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Abstract

Subset choice denotes the task of choosing a subset of items from among a set of available items. Because the number of possible

choice options in subset choice grows exponentially with the size of the choice set, subset choice tasks can be computationally

challenging. This paper discusses how the computational complexity of subset choice under different models can be utilized in the

quest for descriptive models of subset choice. We consider several models of subset choice (including the additive model, the binary-

interaction model and the h-ary interaction model) and show how the theory of computational complexity (including the theory of

NP-completeness and fixed-parameter tractability) can be used to evaluate the psychological plausibility of such models under

different assumptions of processing speed, parallelism and size of problem parameters.

r 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Subset choice denotes the task of choosing a subset of
items from among a set of available items. Subset choice
arises in many different settings, ranging from mundane
choice situations (e.g., when selecting toppings on a
pizza, buying groceries, or inviting friends to a party) to
highly specialized choice situations (e.g., when selecting
members on a committee, hiring applicants for a set of
positions, or deciding on a set of drugs to prescribe to a
patient; see also Farquhar & Rao, 1976; Falmagne &
Regenwetter, 1996; Fishburn & LaValle, 1993, 1996;
Regenwetter, Marley, & Joe, 1998, for more examples).
Two common assumptions in the literature on subset
choice are that (i) each item or subset has an associated
value and (ii) the subset is chosen according to some
value criterion. For example, a decision maker may
associate a value with each item and choose all those
items whose value is at or above some threshold
e front matter r 2005 Elsevier Inc. All rights reserved.
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(Falmagne & Regenwetter, 1996; Regenwetter et al.,
1998). Alternatively, a decision maker may associate a
value with each subset and choose a subset whose value
is maximum (Fishburn & LaValle, 1996).
As noted by Fishburn and LaValle (1996), subset

choice problems can be notoriously challenging, because
the decision maker potentially faces the problem of
combinatorial explosion. Consider, for example, the
task of choosing k pizza toppings from a set of n

available toppings. For n ¼ 20 and k even as small as 5
the number of possible subsets of toppings exceeds
15,000. If one is free to choose a subset of any size, the
number of feasible solutions even exceeds 1,000,000. The
fact that a person cannot possibly consider each and
every one of these subsets places a strong constraint on
the type of subset choice tasks that a person can
perform. To illustrate, let us consider the model that
assumes that (i) each subset has an associated value and
(ii) a subset with maximum value is chosen. Table 1
presents an example with available pizza toppings V ¼

fpepperoni; salami; ham;mushroom; pineappleg: The table
lists for each possible subset A � V the value u(A)
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Table 1

Each possible subset, A � V ; for the set of pizza toppings V ¼ fpepperoni; salami; ham;mushroom; pineappleg and its value, uðAÞ; for a hypothetical
decision-maker

Subset A u(A) Subset A u(A)

+ 0 {pepperoni, salami, ham} 10

{pepperoni} 8 {pepperoni, salami, mushroom} 14

{salami} 9 {pepperoni, salami, pineapple} 12

{ham} 7 {pepperoni, ham, mushroom} 15

{mushroom} 4 {pepperoni, ham, pineapple} 18

{pineapple} 2 {pepperoni, mushroom, pineapple} 9

{pepperoni, salami} 10 {salami, ham, mushroom} 17

{pepperoni, ham} 11 {salami, ham, pineapple} 20

{pepperoni, mushroom} 12 {salami, mushroom, pineapple} 10

{pepperoni, pineapple} 10 {ham, mushroom, pineapple} 13

{salami, ham} 13 {pepperoni, salami, ham, mushroom} 14

{salami, mushroom} 13 {pepperoni, salami, ham, pineapple} 17

{salami, pineapple} 11 {pepperoni, salami, mushroom, pineapple} 11

{ham, mushroom} 11 {pepperoni, ham, mushroom, pineapple} 17

{ham, pineapple} 14 {salami, ham, mushroom, pineapple} 19

{mushroom, pineapple} 1 {pepperoni, salami, ham, mushroom, pineapple} 16
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assigned to A, reflecting the preferences of a hypothe-
tical decision maker. If the decision maker’s subset
choice task is defined by assumption (ii) above, then the
subset {salami, ham, pineapple} is the chosen subset.
More formally, we can describe this model of subset
choice by the following input–output specification,
called Generalized Subset Choice:

Generalized Subset Choice

Input: A set V ¼ fx1; x2; . . . ;xng of n available items
and a value function u : 2V ! Z assigning an integer1

value to every subset of V. (Here 2V denotes the
power set of V.)
Output: A subset A � V such that u(A) is maximum
(i.e., for all B � V ; uðBÞpuðAÞ:)

