo-polynomial time
algorithm is a special case of an fpt-algorithm, viz. one in which the function f(K) is a
polynomial function the parameter K (although K itself can be a non-polynomial in the
size of the input). In other words, the pseudo-polynomial time algorithm described by
Kube shows that 8-Bottom-up Visual Matching [J FPT and A-Bottom-up Visual
Matching [l FPT. Also note that Kube’s arguments discussed above, mirror the FPT-
Cognition thesis introduced in Chapter 3 (page 46): NP-hard problems may still be
tractable, as long as their inherent exponential-time complexity can be captured by input

parameters that are small.

7.3. Conclusion

In this chapter we have considered two problems, Min-Incomp-Lex (Martignon &
Schmitt, 1999) and Bottom-up Visual Matching (Tsotsos, 1990). Both problems are very
different from the problems discussed in Chapters 4-6, and they are very different from
each other. I have illustrated how the techniques for complexity analysis used in previous
chapters also apply to these problems. For example, I have presented a reduction rule to

show that |4|-Min-Incomp-Lex is in FPT, and I showed how to construct a branching

!
algorithm solving Min-Incomp-Lex in time O(n.k)' n’m’] . For the problem Bottom-
n—k)!

up Visual Matching we have discussed Kube’s (1991) pseudo-polynomial time
algorithm, and I have explained that this algorithm is an fpt-algorithm.
The sole purpose of this chapter was to show how the techniques, discussed in

detail in previous chapters, generalize to problems of very different character. As a result

7 All NP-hard problems considered in this work (except for the number problems
Knapsack and Bottom-up Visual Matching) are strong NP-hard.

175

the discussion has been relatively brief and superficial. Many parameters and questions
remain unexplored. For example, we have seen that n-Min-Incomp-Lex [] FPT and {n,
k}-Min-Incomp-Lex U FPT. It would be very interesting to know if also A-Min-Incomp-
Lex is in FPT. Further, Kube’s pseudo-polynomial time algorithm does not use the fact
that in Bottom-up Visual Matching there are strong restrictions on the types of values that
diff(.) and corr(.) can take (see page 171). As a consequence, the algorithm also solves
Knapsack in the same time. Is it possible to use the restrictions on Bottom-Up Visual

Matching to derive faster fpt-algorithms for this problem than for Knapsack?

176

Chapter 8. Synthesis and Potential Objections

This chapter serves to synthesize the arguments and ideas pursued throughout this work. |
start by recapitulating the main goal of this research and summarize how I have set out to
attain that goal. As I anticipate that this research may give rise to objections by cognitive

psychologists, I subsequently discuss a set of potential objections. For each objection I

identify the theoretical perspective it reflects and I give a brief response.

8.1. Synthesis

The main aim of this research has been to make the theory of computational complexity
tangible for the cognitive psychologist, such that s/he can study the a priori feasibility of
computational level theories. Towards this end, I have presented a set of chapters—each
chapter contributing to the main goal in its own way.

Chapter 1 explained that, at the computational level, cognitive theories are
mathematical functions. Once it is recognized that cognitive systems (are thought to)
‘compute’ functions, the question “which functions can be computed by cognitive
systems?” becomes a natural one to ask. The answer to this question can then serve as a
guiding principle in the development of cognitive theories.

In the above, the meaning of ‘compute’ is key. Many cognitive psychologists
have an intuitive idea of computation and computability, but often they lack a formal
understanding. This can lead to all kinds of preconceptions about what types of
mechanisms are, and are not, computational (see also Section 8.2). Chapter 2 was
intended to remedy this problem, by presenting a brief but accessible introduction to the
theory of computation. Furthermore, the exposition in this chapter led to the formulation
of the Tractable Cognition thesis: Cognitive functions are among the computationally
tractable functions.

Chapter 3 discussed how many cognitive psychologists subscribe to the P-
Cognition thesis as a formalization of the Tractable Cognition thesis. This choice is
motivated by the exclusive use of classical complexity theory in present-day cognitive
psychology. Based on parameterized complexity theory, and its accompanying notion of

fixed-parameter tractability, I have proposed the FPT-Cognition thesis as an alternative

177

formalization of the Tractable Cognition thesis. I have explained that, despite its apparent
plausibility, the P-Cognition thesis is overly restrictive and at risk of excluding veridical
cognitive theories from empirical investigation. Unlike the P-Cognition thesis, the FPT-
Cognition thesis recognizes that different aspects of a problem’s input may contribute to
its complexity in qualitatively different ways. As such, the FPT-Cognition thesis
encourages the cognitive psychologist to engage in active investigation of problem
parameters and their contribution to a problem’s complexity. Chapters 57 illustrated
possible forms that such an investigation may take.

What good is a tool if you do not know how to use it? To enable the reader to
learn how to perform basic complexity analysis, I have tried to make the text as much
self-contained as possible. Chapters 2 and 3 explained and illustrated basic notions and
techniques in classical complexity theory. Furthermore, Chapter 4 presented a whole
toolbox of basic techniques for parameterized complexity analysis. Chapters 2—4 have the
added advantage that they can make the formal literature in computer science more
accessible to the reader; hence facilitating searches for different tools in that literature.

Chapters 5—7 demonstrated the power and generality of the presented toolbox, by
illustrating its use in analyses for four different cognitive tasks: Coherence, Subset
Choice, Min-Incomp-Lex, and Bottom-up Visual Matching. Notably, in each case the
analysis led to fundamental insights into the nature of the task. I believe that, after having
read and understood these analyses, the reader is more likely to agree that complexity
theory has a role to play in cognitive theory. Also, after having read these analyses, the
reader will be in a much better position to appreciate the difference between the P-

Cognition thesis and the FPT-Cognition thesis.

8.2. Potential Objections

It is my experience that the views and ideas expressed in this work give rise to questions
and/or criticisms by cognitive psychologists. This section discusses a set of objections
that I have encountered in discussions with colleagues. Each objection can be seen as
arising from a particular theoretical perspective. Here I distinguish between three
perspectives: The perspective of (A) a researcher who subscribes to the P-Cognition

thesis, but who questions the FPT-Cognition thesis; (B) a researcher who subscribes to

178

the computational approach to cognition, but who questions the Tractable Cognition
thesis; and (C) a researcher who does not subscribe to the computational approach to
cognition. Because an argument is best understood if one knows who is making it, I will

indicate for each objection the perspective from which (I believe) it arises.

8.2.1. The Empiricist Argument.

(Perspective B or C) Cognitive theories should be evaluated on how well they

explain empirical data, not on a priori plausibility.
The Tractable Cognition thesis is in no sense intended to replace empirical evaluation of
cognitive theories. It is well understood that, in the end, all cognitive theories must stand
the test of empirical scrutiny. What the Tractable Cognition thesis offers is a way of
evaluating the a priori feasibility of cognitive theories on theoretical grounds. This way,
the thesis helps constrain the vast space of possible computational level theories for any
given cognitive task. Further, the Tractable Cognition thesis is useful for evaluating
(aspects of) cognitive theories that cannot (yet) be evaluated (solely) on empirical
grounds. This seems particularly helpful since many cognitive theories are about
unobservable, or only indirectly observable, cognitive processes.

Of course, if one is a non-computationalist cognitive scientist then one may not
recognize the tractability constraint on cognitive theories. In that case see my response to

the Cognition-is-not-Computation Argument below.

8.2.2. The Cognition-is-not-Computation Argument

(Perspective C) Computational complexity theory has nothing to offer cognitive
science, since cognition is not computation.
What is meant with this objection depends crucially on the meaning of the phrase
“cognition is not computation.” I believe the phrase is associated with a multitude of
meanings. In my reactions below, I distinguish between four possible versions of the
argument.
Version 1: Complexity analysis does not apply to cognition because cognition is
not symbolic computation.
In cognitive science, the terms computation and computationalism have become

associated with the symbolic tradition (also referred to as good-old-fashioned-artificial-

179

intelligence or GOFAI), and sometimes even with particular models in this tradition (e.g.
Anderson, 1987; Fodor, 1987; Pylyshyn, 1984, 1991; Newell & Simon, 1988a, 1988b).
As explained in Chapters 1 and 2, to recognize the role of complexity theory in cognitive
science all that is required is a commitment to computationalism in some form or
another—not to any particular form of computationalism (cf. Chalmer’s, 1994, minimal
computationalism). Many theories that are considered ‘non-computational’ may still fall
under the heading of computationalism in this broad sense. For example, despite their
presumed ‘non-computational’ status (e.g. Port & van Gelder, 1995; Thelen & Smith,
1994; van Gelder, 1995, 1998, 1999), dynamical systems models can be subjected to
computational complexity analysis (unless Version 2 applies).

Version 2: Complexity theory does not apply to cognitive systems, because

cognitive systems do not compute functions.
The present work is based on the idea that cognitive systems are to be understood in
terms of the input-output mappings that they realize; i.e., in terms of the functions that
they compute (see Chapter 1). It may be, however, that the purpose of some (or all)
cognitive systems is not to compute any functions at all. Instead, for example, their
purpose may be to cycle through a set of states indefinitely, without ever halting and
producing an output (cf. Levesque, 1988, p. 385). In such cases we can reasonably say
that the system is computing (in the sense that each state leads to a different state in a
deterministic way), but the system cannot be said to be computing a function (since it
never produces an output). As should be clear, such cognitive systems are precluded from
the type of analyses presented here (see also Version 4 of the Cognition-is-not-
Computation Argument).

Version 3: Cognitive functions need not be computationally tractable, because

cognitive systems realize their input-output mappings via non-computational

means.
Some non-computationalists do not question that the purpose of cognitive systems is to
realize input-output mappings (i.e., they do not subscribe to Version 2), but they propose
that cognitive systems realize such mappings in ‘non-computational’ ways (e.g. Horgan
& Tienson, 1996; Krueger & Tsav, 1990; but see also my comment to Version 1). On this

view, cognitive functions need not be computationally tractable. This may be so. But the

180

explanatory value of theories that propose that a (potentially intractable) cognitive
function is realized in some non-computational way is questionable (see also Cherniak,
1986; Levesque, 1988). As Tsotsos puts it:
“Experimental scientists attempt to explain their data, not just describe it (...)
There is no appeal to non-determinism or to oracles that guess the right answer or
to undefined, unjustified, or “undreamed of”” mechanisms that solve difficult
components. Can you imagine theories that do have these characteristics passing a
peer-review procedure?” (Tsotsos, 1990, p. 466).
Version 4: Complexity theory does not apply to cognition, because computation is
an altogether wrong way of thinking about cognition.
Finally, Version 4 of the Cognition-is-not-Computation Argument represents the non-
computationalist that is not persuaded by any of my reactions to Versions 1-3. In my
opinion, even this researcher should appreciate the contribution that the Tractable
Cognition thesis makes to cognitive science. Namely, a non-computationalist can still
recognize that tractability is a constraint on computational theories of cognition. Then the
Tractable Cognition thesis offers the non-computationalist a way of evaluating the
success of his/her competition. If, in the long run, human cognition systematically defies
tractable computational description then this can be taken as empirical support for the

idea that computation is the wrong way of thinking about cognition.

8.2.3. The Super-Human Argument

(Perspective B or C) Humans are found to perform computationally intractable

tasks. This goes to show that tractability is not a constraint on human

computation.
Some tasks that are performed effortlessly by humans are presently being modeled by
computational intractable functions (e.g. Haselager, 1997; Oaksford & Chater, 1993,
1998). Some researchers interpret this as evidence that people perform computationally
intractable tasks (e.g. Siegel, 1990). In my view the argument is flawed. There are two
possibilities: either one is a computationalist (Perspective B) or one is not (Perspective
C). If one is, then one should concede that either the tasks are incorrectly modeled or that

the wrong criterion for tractability has been adopted. If one is not, then one does not

181

recognize that the models truly capture the nature of the tasks in the first place, and thus
their classification as ‘intractable’ is irrelevant the conceptualization of the tasks. (Unless
Version 3 of the Cognition-is-not-Computation Argument applies. In that case see my

response on page 179).