If the decision maker is given no further information as
part of the input, and if we assume that the decision
maker performs a subset choice task by following an
algorithm2 (which we assume throughout this paper),
then performing the task of Generalized Subset Choice
requires him/her to consider all possible subsets; there
simply is no other way to guarantee the output of a
maximum valued subset. From this we conclude that
Generalized Subset Choice is a psychologically implau-
sible model of subset choice for all but very small n.
The situation may be quite different, however, if the

value function can be decomposed, say, into a function
of the values of individual items. As an example of this
case, consider Fishburn’s additive model of subset
1We assume that decision makers can evaluate subset values with

only finite precision. For simplicity we work with integer values. All

results in this article can be generalized to any values of fixed precision,

simply by scaling by the precision factor.
2We assume that the decision-maker does not have ‘‘oracle powers’’

(Garey & Johnson, 1979; Tsotsos, 1990).
choice (e.g., Fishburn, 1992; Fishburn & LaValle,
1993). This model assumes that the value of a subset is
equal to the sum of the values of its individual elements;
i.e. for every subset A � V we have

uðAÞ ¼
X
x2A

uðxÞ. (1)

For example, in Table 1 we have uðfham;mushroom;
pineapplegÞ¼13¼7þ4þ2¼uðfhamgÞ þ uðfmushroomgÞþ

uðfpineapplegÞ:
The additive model of subset choice is formally

captured by the following input–output specification,
called Additive Subset Choice:

Additive Subset Choice

Input: A set V ¼ fx1; x2; . . . ; xng of n available items.
For every item x 2 V there is an associated integer
value u(x).

Output: A subset A � V such that uðAÞ ¼
P

x2A uðxÞ

is maximum.

Performing the task of Additive Subset Choice clearly
does not require one to consider all possible subsets.
Instead, the task can be performed by simply consider-
ing each item one by one, including an item in A if its
value is positive and rejecting it otherwise. Additive
Subset Choice is in this sense a much easier task than
Generalized Subset Choice. The algorithm for comput-
ing Additive Subset Choice appears below in pseudo-
code:

Additive Subset Choice Algorithm

Input: A set V and an integer value u(x) for all x 2 V

Output: A subset A � V such that uðAÞ ¼
P

x2AuðxÞ
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Fig. 1. The value-structure of the hypothetical decision-maker whose

subset values appear in Table 1 represented by a weighted graph.
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is maximum

1. Let A ¼+
2. while Va+ do

3. pick some x 2 V

4. if uðxÞX0 then

5. A :¼ A [ fxg

6. end if

7. V :¼ V \fxg [The symbol ‘‘\’’denotes the set

difference operation; i.e., for two sets V and W,
V \W ¼ fx 2 V : xeW g]

8. end while

9. return A

Note that we may substitute ‘‘if uðxÞX0 then’’ in line 4
by ‘‘if uðxÞXl then,’’ where l represents a preset value
threshold. In this more general form, the algorithm can
be seen as computing a subset containing all items
whose value is at or above some threshold—i.e., the
subset choice task described by Falmagne and Regen-
wetter (1996) and Regenwetter et al. (1998). In the
special case that l ¼ 0 the algorithm solves Additive
Subset Choice.
While Generalized Subset Choice is psychologically

implausible for complexity reasons, Additive Subset
Choice is psychologically implausible for a quite
different reason. Namely, in many subset choice
situations of psychological interest Eq. (1) simply does
not hold. Table 1 serves to illustrate this point. Here
the decision maker prefers a pizza with pepperoni
alone over a pizza with pineapple alone
ðuðpepperoniÞ4uðpineappleÞÞ; prefers a pizza with salami
alone over a pizza with ham alone ðuðsalamiÞ4uðhamÞÞ

and, at the same time, prefers a pizza with both ham and
pineapple over a pizza with both pepperoni and salami
ðuðfham; pineapplegÞ4uðfpepperoni; salamigÞÞ: This pre-
ference ordering of subsets of pizza toppings is entirely
conceivable from a psychological point of view but is at
odds with the additive model. Namely, the additive
model would prescribe that if uðpepperoniÞ4uðpineappleÞ

and uðsalamiÞ4uðhamÞ then uðfpepperoni; salamigÞ ¼

uðpepperoniÞ þ uðsalamiÞ4uðpineappleÞ þ uðhamÞ ¼

uðfham; pineapplegÞ:
Violations of Eq. (1) may be due to value inter-

dependencies between items in the choice set. For
example, the decision maker may consider pepperoni
and salami so similar in taste that the value of their
combination is smaller than the sum of their respective
values. Alternatively, ham and pineapple may enhance
each other’s flavor such that the value of their
combination is larger than the sum of their respective
values. To accommodate the possibility of such value
interdependencies, Fishburn and LaValle (1996; see also
Fishburn, 1972) proposed the binary-interaction model
of subset choice. This model assumes that each pair of
items in a choice set has an associated interaction value
denoting the value loss or value gain associated with the
combination of the two items. That is, for every x; y 2 V

there is a binary interaction term Dðx; yÞ such that

uðfx; ygÞ ¼ uðxÞ þ uðyÞ þ Dðx; yÞ. (2)

Furthermore, the binary-interaction model assumes that
the value of any given subset A � V is given by

uðAÞ ¼
X
x2A

uðxÞ þ
X
ðy;zÞ2A2

Dðy; zÞ, (3)

where A2 denotes the set of all unordered pairs of items
in A.
Fig. 1 illustrates how the binary-interaction model

captures the subset values listed in Table 1. The figure
presents a graph G ¼ ðV ;EÞ with vertex set V ¼

fpepperoni; salami; ham;mushroom; pineappleg and edge
set E ¼ fðpepperoni; salamiÞ; ðsalami; hamÞ; ðpepperoni;
hamÞ; ðham; pineappleÞ; ðmushroom; pineappleÞg�V2: Each
vertex x 2 V has an associated value u(x) and each edge
ðy; zÞ 2 E has an associated value Dðy; zÞ: Furthermore, for
every ðy; zÞ 2 V2; ðy; zÞ 2 E if and only if Dðy; zÞa0: Let
EGðAÞ ¼ fðx; yÞ 2 E : x; y 2 Ag be the edges in G that
connect pairs of items in A. Then careful inspection of
Table 1 and Fig. 1 reveals that uðAÞ ¼

P
x2A uðxÞ þP

ðy;zÞ2EG ðAÞ
Dðy; zÞ for each subset A � V : Hence, the

values in Table 1 can be seen as arising from a value
structure that satisfies the binary-interaction model.
In general we can represent the binary-interaction

model using a weighted graph G ¼ ðV ;EÞ as done in
Fig. 1. If the task is to choose a maximum valued subset,
the binary-interaction model of subset choice is defined
by the following input–output specification, called
Graph Subset Choice:

Graph Subset Choice

Input: A graph G ¼ ðV ;EÞ with vertex set
V ¼ fx1;x2; . . . ;xngand edge set E � V 2: For every
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x 2 V there is an associated integer value u(x) and for
every edge ðy; zÞ 2 E there is an associated non-zero
integer value Dðy; zÞ:
Output: A subset A � V such that uðAÞ ¼P

x2A uðxÞ þ
P
ðy;zÞ2EG ðAÞ

Dðy; zÞ is maximum.

If we assume that the decision maker whose preference
values appear in Table 1 knows that his/her preference
values can be decomposed as done in Fig. 1, then the
decision maker’s task is better modeled by Graph Subset
Choice than by Generalized Subset Choice. Notice that
now it is no longer obvious that the only way to
guarantee a maximum valued subset as output is to
consider all possible subsets.
To illustrate, consider again Fig. 1. Note, for example,

that uðmushroomÞ þ Dðmushroom; pineappleÞo0 and
Dðmushroom; xÞp0 for all x 2 V : This means that for
any two subsets A1, A2 � V with A1 � A2; pineapple 2

A1; and mushroom 2 A2; we have uðA1Þ4uðA2Þ: In other
words, the decision maker need not consider any subset
that contains both pineapple and mushroom. This
observation reduces the number of feasible subsets from
2n to 2n � 2n�2 ¼ 3ð2n�2Þ: Also note that uðpineappleÞX0
and Dðpineapple;xÞX0 for all x 2 A; with xamushroom:
This means that for any subset A � V ; if mushroomeA;
then uðA [ fpineapplegÞXuðAÞ: In other words, the
decision maker can ignore all subsets that contain
neither pineapple nor mushroom. This leaves him/her
with 3ð2n�2Þ � 2n�2 ¼ 2ð2n�2Þ ¼ 2n�1 subsets to consid-
er. Using more observations like these may shrink the
search space for Graph Subset Choice even more. Note,
however, that each of the illustrated reductions in search
space was minor compared to the number of possible
subsets; even after reduction the number of to be
considered subsets is exponential in n. Can the search
space be reduced such that it is bounded by a polynomial

function of n? In the next section, we explain why this
question is important for purposes of evaluating the
psychological plausibility of Graph Subset Choice as a
model of subset choice.