8.2.4. The Heuristics Argument

(Perspective B) Humans may approach intractable cognitive tasks by using

heuristics/approximation algorithms. Then intractability is not an issue.

This argument we already encountered in Chapter 3 (page 40), and my reaction still
stands: Since heuristics do not solve the problem they are used for, they are
unsatisfactory algorithmic level descriptions. If one wishes to maintain that a ‘heuristic’
M is a satisfactory algorithmic description of a cognitive system, then one has to concede
that the task being solved at the computational level is the task solved by M, not some
different task. The story is different for approximation algorithms, since in those cases
there is a provable and lawful relationship between the behavior of the algorithm and the
problem [1 that it approximates. However, if indeed an approximate solution serves just
as well, then the computational level theory should incorporate this aspect of the task,
making the computational level theory Il an approximation problem [1°, and making the
approximation algorithm for 1 an exact algorithm for 1°.

One might counter that my argument makes sense for descriptive but not for
normative cognitive theories. Indeed normative theories just need to be sound—not
necessarily tractable. However, when evaluating how cognitive systems fare in
comparison to normative models it may not make sense to compare them to standards
that are physically unrealizable in the first place. For example, Oaksford and Chater
(1998, p. 113), argue that expecting humans to behave rationally on intractable tasks is
like expecting them to be able to “breath under water, even though [they] do not possess
gills.” (cf. Cherniak, 1986; Frixione, 2001; Gigerenzer & Goldstein, 1996; Oaksford &
Chater, 1993; Simon, 1990; Todd & Gigerenzer, 2000).

182

8.2.5. The Average-case Argument

(Perspective B) 4 task that is classified as intractable on a worst-case analysis

may still be tractable in practice. An average-case measure of complexity should

be used instead.
In this work we adopted a worst-case measure of complexity. The use of this measure is
validated by the fact that the worst-case happens in practice (if it would not, then we
would be dealing with a restricted version of the problem, which would have a different
worst-case). Furthermore, for the purpose of determining the complexity of a task, worst-
case and average-case analysis often leads to the same conclusion (see also Totsos,
1990). Consider, for example, the task of finding a particular number, s, in a list of n
numbers. Assume that s occurs exactly once in any given list and that numbers in a list
appear in any arbitrary order. Then, in the worst-case we consider » numbers in the list

before we find s. If we perform this task many times, each time for a new list, then on

average we consider %numbers before we find s. Note that %is on the same order of

magnitude as n—thus both are polynomial. Similarly, to find a particular subset among
all possible subsets on n elements, we need to consider 2" subsets in the worst case, and
2" subsets on average—both are exponential.

This is not to say that worst-case analysis and average-case analysis cannot lead
to different conclusions about complexity. This may happen, for example, if certain
inputs are much more likely to occur than others. Not only is it often difficult (or even
impossible) to know the probability distribution on inputs, but the introduction of
probability distributions makes complexity analysis much more difficult. In those cases,
worst-case analysis of the problem with restricted inputs (excluding inputs with very low

probability of occurrence) may provide a reasonable alternative to average-case analysis.

8.2.6. The Parallelism Argument

(Perspective B) Cognitive computation is (to a large extent) parallel, not serial. A
task that is intractable for a serial machine need not be intractable for a parallel
machine.

We have worked with the serial Turing machine model here. Nonetheless, the arguments

for a Tractable Cognition thesis can be extended to include parallel computation (see also

183

Frixione, 2001). From a complexity perspective the difference between serial and parallel
computation may be quite insubstantial, depending on the particular parallel machine
model used. To illustrate, let us first consider a parallel machine M with S processing
channels, such that M computes a given serial computation by performing S steps in

parallel (i.e. simultaneously). Further, let I'1 be a function with time-complexity O(f(n)).

Then M computes 1 at best in time O(%).% Note that, if S is a constant, then the speed-

up due to parallelization is by a constant factor only (see also Chapter 3, page 32), and

O(%) = O(f(n)). The speed-up factor S can of course be taken into account in the

analysis—there is nothing inherent in complexity theory that prevents one from doing so.
Importantly though, if f(r) is a non-polynomial function then the speed-up due to S
becomes negligibly small very fast as n grows (see also Table 2.1 on page 32). The same

is true if S is bounded by some polynomial function of n. Of course, if S grows non-

polynomially as a function of n, then O(%) may be a polynomial running-time. In that

case indeed time would no longer be a limiting factor, but the space required for
implementing the astronomical number of processors would be (cf. Frixione, 2001).

In other models of parallel computation the speed-up due to S need not be
constant, but may grow with #.®' Importantly, though, the Invariance thesis, as discussed
in Section 2.4.4 on page 28, includes both serial and parallel computation: It is widely
believed that for any reasonable parallel machine the speed-up due to S will be by at most
a polynomial amount (Frixione, 2001; Tsotsos, 1990; Parberry, 1994). In other words, if
the Invariance thesis is true, then parallel machines cannot compute functions outside P in

polynomial-time nor compute parameterized functions outside FPT in fpt-time.

% Here we are assuming that 1 is parallelizable in this way. This may not be possible for
all functions.

*1 This is the case, for example, in the parallel random access machine (P-RAM) model,
where M is assumed to have available S processors that can all communicate to each
other in constant time (e.g. Gibbons & Rytter, 1988; cf. the extensions of the Turing
machine concept discussed on page 17).

184

8.2.7. The Non-Determinism Argument

(Perspective B or C) Cognitive systems are not deterministic machines, and thus

functions that are intractable for deterministic machines may still be tractable for

cognitive systems.
The approach we have taken here assumes a deterministic worldview, and not, for
example, a probabilistic worldview. In Chapter 3 we have seen how some functions that
cannot be computed in polynomial-time by any deterministic Turing machine (unless P =
NP), can be computed in polynomial-time by a non-deterministic Turing machine.
Because a reader may mistakenly assume that non-deterministic computation—as defined
in computer science—is the same as “non-deterministic” computation in the sense of
stochastic computation (see e.g. Martignon & Hoffrage, 2002), I will clarify the
important difference below.

Let M be a non-deterministic Turing machine. Recall from Chapter 2, that M is
said to “compute” a function I1 if, for every possible input i, there exists at least one
possible sequence of state transitions in M that leads to output o = (7). The number of
possible different outputs that M can generate for any fixed i is ignored in this definition,
and may be arbitrarily large. In other words, M can be seen as operating like an oracle
that always “guesses” the right output for any given input. We now define a stochastic
interpretation of M, called M", as follows: The transition relation for M is the same as for
M, but in M’ each possible transition has an associated probability that it occurs. Now it
becomes clear that, if M has an arbitrarily large number of possible outputs, then the
probability that M’ “guesses” the right output for any given function may be arbitrarily
small. In other words, if M “computes” a function () for a given i, its stochastic version
M’ may “compute” 1(7) with only arbitrarily small probability.

This is not to say that stochastic computational models of cognitive systems are
impractical or useless. On the contrary, they may very well provide better models of
certain cognitive systems than deterministic models. But one should not be fooled into
thinking that stochastic machines have the same abilities as non-deterministic machines.
Even if it turns out that stochastic machines have different abilities than deterministic
machines, this does not obviate complexity analyses in cognitive psychology. Tractability

is as much a requirement on stochastic computation, as it is on deterministic computation.

185

8.2.8. The Small-Inputs Argument

(Perspective B) For some cognitive tasks, the size of the input is small in practice.

In those cases intractability is not an issue.
Correct. This reasoning is also naturally captured by the FPT-Cognition thesis. As
explained in Chapter 2 (page 47) and Chapter 4 (page 64), all problems are in FPT when
parameterized by their input size. Thus, if the input size is small then, on the FPT-
Cognition thesis, the problem is classified as tractable. It should be noted that also no one
who subscribes to the P-Cognition thesis would claim that tractability is an issue if input
size is small. The problem is, of course, that for many cognitive tasks the size of the input
as a whole is not small (or at least not small enough). It is then that the P-Cognition thesis

and the FPT-Cognition thesis diverge.

8.2.9. The Nothing-New Argument

(Perspective A) The requirement that a problem be in FPT for some “small”

input parameters is not essentially different from the requirement that a special

case of the problem is in P.
The claim reflects a misunderstanding about the relationship between P and FPT.
Parameterization is not the same as problem restriction; it just determines how we
analyze the complexity of a problem. If a problem I, with input parameter K, can be
solved by an algorithm that runs in time O(f(K)n"), where o is a constant and f{K) is a
function depending only on K, not on |i|, then we say that the parameterization K-I1 is in
FPT. It is important to realize that in this analysis the value of K is not fixed*>—it remains
a variable just like |i|. It is true that if we were to fix K then O(f{K)n®) would be O(n®), and
thus polynomial time, but the same is true also for some fixed-parameter intractable
problems; e.g., a running time O(n") is not fpt-time for parameter K but is polynomial-
time if K is a constant. In this respect, the requirement that a problem be in FPT for some
parameter K is more stringent than the requirement that a problem is in P for constant K.
However, the requirement that the problem be in FPT for parameter K is more lenient

than the requirement that the problem be in P.

%2 In this respect, the name fixed-parameter tractable’ may be somewhat misleading.

186

8.2.10. The P-is-not-strict-enough Argument

(Perspective A) Polynomial-time computability is already a too liberal constraint

on cognitive functions. Thus the FPT-cognition thesis only makes matters worse.
Some researchers subscribe to the idea that most, if not all, (higher-order) cognitive
functions are of extremely low complexity (e.g. Gigerenzer & Goldstein, 1996;
Martignon & Hoffrage, 1999, 2002; Martignon & Schmitt, 1999; Todd & Gigerenzer,
2000). For example, cognitive tasks “requiring more than a quadratically growing
number of computation steps already appear to be excessively complicated” to Martignon
and Schmitt (1999, p. 566). To such researchers, the proposal that cognitive systems

perform non-polynomial fpt-time computations may seem outrageous.

400 4 = 0@")
—o— O(\/EK +n)

Figure 8.1. Polynomial time versus fpt-time.

The figure compares polynomial time O(n*) and fpt-time 0(\/5 ‘4 n) for
parameter K. In this example K = 10. Increasing the value of K will cause

the curve for the function O(\/E “+ n) to translate upwards.

First, I comment that quadratic running times are associated with even relatively simple
(heuristic) strategies (see e.g. the Greedy Vertex Cover algorithm in Chapter 2; and the
LEX algorithm in Chapter 7). Second, and more importantly, a non-polynomial time
algorithm need not be slower than a polynomial time algorithm—all depends on the size

of the parameters. Figure 8.1 illustrates that, for example, an algorithm that runs in non-

187

polynomial fpt-time O(\/E "y n) can be much faster than an algorithm that runs in

polynomial time O(n*) , provided only that the parameter K is small.

188

Chapter 9. Summary and Conclusions

This research contributes to cognitive psychological theory on two different levels: At the
metatheoretical level this dissertation explicates and clarifies existing arguments, as well
as adds new arguments, for the role of complexity theory in cognitive psychology.
Second, at the level of specific cognitive theories, this research has led to (1) a set of new
complexity results and (2) the identification of some open problems that can guide and
motivate new research on these theories. Sections 9.1 and 9.2 review these contributions

respectively. I close, in Section 9.3, with ideas about future directions.

9.1. Metatheoretical Contributions

The main contributions of this research are to be found at the metatheoretical level: By
adopting, adapting and synthesizing both new and existing ideas this research adds to the
continuing discussion among cognitive scientists about the nature of cognition—how best
to characterize it and how best to study it. To explicate this contribution I present here a
list of what are the core metatheoretical contributions of this research:

* T have explicated and clarified existing arguments for the thesis that cognitive
functions are constrained by tractability requirements: the Tractable Cognition
thesis (Chapters 1-3 and 8).