1.1. Tractability as a theoretical constraint on cognition

Philosophy of science distinguishes between empiricist
and rationalist approaches to scientific understanding
(Robinson, 1999). Much of the research in the
psychological community on subset choice falls within
the empiricist tradition, for example, by aiming at
deriving empirically testable predictions from different
subset choice models (e.g., Barberá & Pattanaik, 1986;
Fishburn, 1972; Fishburn & LaValle, 1996; Regenwetter
et al., 1998). In contrast, our approach is best seen as
part of the rationalist tradition. Specifically, we aim at
using mathematical theories of computational complex-
ity to evaluate the a priori plausibility of subset choice
models. To be clear, we do not mean to suggest that
rationalist approaches should replace empiricist ap-
proaches. On the contrary, we see each approach as
making valuable but incomplete contributions to
psychology. A psychological model that is theoretically
plausible need not be veridical, and this may be revealed
by a test of empirical fit. Conversely, a model that fits
empirical data sets may still fail as a psychological
theory, for example, if the model implies properties of
cognitive systems that are theoretically implausible or
incoherent. In sum, we believe that both empirical and
theoretical investigations can help us converge on
veridical psychological theories.
Cognitive psychologists often overlook the potential

contribution of systematic theoretical analysis (Kukla,
1989; Green, 1994). In fact, theoretical analysis can
contribute in several different ways. For example,
theoretical analyses can directly suggest cognitive
structures and mechanisms (cf. rational analysis as
pursued by, among others, Anderson (1990) and
Oaksford and Chater (1998)). Also, mathematical
theory plays a crucial role in the definition and
assessment of ‘‘parsimony’’ of a model (see e.g. model
selection approaches described by Grünwald (2000) and
Pitt and Myung (2002)). Third, mathematical theory can
contribute by specifying theoretical limits to serve as
constraints on psychological models (e.g. Frixione,
2001; Oaksford & Chater, 1998; Parberry, 1994, 1997;
Tsotsos, 1990; van Rooij, 2003). It is in the latter way
that our assessment of the computational complexity of
different subset choice models contributes to psycholo-
gical science. We next explain our goal in more detail.
As mentioned before, Additive Subset Choice fails as

a descriptive model whenever inter-item value depen-
dencies play a role (Fishburn, 1972; Fishburn &
LaValle, 1996). Hence, in these cases, more intricate
models of subset valuation are needed. However, more
intricate models of subset choice (e.g., Generalized
Subset Choice and Graph Subset Choice) may require
more computational power on the part of the decision
maker. Since humans are limited in their computational
(i.e., information processing) speed, only those subset
choice models that stay within reasonable bounds of
computational complexity should be deemed psycholo-
gically realistic. To capitalize on this theoretical
constraint one needs working definitions of ‘‘computa-
tional complexity’’ and ‘‘reasonable bound.’’ We adopt
definitions that were developed in the mathematical
theory of computational complexity (Downey & Fel-
lows, 1999; Garey & Johnson, 1979).
Computational complexity theory, or complexity

theory for short, provides a way of evaluating the
amount of computational resources required for com-
putation. Here we consider the resource time. Complex-
ity theory defines the time-complexity of a task
P : I ! R; with input i 2 I and output PðiÞ 2 R; in
terms of a function Oðf ðnÞÞ; where n ¼ jij denotes the
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Table 2

Polynomial, exponential and fpt running times as a function of the size of choice set, n, assuming 100ms per basic operation (k is fixed at 8)

n TðnÞ Tðn2Þ Tðn3Þ Tð2nÞ Tð2knÞ Tð2k þ nÞ TðnkÞ

5 0.5 s 2.5 s 12.5 s 3.2 s 2.1min 26 s 11 h

10 1.0 s 10 s 1.7min 1.7min 4.3min 27 s 115 days

15 1.5 s 23 s 5.6min 55min 6.4min 27 s 8.1 years

20 2.0 s 40 s 13min 1,2 days 8,5min 27 s 81 years

25 2.5 s 1min 26min 39 days 11min 28 s 4.8 102 years

30 3.0 s 1.5min 45min 3.4 years 13min 28 s 2.1 103 years

50 5.0 s 4.2min 3.5 h 3.5 106 years 21min 31 s 1.2 105 years

100 10 s 17min 28 h 4.0 1021 years 43min 35 s 3.2 108 years
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size of the input. Here O(f(n)) (read as: Big-Oh of f(n))
expresses an asymptotic upper-bound on the number of
basic operations required to compute PðiÞ for any i. A
function g(x) is said to be O(f(x)) if there are constants
cX0 and xoX1 such that gðxÞpcf ðxÞ; for all xXxo: The
definition of Oð:Þ can be straightforwardly extended to
functions with two or more arguments. For example, a
function f(x, y) is O(g(x, y)) if there are constants cX0
and xo, yoX1 such that f ðx; yÞpcgðx; yÞ; for all xXxo

and yXyo: Note that the Oð:Þ notation serves to ignore
constants and lower-order polynomials in the descrip-
tion of a function.3 This loss of specificity has the added
benefit that the classification of time-complexity be-
comes invariant (up to a polynomial amount of
precision) over different encoding schemes and different
models of computation (see e.g., Frixione, 2001; Garey
& Johnson, 1979; Parberry, 1994, 1997; Tsotsos, 1990,
1991; van Rooij, 2003).
Traditionally, complexity theory considers a problem