* The Tractable Cognition thesis is traditionally seen as equivalent to the P-
Cognition thesis. I have reformulated the Tractable Cognition thesis as an
informal thesis (Chapter 2), and I have explicated that the P-Cognition thesis is
but one possible formalization of the Tractable Cognition thesis (Chapter 3).

* Classical complexity theory has influenced cognitive psychology for some time
now, but parameterized complexity theory has so far remained unknown in
cognitive psychology. I have shown how parameterized complexity theory
naturally extends the application of complexity theory in cognitive psychology
(Chapters 3, 5-8).

* I have explained how parameterized complexity theory, and its accompanying
notion of fixed-parameter tractability, challenges the P-Cognition thesis (Chapters

3, 5-8).

189

* I have proposed and defended the FPT-Cognition thesis as an alternative
formalization of the Tractable Cognition thesis (Chapter 3).

* By introducing techniques from the theory of parameterized complexity (Chapter
4) and illustrating their use in the analysis of several existing cognitive theories
(Chapters 5-7), I have illustrated how the FPT-Cognition thesis may be put into
practice.

* T have reviewed a set of potential objections of the Tractable Cognition thesis, the
FPT-Cognition thesis and the use of complexity theory in cognitive psychology in
general (Chapters 8). For each objection I have presented a brief reply to either
rebut or qualify the objection.

9.2. Theory Specific Contributions

In Chapters 5—7, I have presented detailed analyses of four cognitive tasks and their
variants: Coherence, Subset Choice, Min-Incomp-Lex, and Bottom-up Visual Matching.
The aim of these analyses was to illustrate how to perform complexity analyses of
cognitive theories. As a consequence, we have also obtained new insights into the
complexity of these specific tasks, demonstrated by the list of new complexity results
summarized in Table 8.1. Furthermore, the investigations naturally lead to the
identification of open problems that may guide and motivate further research on these
tasks. In the following I discuss 16 open problems. For each open problem I give a brief

motivation, always assuming P # NP and FPT # W[1].

Is Single-Element Coherence easier than Coherence?

Thagard (2000) proposed that the problem Coherence can be used to model, for example,
jury decision-making. In Section 5.4.3, we have considered two possible ways in which
Coherence may model jury decision-making (cf. Thagard, 1989, 2000). This led to the
formulation of two new problems: Single-Element Discriminating Coherence and Single-
Element Foundational Coherence. We have found that—unlike Coherence—Single-
Element Discriminating Coherence and Single-Element Foundational Coherence are in P
for inputs with D = [J. The classical complexity of these two problems on general inputs

remains unknown however.

190

Table 9.1. Overview of complexity results

Coherence and Related Problems

Coherence on networks with C* = 0 and w(e) = 1
for all e [J £ is NP-hard

Coherence on consistent networks is in P

Coherence on trees is in P

Discriminating Coherence is NP-hard

Foundational Coherence is NP-hard

Single-Element Discriminating Coherence with
D=01ismnP

Single-Element Foundational Coherence with
D=0isinP

c-Double-Constraint Coherence [J FPT

c-Coherence [] FPT

Pos-Annotated Coherence [J P

|P"|-Annotated Coherence [FPT

|C"|-Annotated Coherence [1 FPT

|C"|-Coherence [FPT

|P"|- Coherence [] FPT

Corollary 5.3, page 84
Theorem 5.1, page 86
Lemma 5.4, page 89

Corollary 5.6, page 91
Corollary 5.7, page 91

Corollary 5.8, page 93

Corollary 5.9, page 93
Theorem 5.2, page 103
Corollary 5.10, page 103
Lemma 5.11, page 113
Theorem 5.3, page 114
Corollary 5.12, page 114
Corollary 5.13, page 114
Corollary 5.14, page 114

Subset Choice and Related Problems

Subset Choice is NP-hard

UCG Subset Choice is NP-hard

p-UCG Subset Choice is W[1]-hard

g-UCG Subset Choice [l FPT

q-ECG Subset Choice [FPT

q-VCG Subset Choice is W[1]-hard

{q, Qv}-CG Subset Choice [1 FPT

{A, q¢}-CG Subset Choice [FPT

{q, €, Qv}-CH Subset Choice [FPT

{q, 8}-CH Subset Choice [1 FPT

{q, €, A}-CH Subset Choice [FPT

USG Subset Choice [1 P

USG Exact-bound Subset Choice is NP-hard
{p, k}-USG Exact-bound Subset Choice is W[1]-hard

Theorem 6.1, page 122
Corollary 6.1, page 124
Theorem 6.2, page 128
Theorem 6.3, page 130
Corollary 6.7, page 137
Lemma 6.5, page 138
Theorem 6.5, page 139
Lemma 6.6, page 141
Theorem 6.6, page 144
Lemma 6.8, page 145
Corollary 6.11, page 146
Theorem 6.7, page 149
Theorem 6.8, page 151
Corollary 6.15, page 153

Min-Incomp-Lex

|A|-Min-Incomp-Lex U FPT
|F]-Min-Incomp-Lex U FPT

Sketched on page 163
Sketched on page 166

Bottom-up Visual Matching

0-Bottom-up Visual Matching O FPT
A-Bottom-up Visual Matching [J FPT

Sketched on page 174
Sketched on page 174

191

Open Problem 1. Is Single-Element Discriminating Coherence in P?

Open Problem 2. 1s Single-Element Foundational Coherence in P?

Can we solve c-Coherence faster?
We have shown that the NP-hard problem Coherence is in FPT for parameter c. Section
5.5 described a non-constructive algorithm for c-Coherence that runs in time O(2° + |P))
and Section 5.6 described a constructive algorithm that runs in time O(2.52¢ + |P[%). It is
of interest to know if these running times can be improved.

Open problem 3. Do there exist faster non-constructive and/or constructive fpt-

algorithms for c-Coherence?

Is 1-Coherence in FPT?

We have shown that the natural parameterization of Coherence, c-Coherence, is in FPT.

But what about the relational parameterization 1-Coherence, with | = Z(p oc w(p,q)—c?

Open problem 4. Is 1-Coherence in FPT?
Note that if 1-Coherence [] FPT then that means that Coherence is computationally

tractable both for small and large c (since large c correspond to small 1).

Can we solve |P |-Coherence and |C |-Coherence faster?

In Section 5.7 we have shown that |P7|-Coherence is in FPT with a running time of O(2" L

|P*), and |C"|-Coherence is in FPT with a running time O(2‘CT |PP). It is of interest to
study if these running times can be improved.

Open problem 5. Do faster fpt-algorithms for |P"|-Coherence exist?

Open problem 6. Do faster fpt-algorithms for |C"|-Coherence exist?

Is {q, €, Qv} a crucial source of complexity in Subset Choice?
In Section 6.6 we have shown that K-CH Subset Choice [J FPT (unless FPT = W[1]), for
K=1{q},K={e},K={Qv}, K= {q, €}, and K = {g, Qy}. For the parameter set K = {q,
Qy} it remains unknown whether or not K-CH Subset Choice is in FPT. Hence, we have
the following open problem:
Open problem 7. Is {q, €, Qy} or {g, Qv} a crucial source of complexity in CH
Subset Choice?

192

Is Subset Choice computationally easy on surplus (hyper)graphs?
We have shown that Subset Choice on unit-weighted surplus graphs is in P, but the
classical complexity of Subset Choice on general surplus graphs and hypergraphs
remains unknown:

Open problem 8. Is SG Subset Choice in P?

Open problem 9. Is SH Subset Choice in P?

Which results generalize to Subset Choice with size restrictions?
In Chapter 6 we studied mostly Subset Choice problems without restrictions on the size of
the chosen subset. In many practical settings subset size restrictions may apply, and thus
it is of interest to also study the complexity of Subset Choice problems with various types
of size restrictions (e.g. upper bound, lower bound or exact bound). As an example, we
have considered the problem Exact-bound Subset Choice. Interestingly, we found that
although Subset Choice is in P on unit-weighted surplus graphs, Exact-bound Subset
Choice is NP-hard on unit-weighted surplus graphs. This shows that complexity results
obtained for Subset Choice problems without subset size restrictions may no longer hold
when subset size restrictions are imposed.

Open problem 10. Which of the complexity results obtained for Subset Choice,

and its special cases, generalize to Exact-bound Subset Choice?

Open problem 11. Which of the complexity results obtained for Subset Choice,

and its special cases, generalize to Lower-bound Subset Choice?

Open problem 12. Which of the complexity results obtained for Subset Choice,

and its special cases, generalize to Upper-bound Subset Choice?

Can we solve m-Min-Incomp-Lex faster?
In Section 7.1.3 we have shown that m-Min-Incomp-Lex is in FPT with a running time of
O(2™ n*m®). This running time is impractical even for relatively small m.

Open problem 13. Do faster fpt-algorithms for m-Min-Incomp-Lex exist?

Can we solve {n, k}-Min-Incomp-Lex faster?
In Section 7.1.3 we presented two reduction rules and one branching rule for {n, k}-

Annotated Min-Incomp-Lex. Using these rules we derived an fpt-algorithm for {n, k}-

193

Min-Incomp-Lex that runs in time O(oY n’m? j . Whenever £ < n, this running time
n—k)!

improves upon the running time O(n! nm?) for a naive exhaustive search.
Open problem 14. Is it possible to derive more reduction rules and branching rules
for {n, k}-Annotated Min-Incomp-Lex so as to improve the running time for {n,

k}-Min-Incomp-Lex even more?

Is £-Min-Incomp-Lex in FPT?
We know that {n, k}-Min-Incomp-Lex U FPT and #n-Min-Incomp-Lex [FPT. However,
the parameterized complexity of k-Min-Incomp-Lex remains unknown:

Open problem 15. Is k-Min-Incomp-Lex in FPT?

Can we solve Bottom-up Visual Matching faster?
In Section 7.2.3 we have discussed how Kube’s (1991) pseudo-polynomial time
algorithm solves the problem Bottom-up Visual Matching in time O(/|8) and O(/I]*A).
Kube’s algorithm can also be used to solve the more general problem Knapsack in the
same time. We have seen that in Bottom-up Visual Matching there is a strong
relationship between the corr(p) and the diff(p) for any pixel p [7, while in Knapsack for
an element u [J U, size s(u) and value v(u) are unrelated.
Open problem 16. Is it possible to exploit the relationship between corr(p) and
diff(p) to build faster and/or different fpt-algorithms for Bottom-up Visual
Matching than for Knapsack?

9.3. Musings on the Future
Computer scientists and Al researchers routinely analyze the complexity of their
algorithms. As Tsotsos (1989, p. 1571) writes, “this is simply good computer science.”
Hopefully, one day, cognitive scientists and psychologists will consider it simply good
cognitive science to analyze the complexity of their cognitive theories.

This work embodies one of several attempts to establish complexity theory as a
standard analytic tool in cognitive psychology (see e.g. Frixione, 2001; Levesque, 1988;
Tsotsos, 1990, for other attempts). Of course, large-scale utilization of this tool not only

requires recognition of its value, but also the means to use it. For this reason, cognitive

194

science could greatly benefit from a database of complexity results on existing cognitive
theories (cf. Downey & Fellows, 1999; Garey & Johnson, 1979; see also Appendix B).
As demonstrated here, once complexity results are known for many different problems,
proving results for new problems becomes much easier.