tractably computable only if it is of polynomial time-
complexity, in other words, if the problem can be
computed in time OðnaÞ; where a is a constant. A
running time that is not bounded by some polynomial
function of n, such as an exponential running time
OðanÞ; is then considered computationally intractable.
To see that this classification has merit, let us assume
that, say, 100ms is a lower bound on the time it takes to
perform a basic cognitive operation in subset choice
(such as compare two values, retrieve the value of an
item, sum two values). If we further assume that only
one such basic operation can be performed at a time,
then a human can perform a maximum of 10 basic
cognitive operations per second. Table 2 illustrates how
subset choice models of polynomial-time complexity
and exponential-time complexity fare under this as-
sumption. Here the function T(f(n)) expresses the time it
takes to perform f(n) operations, assuming one opera-
tion takes 100ms, and the function f(n) denotes the
number of basic operations required for choosing a
3For example: 1þ 2þ � � � þ x ¼ xðxþ 1Þ=2 is O(x2); x4 þ x3 þ x2 þ

xþ 1 is O(x4); x4 þ 2x is O(2x); and 2x�1 is O(2x).
subset from a choice set of n items. For now we will only
consider columns 1 through 5 (columns 6�8 of Table 2
are discussed later in the context of parameterized
complexity theory).
As can be seen in Table 2, if the function f(n) is

exponential in n (e.g., f ðnÞ ¼ 2n) then T(f(n)) grows
ever so much faster than when f(n) is polynomial in n

(e.g., T(n), T(n2), or T(n3)). It is for this reason that we
say a model that assumes on the order of 2n basic
operations is psychologically unrealistic for all but
small n. Of course, which n is small enough depends
not only on the speed of a single operation, but
also on the time available for making the decision.
Assume, for example, that a person takes at
most, say, 5min to choose a subset of pizza
toppings from a set of 12 available toppings. Then a
subset choice model that bases that decision on 2n

sequential 100ms-operations can be rejected simply
because it cannot explain how the decision is made in
that time frame.
The reader perhaps wonders how much of our

illustration hinges on the assumption of sequentiality.
After all, it is possible that some cognitive operations
can be performed in parallel, and this may allow for
considerable speed-up in processing. Indeed, all else
being equal, the range of feasible n is larger under a
parallel model than under a serial model. Still the
qualitative difference between polynomial-time and
exponential-time computation remains important even
if parallel processing is assumed (Frixione, 2001;
Parberry, 1994, 1997; Tsotsos, 1990; van Rooij, 2003).
Consider, for example, a decision maker who can
perform any set of S operations in parallel. Then the
time it takes him/her to perform f(n) operations is given
by Tðf ðnÞ

S
Þ: The speed-up due to S can be significant if f(n)

is a polynomial function, but its contribution is
relatively small if f(n) is a exponential function. To
illustrate, assume again that Tðf ðnÞ

S
Þ is to be at most 5min

and let nc denote the largest feasible n obeying this time
constraint (i.e., the maximum n such that
Tðf ðnÞ

S
Þo5 min). Then a change from the sequential

model (i.e., with S ¼ 1) to a parallel model with, say,
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S ¼ 1000;4 leads to a significant increase in nc from 14 to
144 for the polynomial function f ðnÞ ¼ n3; but a
relatively minor increase in nc from 11 to 21 for the
exponential function f ðnÞ ¼ 2n: The take-home message
is this: Even if one assumes that humans can perform
(possibly many) basic operations in parallel, exponen-
tial-time models are generally unrealistic for all but
relatively small n.
Adopting the convention that polynomial-time com-

putation is considered tractable, while exponential-time
computation is considered intractable (cf. Garey &
Johnson, 1979), Generalized Subset Choice and Addi-
tive Subset Choice can be seen as two ends of the
tractability continuum for subset choice. At the one
extreme we have Additive Subset Choice, a prototypical
example of computational tractability, requiring on the
order of n operations to be performed. At the
other extreme we have Generalized Subset Choice, a
prototypical example of computational intractability,
requiring on the order of 2n operations to be
performed. But where does Graph Subset Choice fit
in? Fishburn and LaValle (1996) presented a result
that implies that Graph Subset Choice is not compu-
table in polynomial-time (unless P ¼ NP; a condition
that will be explained in Section 3). Does this mean
that Graph Subset Choice is an unrealistic model of
subset choice? The answer is ‘‘yes’’ and ‘‘no’’;
namely, ‘‘yes’’ because it means that Graph Subset
Choice is computationally intractable in its general

form (for reasons discussed above and illustrated in
Table 2), but also ‘‘no’’ because some restricted versions

of Graph Subset Choice may still be computationally
tractable.
To explain the importance of the last qualification we