I have argued that cognitive theories are constrained by tractability requirements.
This does not mean, however, that we should be out to simply classify cognitive theories
as either tractable or intractable. On the contrary, upon finding that a given cognitive
theory is intractable, we should investigate all kinds of different versions and aspects of
that theory in search of tractable special cases and/or parameterizations. This search can
provide invaluable insights into the nature of a task, far beyond what a ‘tractable versus
intractable’ classification has to offer (cf. Downey & Fellows, 1999; Garey & Johnson,
1979; Nebel, 1996; Wareham, 1996). Also, using complexity analysis in this way, we can
discover ways in which cognitive systems can cope with complexity in different types of
problem environments (i.e. for different parameter ranges)—potentially leading to
psychological hypotheses that can be empirically tested. As always, the proof of the
pudding will be in the eating, but I suspect that in the end the contributions of complexity

theory to cognitive science will far surpass what we can envision at this point.

195

References

Alber, J., Fan, H., Fellows, M. R., Fernau, H., Niedermeier, R., Rosamond, F. & Stege,
U. (2001). Refined search tree technique for dominating set on planar graphs.
Proceedings of the 26th International Symposium on Mathematical Foundations
of Computer Science, LNCS 2136 (pp. 111-122). Berlin: Springer-Verlag.

Anderson, J. R. (1987). Methodologies for studying human knowledge. Behavioral and
Brain Sciences, 10,467-505.

Anderson, J. R. (1990). The adaptive character of thought. Hillsdale, NJ: Lawrence
Erlbaum Publishers.

Balasubramanian, R., Fellows, M. R., & Raman, V. (1998). An improved fixed-
parameter algorithm for vertex cover. Information Processing Letters, 65, 163-
168.

Barton, G. E., Berwick, R. C., & Ristad, E. S. (1987). Computational complexity and
natural language. Cambridge, MA: MIT Press.

Bechtel, W. (1988). Philosophy of mind: An overview for cognitive science. Hillsdale,
NJ: Lawrence Erlbaum Associates.

Block, N. (1980). Introduction: What is functionalism? In N. Block (Ed), Readings in
philosophy of psychology (171-184). Cambridge, MA: Harvard University Press.

Bossert, W. (1989). On The extensions of preferences over a set to the power set: An
Axiomatic characterization of a quasi ordering. Journal of Economic Theory, 49,
84-92.

Brandstidt, A., Le, V. B., & Spinrad, J. P. (1999). Graph classes: A survey. Philadelphia:
SIAM.

Chalmers, D. J. (1994). A Computational Foundation for the Study of Cognition.
Technical report in Philosophy-Neuroscience-Psychology. Washington
University.

Chen, J., Kanj, I. A., & Jai, W. (2001). Vertex Cover: Further observations and further
improvements. Journal of Algorithms, 41(2), 280-301.

Cherniak, C. (1986). Minimal rationality. Cambridge, MA: MIT Press.

Church, A. (1936). An unsolvable problem of elementary number theory. American
Journal of Mathematics, 58(2), 345-363.

Cleland, C. E. (1993). Is the Church-Turing thesis true? Minds and Machines, 3, 283-312.

Cleland, C. E. (1995). Effective procedures and computable functions. Minds and
Machines, 5, 9-23.

Cook, S. (1971). The complexity of theorem-proving procedures. Proceedings of the 3rd
Annual ACM Symposium on Theory of Computing, 151-158.

Cooper, G. F. (1990). The computational complexity of probabilistic inference using
Bayesian belief networks. Artificial Intelligence, 42, 393-405.

Copeland, B. J. (2002). Accelerating Turing machines. Minds and Machines, 12, 281-
301.

Cormen, T. H., Leiserson, C. E., & Rivest, R. L.(1990). Introduction to Algorithms.
Cambridge, MA: MIT Press and McGraw-Hill.

Deutsch, D. (1985). Quantum theory, the Church-Turing principle and the universal
quantum computer. Proceedings of the Royal Society of London A, 400, 97-117.

196

Downey, R. G. & Fellows, M. R. (1999). Parameterized complexity. New Y ork:
Springer-Verlag.

Downey, R. G., Fellows, M. R., & Stege, U. (1999a). Parameterized complexity: A
framework for systematically confronting computational intractability.
Contemporary trends in discrete mathematics: From DIMACS and DIMATIA to
the future, 49, 49-99.

Downey, R. G., Fellows, M. R., & Stege, U. (1999b). Computational tractability: The
view from Mars. Bulletin of the European Association for Theoretical Computer
Science, 69, 73-97.

Dunn, J. C. (2003). The elusive dissociation. Cortex, 39(1), 177-179.

Dunn, J. C. & Kirsner, K. (2003). What can we infer from double dissociations? Cortex,
39(1), 1-7.

Eliasmith, C. (2000). Is the brain analog or digital? The solution and its consequences for
cognitive science. Cognitive Science Quarterly, 1(2), 147-170.

Eliasmith, C. (2001). Attractive and in-discrete: A critique of two putative virtues of the
dynamicist theory of mind. Minds and Machines, 11, 417-426.

Eliasmith, C. & Thagard, P. (1997). Waves, particles, and explanatory coherence. British
Journal for the Philosophy of Science, 48, 1-19.

Eysenck, M. W. & Keane, M. T. (1994). Cognitive psychology: A student's handbook.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Falmagne, J.-Cl. & Regenwetter, M. (1996). A random utility model for approval voting.
Journal of Mathematical Psychology, 40, 152-159.

Farquhar, P. H. & Rao, V. R. (1976). A balance model for evaluating subsets of
multiattributed items. Management Science, 22(5), 528-539.

Fellows, M. R. (2002). Parameterized complexity: The main ideas and connections to
practical computing. In R. Fleischer, B. Moret, & E. Meineche Schmidt (Eds.),
Experimental Algorithmics: From Algorithm Design to Robust and Efficient
Software, LNCS 2547 (pp. 51-77). Berlin: Springer-Verlag.

Fellows, M. R. & McCartin, C. (1999). Personal communication.

Fellows, M. R., McCartin, C., Rosamond, F., & Stege, U. (2000). Coordinatized kernels
and catalytic reductions: An improved FPT algorithm for Max Leaf Spanning
Tree and other problems. In S. Kapoor & S. Prasad (Eds.), Foundations of
Software Technology and Theoretical Computer Science, LNCS 1974 (pp. 240-
251). Berlin: Springer-Verlag.

Fishburn, P. C. & LaValle, 1. H. (1993). Subset preferences in linear and nonlinear utility
theory. Journal of Mathematical Psychology, 37, 611-623.

Fishburn, P. C. & LaValle, 1. H. (1996). Binary interactions and subset choice. European
Journal of Operational Research, 92, 182-192.

Fodor, J. A. (1987). Psychosemantics: The problem of meaning in the philosophy of
mind. Cambridge, MA: MIT Press.

Foulds, L.R. (1992). Graph theory applications. New York: Springer-Verlag.

Frixione, M. (2001). Tractable competence. Minds and Machines, 11, 379-397.

Gandy, R. (1988). The confluence of ideas in 1936. In R. Herken (Ed.), The universal
Turing machine: A half-century survey (pp. 55-111). New York: Oxford
University Press.

197

Garey, M. R. & Johnson, D. S. (1979). Computers and intractability: A guide to the
theory of NP-completeness. New Y ork: Freeman.

Gibbons, A. & Rytter, W. (1988). Efficient parallel algorithms. Cambridge, UK:
Cambridge University Press.

Gigerenzer, G. & Goldstein, D. G. (1996). Reasoning the fast and frugal way: Models of
bounded rationality. Psychological Review, 103(4), 650-669.

Glenberg, A. M. (1997). What memory is for. Behavioral and Brain Sciences, 20,1-55.

Goodrich, M. T. & Tamassia, R. (2002). Algorithm design: Foundations, analysis, and
internet examples. New York: John Wiley & Sons, Inc.

Gottlob, G., Scarcello, F., & Sideri, M. (2002). Fixed-parameter complexity in Al and
nonmonotonic reasoning. Artificial Intelligence, 138(1-2), 55-86.

Gould, R. (1988). Graph theory. Menlo Park, CA: The Benjamin/Cummings Publishing
Company, Inc.

Graham, S. M., Joshi, A., & Pizlo, Z. (2000). The traveling salesman problem: A
hierarchical model. Memory & Cognition, 28(7), 1191-1204.

Green, D. M. & Swets, J. A. (1966). Signal detection theory and psychophysics. New
York: John Wiley & Sons, Inc.

Gross, J. & Yellen, J. (1999). Graph theory and its applications. New York: CRC Press.

Haselager, W. F. G. (1997). Cognitive science and folk psychology: The right frame of
mind. London: Sage.

Haselager, W. F. G., Bongers, R. M. & van Rooij, I. (forthcoming). Cognitive science,
representations and dynamical systems theory. In W. Tschacher and J-P.
Dauwalder (Eds.), Dynamical Systems Approaches to Embodied Cognition.

Haselager, W. F. G., de Groot, A. D., & van Rappard, J. F. H. (2003).
Representationalism vs. anti-representationalism: A debate for the sake of
appearance. Philosophical Psychology, 16(1), 5-23.

Haugeland, J. (1991). Representational genera. In W. Ramsey, S. P. Stich, and D. E.
Rumelhart (Eds.), Philosophy and connectionist theory (pp.61-89). Hillsdale, NJ:
Lawrence Erlbaum Associates.

Haynes, T. W., Hedetniemi, S. T., & Slater, P. J. (1998). Fundamentals of domination in
graphs. New York: Marcel Dekker, Inc.

Herken, R. (Ed.) (1988). The universal Turing machine: A half-century survey. New
York: Oxford University Press.

Hopcroft, J., Motwani, R., & Ullman, J. D. (2001). Introduction to Automata Theory,
Languages, and Computation. Reading, MA: Addison-Wesley.

Horgan, T. & Tienson, J. (1996). Connectionism and the philosophy of psychology.
Cambridge, MA: MIT Press.

Horsten, L. & Roelants, H. (1995). The Church-Turing thesis and effective mundane
procedures. Minds and Machines, 5, 1-8.

Humphreys, M. S., Wiles, J., & Dennis, S. (1994). Toward a theory of human memory:
Data structures and access processes. Behavioral and Brain Sciences, 17, 655-
692.

Inhelder, B. & Piaget, J. (1958). The growth of logical thinking from childhood to
adolescence. New York: Basic Books.

Israel, D. (2002). Reflections on Godel's and Gandy's reflections on Turing's thesis.
Minds and Machines, 12, 181-201.

198

Jagota, A. (1997). Optimization by a Hopfield-style network. In D. S. Levine & W. R.
Elsberry (Eds.), Optimality in biological and artificial networks? (pp. 203-226).
Hillsdale, NJ: Lawrence Erlbaum Publishers.

Judd, J. S. (1990). Neural network design and the complexity of learning. Cambridge,
MA: MIT Press.

Kadlec, H., & Townsend, J. T. (1992). Signal detection analyses of dimensional
interactions. In F. G. Ashby (Ed.), Multidimensional models of perception and
cognition (pp. 181-227). Hillsdale, NJ: Lawrence Erlbaum Associates.

Kadlec, H. & van Rooij, I. (2003). Beyond existence: Inferences about mental processes
from reversed associations. Cortex, 39(1), 183-187.

Kannai, Y. & Peleg, B. (1984). A note on the extension of an order to the power set.
Journal of Economical Theory, 32, 172-175.

Karp, R. M. (1972). Reducibility among combinatorial problems. In R. Miller and J.
Thatcher (Eds.), Complexity of computer computations (pp.85-104). New York:
Plenum Press.

Khot, S. & Raman, V. (2000). Parameterized complexity of finding subgraphs with
hereditary properties. In D.Z. Du, P. Eades, V. Estivill-Castro, X. Lin, & A.
Sharma (Eds.), Computing and Combinatorics, LNCS 1858 (pp.137-147). New
York: Springer-Verlag,.

Kleene, S. C. (1936). General recursive functions of natural numbers. Mathematische
Annelen, 112, 727-742.

Kleene, S. C. (1988). Turing's analysis of computability, and major applications of it. In
R. Herken (Ed.). The universal Turing machine: A half-century survey (pp. 17-
54). New York: Oxford University Press.

Kolb, B. & Whishaw, 1. Q. (1996). Fundamentals of human neuropsychology. New Y ork:
W.H. Freeman.

Krueger, L. E. & Tsav, C.-Y. (1990). Analyzing vision at the complexity level:
Misplaced complexity? Behavioral and Brain Sciences, 13(3), 449-450.

Kube, P. R. (1990). Complexity is complicated. Behavioral and Brain Science, 13(3),
450-451.

Kube, P. R. (1991). Unbounded visual search is not both biologically plausible and NP-
complete. Behavioral and Brain Sciences, 14(4), 768-773.

Levesque, H. J. (1988). Logic and the complexity of reasoning. Journal of Philosophical
Logic, 17, 355-389.

Lewis, H. R. & Papadimitrou, C. H. (1998). Elements of the theory of computation.
Upper Saddle River, NJ: Prentice-Hall.

Li, M. & Vitanyi, P. (1997). An introduction to Kolmogorov complexity and its
applications. New York: Springer-Verlag

Luce, R. D. & Raiffa, H. (1957). Games and decisions: Introduction and critical survey.
New York: John Wiley & Sons, Inc.

Luce, R. D., Raiffa, H. (1990) Utility theory. In P. K. Moser (Ed.), Rationality in action:
Contemporary approaches (pp. 19-40). New York: Cambridge University Press.

MacGregor, J. N. & Ormerod, T. C. (1996). Human performance of the traveling
salesman problem. Perception & Psychophysics, 58(4), 527-539.

199

MacGregor, J. N., Ormerod, T. C., & Chronicle, E. P. (1999). Spatial and contextual
factors in human performance on the traveling salesperson problem. Perception,
28, 1417-1427.

MacGregor, J. N., Ormerod, T. C., & Chronicle, E. P. (2000). A model of human
performance on the traveling salesperson problem. Memory & Cognition, 28(7),
1183-1190.

Margolis, H. (1987). Patterns, thinking, and cognition: A theory of judgment. Chicago:
The University of Chicago Press.

Marr, D. (1977). Artificial intelligence - A personal view. Artificial Intelligence, 9, 37-
48.

Marr, D. (1982). Vision: A computational investigation into the human representation
and processing of visual information. San Francisco: W.H. Freeman and
Company.

Martignon, L. & Hoffrage, U. (1999). Why does one-reason decision making work? A
case study in ecological rationality. In G. Gigerenzer, P. M. Todd, & the ABC
Research Group (Eds.). Simple heuristics that make us smart (pp. 119-140). New
York: Oxford University Press.

Martignon, L. & Hoffrage, U. (2002). Fast, frugal, and fit: Simple heuristics for paired
comparison. Theory and Decision, 52, 29-71.

Martignon, L. & Schmitt, M. (1999). Simplicity and robustness of fast and frugal
heuristics. Minds and Machines, 9, 565-593.

Massaro, D. W. & Cowan, N. (1993). Information processing models: Microscopes of the
mind. Annual Review of Psychology, 44, 383-425.

McClamrock, R. (1991). Marr's three levels: A re-evaluation. Minds and Machines, 1(2),
185-196.

Milllgram, E. (2000). Coherence: The price of the ticket. Journal of Philosophy, 97(2),
82-93.

Nebel, B. (1996). Artificial intelligence: A computational perspective. In G. Brewka
(Ed.), Principles of knowledge representation (pp.237-266). Stanford, CA: CSLI
Publications

Newell, A. (1982). The knowledge level. Artificial Intelligence, 18, 87-127.

Newell, A. & Simon, H. A. (1988a). The theory of human problem solving. In A. M.
Collins & E. E. Smith (Eds.), Readings in cognitive science: A perspective from
psychology and artificial intelligence (pp. 33-51). San Mateo: Morgan Kaufmann,
Inc.

Newell, A. & Simon, H. A. (1988b). GPS, a program that simulates human thought. In A.
M. Collins & E. E. Smith (Eds.), Readings in cognitive science: A perspective
from psychology and artificial intelligence (pp. 453-460). San Mateo: Morgan
Kaufmann, Inc.

Niedermeier, R. (2002). Invitation to fixed-parameter algorithms. Habilitationsschrift,
University of Tiibingen.

Niedermeier, R. & Rossmanith, P. (1999). Upper bounds for Vertex cover further
improved. In C. Meinel and S. Tison (Eds.), /6™ Annual Symposium on
Theoretical Aspects of Computer Science LNCS 1563 (pp. 561-570). Berlin:
Springer-Verlag.

200

Niedermeier, R. & Rossmanith, P. (2000). A general method to speed up fixed-
parameter-tractable algorithms. Information Processing Letters, 73(3-4), 125-129.

Oaksford, M. & Chater, N. (1993). Reasoning theories and bounded rationality. In K. I.
Manktelow & D.E. Over (Eds.), Rationality: Psychological and philosophical
perspectives (pp. 31-60). London: Routledge.

Oaksford, M. & Chater, N. (1998). Rationality in an uncertain world: Essays on the
cognitive science of human reasoning. Hove, UK: Psychology Press.

O'Laughlin, C., & Thagard, P. (2000). Autism and coherence: A computational model.
Mind and Language, 15, 375-392.

Papadimitriou, C. H. & Steiglitz, K. (1988). Combinatorial optimization: Algorithms and
complexity. New York: Dover Publications.

Parberry, 1. (1994). Circuit complexity and neural networks. Cambridge, MA: MIT Press.

Parberry, 1. (1997). Knowledge, understanding, and computational complexity. In D. S.
Levine & W. R. Elsberry (Eds.), Optimality in biological and artificial networks?
(pp- 125-144). Hillsdale, NJ: Lawrence Erlbaum Publishers.

Parkin, M. & Bade, R. (1997). Microeconomics. Don Mills, Ont: Addison-Wesley
Publishers Limited.

Payne, J. W., Bettman, J. R., & Johnson, E. J. (1993). The adaptive decision maker. New
York: Cambridge University Press.

Port, R. F. & van Gelder, T. (Eds.) (1995). Mind as motion: Explorations in the dynamics
of cognition. Cambridge, MA: MIT Press.

Post, E. L. (1936). Finite combinatory processes-formulation 1. Journal Symbolic Logic,
1, 103-105.

Prieto, E. & Sloper, C. (forthcoming). Either/Or: Using Vertex Cover Structure in
designing FPT-algorithms -- the case of k-Internal Spanning Tree. Proceedings of
Workshop on Algorithms and Data Structures.

Putnam, H. (1975). Mind, language and reality. Cambridge, MA: Cambridge University
Press.

Putnam, H. (1988). Representation and reality. Cambridge, MA: MIT Press.

Putnam, H. (1994). Words and life. Cambridge, MA: Harvard University Press.

Pylyshyn, Z. W. (1984). Computation and Cognition: Towards a Foundation for
Cognitive Science. Cambridge, MA: MIT Press.

Pylyshyn, Z. (1991). The role of Cognitive Architectures in the Theory of Cognition. In
K. VanLehn (Ed.), Architectures for Intelligence (pp. 189-223). Hillsdale, NJ:
Lawrence Erlbaum Associates.

Regenwetter, M., Marley, A. A.J., & Joe, H. (1998). Random utility threshold models of
subset choice. Australian Journal of Psychology, 50(3), 175-185.

Ristad, E. S. (1993). The language complexity game. Cambridge, MA: MIT Press.

Ristad, E. S. (1995). Computational complexity of syntactic agreement and lexical
ambiguity. Journal of Mathematical Psychology, 39(3), 275-284.

Ristad, E. S. & Berwick, R.C. (1989). Computational consequences of agreement and
ambiguity in natural language. Journal of Mathematical Psychology, 33(4), 379-
396.

Rosch, E. (1973). Natural categories. Cognitive Psychology, 4, 328-350.

201

Rumelhart, D. E., McClelland, J. L., & the PDP Research Group (1986). Parallel
distributed processing. Explorations in the microstructure of cognition. Volume 1:
Foundations. Cambridge, MA: MIT Press.

Schmitt, M. (2003). Personal communication.

Schoch, D. (2000). A fuzzy measure for explanatory coherence. Synthese, 122,291-311.

Searle, J. R. (1980). Minds, Brains and Programs. Behavioral and Brain Sciences, 3, 417-
424,

Siegel, R. M. (1990). Is it really that complex? After all, there are no green elephants.
Behavioral and Brain Science, 13(3), 453.

Siegelmann, H. & Sontag, E. (1994). Analog computation via neural networks.
Theoretical Computer Science, 131, 331-360.

Simon, H. A. (1957). Models of man: Social and rational. New York: John Wiley &
Sons, Inc.

Simon, H. A. (1988). Rationality as process and as product of thought. In D. E. Bell, H.
Raiffa, & A. Tversky (Eds.), Decision making: Descriptive, normative, and
prescriptive interactions (pp. 58-77). Cambridge, UK: Cambridge University
Press.

Simon, H. A. (1990). Invariants of human behavior. Annual Review of Psychology, 41(1),
1-19.

Stege, U. (2000). Resolving conflicts from problems in computational biology. Ph.D.
thesis, No. 13364, ETH Ziirich.

Stege, U. & van Rooij, I. (2003). On practical fixed-parameter-tractable algorithms for
dominating set. Manuscript under revision.

Stege, U. & van Rooij, I. (2001). Profit sets: Graph problems in human decision making.
Unpublished manuscript.

Stege, U., van Rooij, I., Hertel. A, & Hertel P. (2002). An O(pn + 1.1517) algorithm for
p-Profit Cover and its practical implications for Vertex Cover. In P. Bose and P.
Morin (Eds.), 13th International Symposium on Algorithms and Computation,
LNCS 2518 (pp. 249-261). Berlin: Springer-Verlag.

Steinhart, E. (2002). Logically possible machines. Minds and Machines, 12, 259-280.

Stillings, N. A., Feinstein, M. H., Garfield, J. L., Rissland, E. L., Rosenbaum, D. A.,
Weisler, S. E., & Baker-Ward, L. (1987). Cognitive science: An Introduction.
Cambridge, MA: MIT Press.

Thagard, P. (1989). Explanatory coherence. Behavioral and Brain Sciences, 12, 435-502.

Thagard, P. (1993). Computational tractability and conceptual coherence: Why do
computer scientists believe that PENP? Canadian Journal of Philosophy, 23(3),
349-364.

Thagard, P. (2000). Coherence in thought and action. Cambridge, MA: MIT Press.

Thagard, P., Eliasmith, C., Rusnock, P., & Shelley, C. P. (2002). Knowledge and
coherence. In R. Elio (Ed.), Common sense, reasoning, and rationality, pp. 104-
131. New York: Oxford University Press.

Thagard, P. & Kunda, Z. (1998). Making sense of people: Coherence mechanisms. In S.
J. Read & L. C. Miller (Eds.), Connectionist models of social reasoning and
social behavior (pp. 3-26). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.

202

Thagard, P. & Shelley, C. P. (1997). Abductive reasoning: Logic, visual thinking, and
coherence. In M.-L. D. Chiara, K. Doets, D. Mundici, & J. van Benthem (Eds.),
Logic and scientific methods (pp. 413-427). Dordrecht: Kluwer.

Thagard, P. & Verbeurgt, K. (1998). Coherence as constraint satisfaction. Cognitive
Science, 22(1), 1-24.

Thelen, E. & Smith, L. B. (1994). A4 dynamic systems approach to the development of
cognition and action. Cambridge, MA: MIT Press.

Todd, P. M. & Gigerenzer, G. (2000). Précis of simple heuristics that make us smart.
Behavioral and Brain Sciences, 23, 727-780.

Tsotsos, J. K. (1988). A ‘complexity level’ analysis of immediate vision. International
Journal of Computer Vision, Marr Prize Special Issue, 2(1), 303-320.