consider a restricted version of Graph Subset Choice:
Let the input graph G ¼ ðV ;EÞ be such that each vertex
x takes only the value þ1 (i.e., uðxÞ ¼ þ1; for all x 2 V ),
and each edge takes only the value �1 (i.e., DðeÞ ¼ �1;
for all e 2 E). Then we call G a unit-weighted conflict

graph, and the task of finding a maximum valued subset
for G we call UCG Subset Choice:
4We think that S ¼ 1000 greatly overestimates the capacity of

humans to perform in parallel the basic operations underlying the type

of subset choice tasks we consider here. However, in other cognitive

domains massive parallel processing may be more likely. For example,

in the domain of vision, Tsotsos (1990) models visual search as the task

of finding a subset of ‘‘pixels’’ in the visual field that sufficiently

matches a visual template. Although significant parallel processing

may underlie this task, Tsotsos nevertheless concludes that exponen-

tial-time models of visual search are generally unrealistic. To

appreciate this conclusion one needs to take into account that n in

visual search (i.e. the number of pixels in the visual field) is orders of

magnitude larger than n in subset choice tasks such as choosing pizza

toppings or selecting political representatives.
UCG Subset Choice

Input: A unit-weighted conflict graph G ¼ ðV ;EÞ with
vertex set V ¼ fx1;x2; . . . ;xng and edge set E � V2:
For every x 2 V there is an associated value uðxÞ ¼

þ1 and for every edge ðy; zÞ 2 E there is an associated
value Dðy; zÞ ¼ �1:
Output: A subset A � V such that uðAÞ ¼P

x2A uðxÞ þ
P
ðy;zÞ2EG ðAÞ

Dðy; zÞ is maximum.

Because the set of possible inputs for UCG Subset
Choice is a proper subset of the set of possible inputs for
Graph Subset Choice, and both problems have the same
output, UCG Subset Choice is a special case of Graph
Subset Choice, and we write UCG Subset Choice �
Graph Subset Choice. Note, however, that the finding
by Fishburn and LaValle (1996)—that Graph Subset
Choice is of non-polynomial time complexity (unless
P ¼ NP)—does not imply that the special case UCG
Subset Choice is of non-polynomial time-complexity. If
UCG Subset Choice would happen to be polynomial-
time computable we should conclude as follows: Graph
Subset Choice is a psychologically viable model of
subset choice in situations where the decision-maker’s
value structure can be modeled by a unit-weighted
conflict graph, but it is not necessarily a psychologically
viable model in other situations.
As we prove in Section 4 below, UCG Subset Choice

turns out to be of non-polynomial time-complexity
(unless P ¼ NP) just like Graph Subset Choice. This
means that UCG Subset Choice is, in its general form,
not essentially easier than Graph Subset Choice in its
general form. Again we may ask if there exist, perhaps,
restricted versions of UCG Subset Choice that are
tractably computable. For illustrative purposes, let us
consider the following restriction of Graph Subset
Choice. Let degG(x) denote the number of edges in the
graph G ¼ ðV ;EÞ that are incident to x (in Fig. 1, for
example, degGðhamÞ ¼ 3 and degGðmushroomÞ ¼ 1). We
call degG(x) the degree of x in G. Further, let dmax denote
the largest degree of vertices in G (i.e., degGðxÞpdmax for
all x 2 V ), and let the input graph G ¼ ðV ;EÞ be a unit-

weighted conflict graph such that dmax is generally small
and independent from the size of V. Now it makes sense
to analyze the time-complexity of UCG Subset Choice
as a function of both n ¼ jV j and dmax; instead of only n.
In this case, we say we analyze the parameterized

complexity (Downey & Fellows, 1999) of the parameter-

ized problem fdmaxg-UCG Subset Choice, defined as
follows:

fdmaxg-UCG Subset Choice

Input: A unit-weighted conflict graph G ¼ ðV ;EÞ with
vertex set V ¼ fx1;x2; . . . ;xng and edge set E � V2:
For every x 2 V there is an associated value

ical Psychology 49 (2005) 160–187 165
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uðxÞ ¼ þ1 and for every edge ðy; zÞ 2 E there is an
associated value Dðy; zÞ ¼ �1:
Parameter: The positive integer dmax (here dmax is the
smallest integer such that degGðxÞpdmax for all
x 2 V ).

Output: A subset A D V such that uðAÞ ¼P
x2A uðxÞ þ

P
ðy;zÞ2EG ðAÞ

Dðy; zÞ is maximum.

Note that fdmaxg-UCG Subset Choice is not a special
case of UCG Subset Choice—the two tasks take the
same input and give exactly the same output. The only
difference is the explicit statement of the parameter dmax
in the formulation of fdmaxg-UCG Subset Choice, while
this parameter is left implicit in the formulation of UCG
Subset Choice. The explicit statement of the parameter
in fdmaxg-UCG Subset Choice signals that we are
interested in the number of basic operations required
to compute UCG Subset Choice as a function of both n

and dmax:
Now two possibilities arise. We can either compute

UCG Subset Choice in a number of steps that is
Oðf ðdmaxÞnaÞ; where a is a constant and f is any function
depending only on dmax; or we cannot. If it turns out
that we can, then fdmaxg-UCG Subset Choice is said to
be fixed-parameter tractable (fpt), and fdmaxg-UCG
Subset Choice is said to be computable in fpt-time. If
indeed fdmaxg-UCG Subset Choice is fixed-parameter
tractable, then we conclude as follows: Graph Subset
Choice is a psychologically viable model of subset choice
in situations where the decision-maker’s value structure
can be modeled by a unit-weighted conflict graph and
the maximum vertex degree is small (but, again, Graph
Subset Choice is not necessarily a psychologically viable
model in other situations). To illustrate, consider
columns 6–8 in Table 2. Here n is again the size of the
choice set and k denotes a problem parameter (e.g., dmax;
as in our example). The illustration assumes that k is
small ð¼ 8Þ and, again, processing speed is 100ms per
basic operation. Columns 6 and 7 show that the fpt-time
functions Tð2knÞ and Tð2k þ nÞ grow much slower than
the exponential-time function T(2n). This illustrates how
subset choice problems of exponential-time complexity
may still be psychologically feasible, even for large n,
provided only that it is computable in fpt-time for a
parameter that is relatively small. We remark that the
requirement of fpt-time is not a luxury, not even for
small parameters. As can be seen in Column 8 of Table
2, a running time that is not fpt-time, such as OðnkÞ; is
generally impractical even if k is relatively small.

1.2. Overview

This research sets out to gain insight into the
fundamental complexity of (some classes of) subset
choice models. Additionally it aims to illustrate the use
of the analytic tools of computational complexity theory
for analyzing the psychological plausibility of subset
choice models (or other cognitive models) in general. To
make this paper as much self-contained as possible, we
include brief reviews of the concepts and tools of both
classical complexity theory (Garey & Johnson, 1979)
and parameterized complexity theory (Downey &
Fellows, 1999).
The remainder of this paper is organized as follows.

We start, in Section 2, by generalizing the binary
interaction model of subset choice proposed by Fish-
burn and LaValle (here called Graph Subset Choice) to
an h-ary interaction model (called Hypergraph Subset
Choice). Section 3 defines basic concepts and terminol-
ogy of classical complexity theory and explains how this
theory can be used for analyzing the complexity of
subset choice models. Then, in Section 4, we present new
classical complexity results for two special cases of
Graph Subset Choice. Section 5 lays out the framework
of parameterized complexity theory and explains how
parametric techniques can be used to identify sources of
non-polynomial time complexity in subset choice
models. Subsequently, Sections 6–8 put these tools into
practice for special cases of Hypergraph Subset Choice.
Section 9 briefly comments on how our complexity
results do not automatically generalize to subset choice
problems that assume a bound on the size of the chosen
set. We conclude with a discussion of our main results in
Section 10.
2. Value-structures as hypergraphs

Fishburn and LaValle (1996) proposed a binary
interaction model of subset choice in which a decision
maker’s value-structure is modeled by a weighted graph
(Fig. 1). Their model improves upon the additive model
by allowing interactions between pairs of items to play a
role in subset valuation. Still, the model assumes that the
value of a subset can be understood solely in terms of
the value of its elements and the pairwise interactions
(see Eq. (3)). That is, all interaction terms of order 3 and
higher are assumed to be zero in the binary model.
In some situations, higher-order interactions appear

essential for subset valuation. Consider, for example, the
situation in which a consumer has to decide on a subset
of computer parts to buy from a given set of alternatives
(e.g., computer, monitor, keyboard, mouse, printer,
scanner). None of the computer parts is very useful by
itself, thus, reasonably uðxÞp0 for all x 2

fcomputer;monitor; keyboard; printer; scannerg: Further
note that a computer is not very useful without a
monitor and a keyboard, a monitor is not very useful
without a computer and a keyboard, and a keyboard is
not very useful without a computer and a monitor.
Therefore probably no added value is associated with any
pair in the set fcomputer;monitor; keyboardg; i.e.,
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Dðx; yÞ ¼ 0 for all x; y 2 fcomputer;monitor; keyboardg:
Despite all this it may still be the case that the subset
consisting of computer, monitor, and keyboard
is of considerable value; i.e., uðfcomputer;monitor;
keyboardgÞ40: The relationship between subset
valuations in this illustration is entirely conceivable
from a psychological perspective, but the binary interac-
tion model cannot capture it. Namely, the binary
interaction model prescribes that if uðxÞp0 for
all x 2 fcomputer;monitor; keyboardg and Dðx; yÞ ¼ 0
for all x; y 2 fcomputer;monitor; keyboardg; then
uðfcomputer; monitor; keyboardgÞ ¼ uðcomputerÞ þ