Tsotsos, J. K. (1989). The complexity of perceptual search tasks. In N. S. Sridharan (Ed.),
Proceedings International Joint Conference on Artificial Intelligence, San
Francisco: Morgan Kaufmann Publishers.

Tsotsos, J. K. (1990). Analyzing vision at the complexity level. Behavioral and Brain
Sciences, 13(3), 423-469.

Tsotsos, J. K. (1991). Is complexity theory appropriate for analyzing biological systems.
Behavioral and Brain Sciences, 14(4), 770-773.

Turing, A. M. (1936). On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society,42, 230-
265.

van Gelder, T. (1995). What might cognition be if not computation? The Journal of
Philosophy, 7, 345-381.

van Gelder, T. (1998). The dynamical hypothesis in cognitive science. Behavioral and
Brain Sciences, 21, 615-665.

van Gelder, T. J. (1999). Defending the dynamical hypothesis. In W. Tschacher & J.-P.
Dauwalder (Eds.), Dynamics, Synergetics, Autonomous Agents: Nonlinear
Systems Approaches to Cognitive Psychology and Cognitive Science (pp. 13-28).
Singapore: World Scientific.

Van Orden, G. C. & Kloos, H. (2003). The module mistake. Cortex, 39(1), 164-166.

van Rooij, 1., Bongers, R. M., & Haselager, W. F. G. (2000). The dynamics of simple
prediction: Judging reachability. In L. R. Gleitman & A. K. Joshi (Eds.),
Proceedings of the Twenty Second Annual Conference of the Cognitive Science
Society (pp. 535-540). Mahwah, NJ: Lawrence Erlbaum Associates, Publishers.

van Rooij, 1., Bongers, R. M., & Haselager, W. F. G. (2002). A non-representational
approach to imagined action. Cognitive Science, 26(3), 345-375.

van Rooij, 1., Schactman, A., Kadlec, H., & Stege, U. (2003). Children’s Performance on
the Euclidean Traveling Salesperson Problem. Manuscript under revision.

van Rooij, I., Stege, U., & Kadlec, H. (2003). Sources of complexity in subset choice.
Manuscript under review.

van Rooij, 1., Stege, U., & Schactman, A. (2003). Convex hull and tour crossings in the
Euclidean Traveling Salesperson problem: Implications for human performance
studies. Memory & Cognition, 31(2), 215-220.

Vickers, D., Butavicius, M., Lee, M., & Medvedev, A. (2001). Human performance on
visually presented traveling salesman problems. Psychological Research, 65, 34-
45.

203

Wareham, H. T. (1996). The role of parameterized computational complexity theory in
cognitive modeling. A4A41-96 Workshop Working Notes: Computational Cognitive
Modeling: Source of the Power. [On-line]. Available:
http://web.cs.mun.ca/~harold/papers.html.

Wareham, H. T. (1998). Systematic parameterized complexity analysis in computational
phonology. Ph.D. thesis. University of Victoria.

Wells, A. J. (1996). Situated action, symbol systems and universal computation. Minds
and Machines, 6, 33-46.

Wells, A. J. (1998). Turing's analysis of computation and theories of cognitive
architecture. Cognitive Science, 22(3), 269-294.

Wiedemann, U. (1999). Michael Williams’ concepts of systematical and relational
coherence. [On-line]. Available: http://www.pyrrhon.de/cohere/williams.htm.

204

Appendix A: Notation and Terminology for Graphs

Many problems considered in this research are (or can be formulated as) graph problems.
This appendix presents a basic introduction to graphs and defines the graph theoretic
notation and terminology used throughout the manuscript. For more information on
graphs and graph theory see e.g. Foulds (1992), Gould (1988), and Gross & Yellen
(1990).

A graph G = (V, E) is a pair of sets, V" and E. The set V'is called the vertex set of G
and its elements are called vertices. The set E is called the edge set and is a subset of the
Cartesian product ¥ x ¥ (we also write £ [>, where * denotes the 2-fold product of 7).
The elements of £ are called edges. A graph can be thought of as a network consisting of
nodes (vertices) and lines connecting some pairs of nodes (edges). Figure Al gives an
illustration of a graph G = (V, E). The nodes in the figure represent the vertices in V" and
the lines connecting nodes represent edges in £. In other words, the graph in Figure A1l
has vertex set V= {a, b, c, ..., z} and edge set E U V' x V, with E = {(a, b), (a, d), (a, e),
(b, 1), ..., (z,)}.

The number of elements in a set S is called the size of S and is denoted by |S].
Note that, for the graph in Figure A1, |V] =26 and |E| = 31. The size of the set V' is often
denoted by the letter n = |V], and the size of the set E is often denoted by the letter m = |E|.

Figure Al. An illustration of a graph.

205

Note that in the graph in Figure A1 there are no connections from any vertex to
itself (called a self-loop) and each pair of vertices is connected by at most one edge (i.e.,
there are no multi-edges). Graphs without self-loops and without multi-edges are called
simple graphs. All graphs considered in this manuscript are simple unless otherwise
noted. Further, note that there is no particular order associated with the vertices in an
edge, i.e. (u, v) = (v, u). Graphs of this type are called undirected. All graphs considered
in this manuscript are undirected.

We define additional terminology for graphs. Let G = (V, E) be a graph. We say a
vertex v; U V' is incident to edge (v, v3) and, conversely, (v2, v3) is incident to vy, if (v,
v3) O E and vi = v, or vi = v3. If an edge (vi, v») [E we also call v; and v, the endpoints of
the edge (v, v») and we say that v, and v, are neighbors. For example, in Figure Al, edge
(e, f) is incident to vertex e, and e is an endpoint of (e, f). Further, e and f are neighbors,
while, for example, m and f are not.

The set of vertices that are neighbors of vertex v in graph G is called the (open)
neighborhood of v, denoted by Ng(v) = {u [V': u is a neighbor of v}. Note that v itself is
not a member of Ng(v). We call Ng[v] = Ng(v) U {v} the closed neighborhood of v. For
example, in Figure A1, vertex d has neighbors a, ¢, i, and e. Thus we have Ng(d) = {a, c,
i, e} and Ng[d] = {a, ¢, i, e, d}. The number of edges incident to a vertex v is called the
degree of v and is denoted by degg(v). For example, in Figure A1, vertex d had degree
degq(d) = 4. Note that, for any vertex v in a graph G, we have degg(v) = [Ng(v)|. If a
vertex has degg(v) = k we also say that v is a k-degree vertex. We call degree-0 vertices
singletons, and we call degree-1 vertices pendant vertices. For example, in Figure A1,
vertices 7 and s are singletons, and vertices c, &, [, m, x, y, and z are all pendant vertices.

Let G=(V, E) be a graph and let /" [V' be a subset of vertices. Then Ng(V") =
{v U V: there is a neighbor u of v with u [l V’} is called the (open) neighborhood of V"’
and Ng[V’]= {v O V:v OV or there is a neighbor u of v with u [J V’}, is called the
closed neighborhood of set V. In other words, Ng[V'] = Ng(V”) O V. For example, in
Figure A1, Ng({b, h, i}) = {a, e, d,j, g} and Ng[{b, h,i}]={a, e, d,j, g, b, h, i}. Further,
Ec(V)={(u,v) UE:u 0V’ and v O V") denotes the set of edges that have both
endpoints in V’, and Ra(V") = {(u, v) U E : u 10 V’ or v U V) denotes the set of edges that

206

have at least one of their endpoints in V. For example, in Figure A1, we have Eg({b, d,
h, i, 1, my)={(b, h), (d, i), (, i), (d, h), (I, m)} and Rs({e, £, I}) = {(e, /), (e, h), (e, a), (£,
N, (1. &), (I, m);.

The set difference of two sets) and S, is denoted by S$)\S, = {v U S, : v U S>}.
Whenever we delete a vertex from a graph we also have to remove its incident edges
(otherwise the remaining vertex and edge sets would not form a graph anymore). Hence,
the set R(1”) is the set of edges that gets removed from G when we delete the vertices in
V” from V. That is, if we remove V'’ from V the resulting graph G* = (V'*, E*) will have
vertex set V* = J\IJ” and edge set E* = E\Rg(V").

Let G=(V, E) be a graph. Then a graph G’ = (V’, E’) with " [J Vand E’ [E is
called a subgraph of G. We also call G a supergraph of G’. Let V’ [1 V' be a subset of
vertices in G. Then we call the subgraph G’ = (V, E”) with V' =V and E’ = Eg(V"’) the
subgraph of G induced by V’. For example, for the graph G = (V, E) in Figure Al, G’ =
(V,E),with V’={a, b,d, h,i} and E’= {(a, b), (b, h), (a, d), (h, i)}, is a subgraph of
G,and G”= V", E”)with V"= {a, b, d, h, i} and E"=Es({a, b, d, h, i}) = {(a, b), (b, h),
(a, d), (d, i), (h, i), (d, h)} is the subgraph of G induced by {a, b, d, h, i}.

A sequence < vy, vy, ..., v, > of pairwise distinct vertices with (vi, v2), (v2, v3), ...,
(i1, vi) U E 1s called a path in G. If vi = vy and k= 3 then <vy, vy, ..., vy > is called a
cycle in G. For example, in Figure A1, <k, g, i, b, h> is a path, while <g, i, b, h, i> is not.
Further, in the graph in Figure A1, <a, b, i, h, e, a> is a cycle. We may also denote a path
and a cycle by its edges instead of its vertices, as follows: <(vi, v2), (v, v3), ..., (Vi1, Vi)>.
For example, we may denote the path <k, g, i, b, &> in Figure Al by <(k, g), (g, i), (i, b),
(b, h)> instead. The length of a path is the number of edges visited when traversing the
path. Thus, path <k, g, i, b, i> in Figure A1 has length 4.

A graph is connected if for every pair of vertices u, v [1 V there is a path in G
from u to v. Note that the graph in Figure A1 is not connected (e.g., there is no path from

t to g). However the graph in Figure A2 is connected.

207

Figure A2. An illustration of a connected graph.

Let G’=(V", E’) be a subgraph of G. We say G’ is a component of G if (1) G’ is
connected, and (2) there does not exist a subgraph G* of G, G* # G, such that G* is
connected and G* is a supergaph of G'. For example, the graph in Figure Al consist of 7
components: viz., the components induced by vertex sets {/, m}, {o, n, p, q}, {e, a, f,], d,
¢, b, h, i}, {t,u,v,x,w}, {y,z}, {r}, and {s}. Note that, for example, the subgraph of G
induced by {¢, u, v, x} is not a component of G. To see why this is so, consider the
subgraph G’ = (V’, E’) of G induced by {z, u, v, x} and the subgraph G* = (V'*, E*) of G
induced by {¢, u, v, x, w}. Note that G* is connected and G* is a supergraph of G’. We
conclude that G’ is not a component of G. Also note that since the graph in Figure A2 is

connected it has only one component.

Figure A3. An illustration of a forest.

208

A graph without any cycles is called a forest and a connected forest is called a
tree. Figure A3 shows a graph that is a forest and Figure A4 shows a graph that is a tree.
A rooted tree is a tree with a designated vertex called the root. Let T= (Vr, E7) be a
rooted tree, with root » [J V7. A pendant vertex in a tree is called a leaf. For two vertices
u, v Vr, with (u,v) O Er, we say u is parent of v, and v is child of u, if <r, ..., u, v>is a
path in 7. The depth of T is the length of the longest path from root r to a leaf in 7. For
example, for the tree 7= (Vr, E7) in Figure A4 we may call vertex a the root of 7. Then
vertices b, d, h, f, i, k are leaves in T. For example, e is a child of a, and e is parent of g.

Further, 7 in Figure A4 has depth 4.

Figure A4. An illustration of a tree.

In the text also generalizations of the graph concept are used. Specifically, we discuss
weighted graphs, multigraphs, and hypergraphs. A weighted graph G = (V, E) is a graph
in which each vertex v [V' has an associated vertex-weight wy(v) and each edge e 1 E
has an associated edge-weight wg(e). A multigraph M = (V, E) is a generalization of a
graph in which more than one edge may connect any two vertices in G (i.e., the edge set
E is a multiset). A hypergraph H= (V, E) is a generalization of a graph in which a
hyperegde (v, va, ..., vy) U E, h 2 2, can be incident to more than two vertices. Specific

properties of these types of graphs will be detailed in the text where they are first used.

209

Appendix B: A Compendium of Problems

This appendix presents an overview of decision problems that appear in the text.
Problems are listed in alphabetical order. For each problem a page number is given,
indicating where the problem first appears in the text. Where possible also a literature
reference is given. Each problem entry lists basic complexity results and/or other relevant
information. For some problems, special cases appear as a part of the entry of the general

problem.

Annotated Coherence [page 107]
Input: A network N = (P, C), with (P’ 0 4’0 R’ and (C" O C)C. For each o,
q) U C there is an associated positive integer weight w(p, g). A positive integer c.
Question: Does there exist a partition of P into 4 and R such that 4" [J A4, R’ [J R,
and Cohy(4, R) = ¢?
We have shown Annotated Coherence to be in FPT for parameter |P'|, denoting the
number of elements in P that are incident to a negative edge, (Theorem 5.3, page 114)
and for parameter |C | (denoting the number of negative constraints in the network;

Corollary 5.12, page 114). (see Coherence; Foundational Coherence)

Annotated Min-Incomp-Lex [page 163]

Input: A set of objects 4 = {a;, az, ..., an} and a set of features F = {f1, f2, ..., fu}-
Here F partitions into F'1 = { f1, f2, ..., fu,} and F2 = {f, +1, fn+2, ..., fu}. Bach a U
A has an associated value b(a) U {0, 1},i=1, 2, ..., n, denoting the value that a
takes on feature f; [J F. A complete ordering S(4), with a; >a, > ...>a,, and a
permutation of the features in /', T{F). An integer k = 0.

Question: Does there exist a permutation of the features in F>, TI(F?>), such that
Errorrex(4, S(A), F, P, T(F,)) < k? Here P [1 A x A denotes the set of pairs of

distinct objects in A4 that are not distinguished by any feature in F.

210

Annotated Min-Incomp-Lex is a generalization of the problem Min-Incomp-Lex. We

!
have shown that Annotated Min-Incomp-Lex is solvable in time O((n.k)' n’m’ J , for
n—k)!

|A| = m and |F| = n (page 166).

Bottom-up Visual Matching [page 170] (e.g. Tsotsos, 1990)

Input: An image [and a target 7. Each pixel p; = (x, y, b;), p: U I, with p, = (x, y,
b,), p:UJ T, has an associated value diff(p;) = |b;, — b/ and an associated value
corr(p;) = b;b;. Two positive integers 6 and @.

Question: Does there exist a subset of pixels /’ [J / such that zpmdiff (p)<Ho

and mer corr(p)= @?

Bottom-up Visual Matching is known to be NP-hard by reduction from Knapsack
(Tsotsos, 1989). The problem is solvable in pseudo-polynomial time O(8}7]) (Kube, 1991)
and in pseudo-polynomial time O(A|I?) (page 173) (see also Knapsack, Top-down Visual
Matching).

Clique [page 151] (e.g. Garey & Johnson, 1979)

Input: A graph G = (V, E) and a positive integer k.

Question: Does there exist a clique V'’ [V for G with |V’| = k? (Here a vertex set

V7 is called a clique if for every two vertices u, v 1 V', (u, v) O E.)
Clique is known to be NP-complete (Garey & Johnson, 1979), and W[1]-complete for
parameter k£ (Downey & Fellows, 1999). A graph G = (V, E) has a clique of size k if and
only if its complement G’ = (V’, E’), V'’ =V and E’ = V\E, has an independent set of size
k (see Independent Set).

Coherence [page 80] (e.g. Thagard & Verbeurgt, 1998)
Input: A network N = (P, C), with (C* O C)°. For each (p, ¢) O C there is an
associated positive integer weight w(p,). A positive integer c.

Question: Does there exist a partition of P into 4 and R such that Cohy(4, R) = ¢?

Here Cohp(4, R) = Zw(p,q) , with S\(A4, R)={(p,q) OC" :(p DA and ¢ O

()OS (4,R)

211

Ayor(pUORandg UOR)} O {(p,q)UC :(pUAandgOR)or(p URand g [
A)}.
Coherence is known to be NP-complete, by reduction from Max-Cut (Thagard &
Verbeurgt, 1998; see also Lemma 5.1, page 84). It follows that Coherence is NP-hard
even for inputs without positive constraints (see also Corollary 5.2, page 84). Further,
Coherence remains NP-complete if all constraints are negative and all weights are ‘1’
(Corollary 5.3, page 84). (see also Annotated Coherence, Discriminating Coherence,

Foundational Coherence)

Conflict Graph (CG) Subset Choice [page 136] (e.g. van Rooij et al., 2003)
Input: An conflict graph G = (V, E). For v U V, wy(v) U Z and for e Ul E, wg(e) U
Z . A positive integer p.
Question: Does there exist a subset V'’ [V' such that valueg(V’) = p?

We have shown that CG Subset Choice is in FPT for parameter set {g, Qv}, where ¢ =p

— valueg(V) and Qv denotes the maximum vertex weight (Theorem 6.5, page 139). (see

also VCG Subset Choice, Subset Choice, Subset Rejection).

Conflict Hypergraph (CH) Subset Choice [page 136] (van Rooij et al., 2003)
Input: A conflict hypergraph H = (V, E). For every v 1 V, wy(v) [J Z and for
every e [E, wg(e) 1 Z . A positive integer p.
Question: Does there exist a subset V” I V' such that valueg(V’) = p?
We have shown that CH Subset Choice is in FPT for parameter set {q, €, Qv}, where ¢ =
p — valueg(V), € denotes the maximum span, and Qv denotes the maximum vertex weight

(Theorem 6.6, page 144). (see also Subset Choice, Subset Rejection).

Discriminating Coherence [page 90] (e.g. Thagard, 2000)

Input: A network N= (P, C), with COPx P.Here P=HOD,and C=C" 0 C”
(with H, D being disjoint, and C*, C” being disjoint). For each d [D there is an
associated positive integer weight wp(d), and for each (p, ¢) U C there is an

associated positive integer weight we(p, g). A positive integer c.

212

Question. Does there exist a partition of P into 4 and R such that DCohy(4, R) =
¢? Here DCohy(4, R) = Y wo(p,q)+ D w,(d).

(p.g)0Sy (4,R) d0D,d0A

Discriminating Coherence is a generalization of Coherence. (see Coherence).

Dominating Set [page 35] (e.g. Garey & Johnson, 1979)

Input: A graph G = (V, E) and a positive integer k.

Question: Does there exist a dominating set V'’ for G with |V’| < k?
Dominating Set is known to be NP-complete (Garey & Johnson, 1979), and W[1]-hard
for parameter k£ (Downey & Fellows, 1999). A graph G = (V, E) has a dominating set of

size k if and only if G has a non-blocking set of size |V] — k (see Non-Blocker).

Double-Constraint Coherence [page 94|

Input: A double-constraint network N= (P, C' 0 C), with C' P x Pand C O

P x P. For each (p, ¢)" O C" there is an associated positive integer weight w(p,

q)", and for each (p, ¢)” 0 C~ there is an associated positive integer weight w(p,

q) . A positive integer c.

Question: Does there exist a partition of £ into 4 [J R such that Cohy(4, R) = ¢?
Double-Constraint Coherence is a generalization of Coherence. We have shown that

Double-Constraint Coherence is in FPT for parameter ¢ (Theorem 5.2, page 103). (see

also Coherence).

Edge-weighted Conflict Graph (ECG) Subset Choice [page 136] (e.g. van
Rooij et al., 2003)

Input: An edge-weighted conflict graph G = (V, E). For every v U V, wy(v) U Z
and for every e L1 E, wg(e) O Z . A positive integer p.
Question: Does there exist a subset J” [J V' such that valueg(V’) = p?

We have shown that ECG Subset Choice is in FPT for relational parameter g = p —
valueg(V) (Corollary 6.7, page 137). (see also Subset Choice; Subset Rejection).

Exact-bound Subset Choice [page 151] (e.g. van Rooij et al., 2003)
Input: A weighted hypergraph H = (V, E). For every v 1 V, wy(v) U Z and for
every e LI E, wg(e) [0 Z\{0}. Positive integers p and £.

213

Question: Does there exist a subset V’L1 V such that valuey(V’) 2 p and |V'| = k?
We have shown that Exact-bound Subset Choice is NP-complete (Theorem 6.8, page
151), and W[1]-hard for parameter set {p, k} (Corollary 6.15, page 153), even for unit-

weighted surplus graphs. (see also Upper-bound Subset Choice, Lower-bound Subset
Choice).

Foundational Coherence [page 90] (e.g. Thagard, 2000)
Input: A network N= (P, C), with COPxP.Here P=HOD,andC=C 0 C
(with H, D being disjoint, and C", C” being disjoint). For each (p, ¢) O C there is
an associated positive integer weight w(p, ¢). A positive integer c.
Question: Does there exist a partition of P into 4 and R such that D [1 4 and
Cohn(4, R) 2 ¢?
Foundational Coherence is a generalization of Coherence, and a special case of
Annotated Coherence. (see Annotated Coherence; Coherence; Discriminating

Coherence).

Halting problem [page 17] (e.g. Turing, 1936).
Input: A Turing machine M and an input i for M.

Question: Does M halt on i?

The Halting problem is known to be undecidable (Turing, 1936).

Inclusive Profit Domination [page 68] (e.g. Stege & van Rooij, 2001)
Input: A graph G = (V, E) and a positive integer p.
Question: Does there exist a vertex set V'’ L1 V such that profitppp ¢(V”") 2 p? Here
profitiep,g(V”") = [N6[V]| = [V = Na(V)|.
Inclusive Profit Domination is known to be NP-complete, and W[1]-hard for parameter p

(Stege & van Rooij, 2001; see also Stege & van Rooij, 2003).

Independent Set [page 66] (e.g. Garey & Johnson, 1979)

Input: A graph G = (V, E) and a positive integer k.

Question: Does there exist an independent set V'’ for G with || = k?
Independent Set is known to be NP-complete (Garey & Johnson, 1979), and W[1]-
complete for parameter k (Downey & Fellows, 1999). A graph G = (V, E) has an

214

independent of size k if and only if G = (V, E) has a vertex cover of size |V] — k (see
Vertex Cover).

Knapsack [page 171] (e.g. Garey & Johnson, 1979).
Input: A finite set U. Each u 0 U has a size s(u) 0 Z" and a value v(x) 0 Z".

Positive integers B and K.

Question: Does there exist a subset U’ [U such that ZS(M) < B and

u0U"

Zv(u)ZK?

u0U!

Knapsack is known to be NP-complete, and solvable in pseudo-polynomial time (e.g.

Garey & Johnson, 1979).

Lower-bound Subset Choice [page 192]

Input: A weighted hypergraph H = (V, E). For every v 1 V, wy(v) U Z and for
every e [E, wg(e) L1 Z\{0}. Positive integers p and £.

Question: Does there exist a subset V’L1 V' such that valuex(V") 2 p and |V| = k?

Lower-bound Subset Choice has not been studied in this work, but it appears in the list of

open problems on page 192 (see also Exact-bound Subset Choice, Upper-bound Subset
Choice).

Max-Cut [page 83] (e.g. Garey & Johnson, 1979)

Input: An edge weighted graph G = (V, E). For each edge (u, v) U E there is an

associated positive integer weight w(u, v). A positive integer k.

Question: Does there exist a partition of V into sets 4 and R such that W¢(A4, R) =
Zw(u,v) > k? Here Cutg(R, A= {(u,v) UE:u 0 A4 and v O R}.

(u,v)OCut; (4,R)

Max-Cut is known to NP-complete (Garey & Johnson, 1979). The problem remains NP-
complete even if all edges have weight ‘1’ (called the Simple Max-Cut problem; Garey &
Johnson, 1979).

Maximum Matching [page 55] (e.g. Gross & Yellen, 1999)
Input: A graph G = (V, E) and a positive integer k.

215

Question: Does there exist a matching £ U £ for G with |V’| =2 k? (Here E’ is
called a matching if for every two edges (u, v), (x, y) U E’, if vertices u, v, x, and y

are all distinct.

Maximum Matching is known to be solvable in O(|7]) (e.g. Gross & Yellen, 1999).

Min-Cut [page 110] (e.g. Cormen, et al. 1990)

Input: An edge weighted graph G = (V, E). A source s [l V' and a sink ¢ [V. For
each edge (u,v) U E there is an associated positive integer weight w(u, v). A
positive integer k.

Question: Does there exist a partition of V into disjoint sets 4 and R such that, s [J

A,t R, and Wg(4, R) = Z w(u,v) < k? Here Cutg(R, A= {(u, v) UE :u U

(u,v)OCut (4,R)

Aand v O R}.

Min-Cut is known to be solvable in time O(|V*) (e.g. Cormen et al., 1990).

Min-Incomp-Lex [page 155] (e.g. Martignon & Schmitt, 1999)
Input: A set of objects 4 = {ay, ay, ..., an} and a set of features F'= {f1, f2, ..., fu}.
Each a U 4 has an associated value b(a) U {0, 1},i=1, 2, ..., n, denoting the
value that a takes on feature f; [F. A complete ordering S(4), with a; >a, > ...>
an. An integer k = 0.
Question: Does there exist a permutation T(F) = <fr, fr, ..., fr,~, such that
Errorpgx(A4, S(A), F, P, T(F)) < k? Here P [1 A4 X A denotes the set of all pairs of
distinct objects in 4.
Min-Incomp-Lex is known to be NP-hard by reduction from Vertex Cover (e.g.
Martignon & Schmitt, 1999; see also Theorem 7.1, page 161). We have shown that Min-
Incomp-Lex is in FPT for parameter m = |4| (page 163). (see also Annotated Min-

Incomp-Lex)
Non-Blocker [page 66] (e.g. Stege & van Rooij, 2003).
Input: A graph G = (V, E) and a positive integer k.

Question: Does there exist a non-blocking set V'’ for G with |V 2 k?

216

Non-Blocker is known to be NP-complete and in FPT for parameter £ (unpublished result
by Fellows & McCartin, 1999). A graph G = (¥, E) has a non-blocking set of size & if and
only if G = (¥, E) has a dominating set of size |V] — k (see Dominating Set). A G = (V, E)
has non-blocking set of size k = p if and only if there exists a subset V'’ I V' with

profitipp 6(V”) = p = k (see Inclusive Profit Domination).

Pos-Annotated Coherence [page 108]
Input: A network N= (P, C), with (P’ 0 4’ 0 R’ and (C" O C") . For every (p,
q)U0C,p,qUAUR’. For each (p, g) U C there is an associated positive integer
weight w(p, ¢). A positive integer c.
Question: Does there exist a partition of P’ into 4 and R such that 4" [J 4, R’ I R,
and Cohy(4, R) = ¢?

We have shown that Pos-Annotated Coherence is solvable in time O(|P|’) by reduction to

Min-Cut (Lemma 5.11, page 113). (see also Min-Cut)

Profit Cover [page 67] (e.g. Stege et al., 2002)

Input: A graph G = (V, E) and a positive integer p.

Question: Does there exist a vertex set J” U V' such that profitpc (V) = p? Here

profitpc (V") = [Ra(V")| = |V].
Profit Cover is known to be NP-complete, and in FPT for parameter p (Stege, et al.,
2002). For a graph G = (V, E), there exists a subset ' L1 V" with profitpc (V) = p if and
only if G = (V, E) has a vertex cover of size k = |E| — p (see Vertex Cover). Further, Profit
Cover is equivalent UCG Subset Rejection (see UCG Subset Choice; Subset Rejection).

Profit Independence [page 68] (e.g. Stege & van Rooij, 2001)

Input: A graph G = (V, E) and a positive integer p.

Question: Does there exist a vertex set J” [V such that profitp; (V) = p? Here

profitpr (V") = |V’ = |Ec(V")|.
Profit Independence is known to be NP-complete, and W|[1]-hard for parameter p (Stege
& van Rooij, 2001; see also Lemma 4.3, page 77). For a graph G = (V, E), there exists a
subset V" [V' with profitp (V) = p if and only if G = (V, E) has an independent set of

217

size k = p (see Independent Set). Further, Profit Independence is equivalent to UCG
Subset Choice (see UCG Subset Choice).

Satisfiability (SAT) [page 35] (e.g. Garey & Johnson, 1979).
Input: A set of variables U and a collection of clauses C over U. Each variable u
O U has two associated literal and u (the latter representing the negation of u).
Each clause (uy, uy, ..., u;) in C contains represents the disjunction of the literals
uy, Uy, ..., u;. Each variable in U can be assigned the truth-value 7 or F, and a
clause is satisfied if the disjunction of the literals in the clause yields the truth-
value 7.
Question: Does there exists a truth assignment to variables in U such that all
clauses in C are satisfied?
Satisfiability is known to be NP-complete (Cook, 1971). The special case, 3-SAT, with at
most three literals per clause, remains NP-complete; the special case, 2-SAT, with at

most two literals per clause, is known to be in P (e.g. Garey & Johnson, 1979).

Single-Element Discriminating Coherence [page 92]
Input: A network N= (P, C), with COPx P.Here P=HOD,and C=C" 0 C
(with H, D being disjoint, and C", C” being disjoint). For each d 0 D there is an
associated positive integer weight wp(d), and for each (p, ¢) U C there is an
associated positive integer weight w(p, g). A special element s [J H and a
positive integer c.
Question: Does there exist a partition of P into 4 and R such that DCohy(4, R) is
maximum and s [] 4?

We have shown that if D = U then Single-Element Discriminating Coherence is in P

(Corollary 5.8, page 93). The classical complexity of the general problem remains

unknown (see also Single-Element Foundational Coherence).

Single-Element Foundational Coherence [page 92]
Input: A network N= (P, C), with COPXxP.Here P=HOD,andC=C 0O C
(with H, D being disjoint, and C", C” being disjoint). For each (p, ¢) O C there is

218

an associated positive integer weight w(p, g). A special element s U H and a
positive integer c.
Question: Does there exist a partition of P into 4 and R such that Cohy(4, R) is

maximum and such that D O s [0 4?

We have shown that Single-Element Foundational Coherence with D =[] is in P
(Corollary 5.9, page 93). The classical complexity of the general problem remains

unknown (see also Single-Element Discriminating Coherence).

Subset Choice [page 117] (e.g. van Rooij et al., 2003)
Input: A weighted hypergraph H= (V, E), E [] U V" . Forevery v Vthere is a

2<hglV|
weight wy(v) U Z and for every e [] E there is a weight wg(e) [Z \{0}. A positive
integer p.

Question: Does there exist a subset V'’ [V' such that valuey(V’) = p? Here

valuey(V’) = Zwv(v) + ZWE(e) , With Eg(V") = {(v1, v, .., vi) U E | vy, V2,

Vo OB (V)
e V73
We have shown that Subset Choice is NP-hard by several independent reductions from
Independent Set (Lemma 6.1 on page 123, Lemma 6.2 on page 125, and Lemma 6.5 on
page 138; see also Fishburn & LaValle, 1996), as well as by reduction from Coherence
(Lemma 6.3, page 126). Further, Subset Choice is not to be in FPT (unless FPT = W[1])
for parameter set {p, €, Wy, Qv, wg, Qr} (Corollary 6.13, page 148) and for parameter set
{q, &, Wy, W, Qg} (Corollary 6.14, page 148). For more results on Subset Choice refer to
Chapter 6 and van Rooij et al. (2003). (see also UCG Subset Choice; ECG Subset
Choice; VCG Subset Choice; CG Subset Choice; CH Subset Choice; SH Subset Choice;
Exact-Bound Subset Choice; Subset Rejection)

Subset Rejection [page 129] (e.g. van Rooij et al., 2003)
Input: A weighted hypergraph H= (V, E), E [] U V", forevery v O V a weight

2<hs|V|

wy(v) U Z, for every e [E a weight wg(e) [J Z \{0}, and a positive integer q.

219

Question: Does there exist a subset V'’ U V' such that rejecty(V”") = g? Here

rejecty(V’) = valueg(V/V’) — valuey(V) = — Zw v(V) = Zw : (e), with Ry(V”)

vOR eOR ,; (V)
={(vi, V2, .., i) UE|viorwvyor...orv, OV},
The problem Subset Rejection is equivalent to Subset Choice with p = valuey(V’) + gq.
(see Subset Choice)
Top-down Visual Matching [page 169] (e.g. Tsotsos, 1990)
Input: An image [and a target 7. Each pixel p; = (x, y, b)), p: U I, with p, = (x, y,
b;), p.U T, has an associated value diff(p;) = |b; — b, and an associated value
corr(p;) = b;b;. Two positive integers 6 and @.

Question: Is mediff(p)< 0 and ZPD] corr(p) = @?

Top-down visual matching is solvable in time O(|/|) = O(|T]) (e.g. Tsotsos, 1990; see also
page 169).
Unit-weighted Conflict Graph (UCG) Subset Choice [page 124] (e.g. van Rooij
et al., 2003)
Input: A unit-weighted conflict graph G = (V, E). For every v U V, wy(v) = 1 and
for every e [E, wg(e) = —1. A positive integer p.
Question: Does there exist a subset J” [1 V' such that valueg(V’) = p?

We have shown that UCG Subset Choice is in FPT for relational parameter g =p —
valueg(V) (Theorem 6.3, page 130). (see also Subset Choice; Subset Rejection)

Upper-bound Subset Choice [page 192]

Input: A weighted hypergraph H = (V, E). For every v U V, wy(v) U Z and for

every e [l E, wg(e) U Z \{0}. Positive integers p and £.

Question: Does there exist a subset J’L1 V such that valuey(V’) =2 p and | V| < k?
Upper-bound Subset Choice has not been studied in this work, but it appears in the list of

open problems in Appendix D on page 192 (see also Exact-bound Subset Choice, Lower-

bound Subset Choice).

Vertex Cover [page 11] (e.g. Garey & Johnson, 1979)
Input: A graph G = (V, E) and a positive integer k.

220

Question: Does there exist a vertex cover V'~ for G with |V’| < k?

Vertex Cover is known to be NP-complete (Garey & Johnson, 1979), and in FPT for
parameter k£ (Downey & Fellows, 1999). Vertex Cover remains NP-complete on graphs
of maximum degree 4 (Garey & Johnson, 1979). A graph G = (V, E) has a vertex cover of

size k if and only if G = (V, E) has an independent set of size |V]| — k (see Independent
Set).

Vertex-weighted Conflict Graph (VCG) Subset Choice [page 136] (e.g. van
Rooij et al., 2003)

Input: A vertex-weighted conflict graph G = (V, E). For every v U V, wy(v) U Z
and for every e L1 E, wg(e) = —1. A positive integer p.
Question: Does there exist a subset V'’ [J V' such that valueg(V’) = p?
We have shown that VCG Subset Choice is W[1]-hard for parameter Qy (Lemma 6.5,
page 138). (see also CG Subset Choice, Subset Choice, Subset Rejection).