uðmonitorÞ þ uðkeyboardÞ þ Dðcomputer;monitorÞ þ

Dðcomputer; keyboardÞ þ Dðmonitor; keyboardÞp0:
To incorporate the possibility of higher-order

interaction between items in subset choice, we
generalize Fishburn and LaValle’s binary interaction
model to an h-ary interaction model. In the h-ary
interaction model a decision maker’s value-
structure is modeled by a weighted hypergraph. A
hypergraph is a generalization of the concept of a
graph. Whereas in a graph G ¼ ðV ;EÞ; the set E consists
of unordered pairs of distinct vertices (i.e., E � V  V ),
in a hypergraph H ¼ ðV ;EÞ; the set E consists of
unordered h-tuples of distinct vertices, 2phpjV j (i.e.,
E �

S
2phpjV jV

h; where Vh denotes the h-fold product
of V). In other words, a graph is a special type of
hypergraph—viz., one in which E contains only 2-tuples
of vertices. In a hypergaph, we call an element in E a
hyperedge.
In the h-ary interaction model of subset choice, each

vertex x 2 V has an associated vertex weight, u(x), and
each hyperedge e ¼ ðx1; x2; . . . ; xhÞ; e 2 E; has associated
hyperedge weight, DðeÞ: For simplicity, we assume that
uðxÞ 2 Z; and DðeÞ 2 Z\f0g (here Z denotes the set of
integers, and Z\f0g denotes the set of non-zero integers).
A vertex weight u(x) represents the value of choice
alternative x when evaluated in isolation. A hyperedge
weight DðeÞ; with e ¼ ðx1;x2; . . . ;xhÞ; represents the
added value of the combination of vertices
x1;x2; . . . ;xh over and above the value of the singular
elements x1;x2; . . . ; and xh and over and above the value
of all hyperedges that are combinations of at most h�1
vertices in fx1; x2; . . . ;xhg: In other words, if A ¼

fx1;x2; . . . ;xhg is a set of h vertices with value u(A),
then the interaction weight associated with the hyper-
edge ðx1;x2; . . . ; xhÞ is given by

Dðx1;x2; . . . ;xhÞ ¼ uðAÞ �
X
x2A

uðxÞ

�
X

e2A2[A3[���[Ah�1;e2E

DðeÞ.

Having defined the hyperedge weight this way, the value
u(A) associated with choosing subset A � V in the h-ary
model is given by

uðAÞ ¼
X
x2A

uðxÞ þ
X

e2EH ðAÞ

DðeÞ, (4)

where EH ðAÞ ¼ fðx1;x2; . . . ;xhÞ 2 Ejx1; x2; . . . ;xh 2 Ag

denotes the set of all hyperedges whose endpoints are
contained in A. Using Eq. (4) we formulate the problem
Hypergraph Subset Choice as follows:

Hypergraph Subset Choice

Input: A weighted hypergraph H ¼ ðV ;EÞ; E �S
2phpjV jV

h: For every x 2 V there is a weight uðxÞ 2

Z and for every e 2 E there is a weight DðeÞ 2 Z\f0g:
Output: A subset A � V such that uðAÞ ¼P

x2A uðxÞ þ
P

e2EH ðAÞ
DðeÞ is maximum.

Note that Graph Subset Choice is a special case of
Hypergraph Subset Choice; viz., the special case in
which H in the input is a weighted graph.
We define graph-theoretic notation and terminology

that we use in the remainder of the paper: Let H ¼

ðV ;EÞ be a hypergraph. We say a vertex x 2 V is
incident to hyperedge e ¼ ðx1; x2; . . . ; xhÞ and, conver-
sely, e is incident to x, if e 2 E and x 2 fx1;x2; . . . ;xhg:
The degree of a vertex x 2 V is the total number of
hyperedges in H that are incident to x, denoted degH(x).
A vertex x 2 V is called a singleton if degH ðxÞ ¼ 0 and is
called pendant if degH ðxÞ ¼ 1: The span of an hyperedge
e ¼ ðx1;x2; . . . ;xhÞ is denoted by spanðeÞ ¼ h: Two
vertices x; y 2 V are neighbors in H if there
exists an hyperedge ðx1;x2; . . . ; xhÞ 2 E with x; y 2
fx1;x2; . . . ;xhg: The (open) neighborhood NH(x) is the
set of neighbors of x in H, and the closed neighborhood

NH ½x� ¼ NH ðxÞ [ fxg: The set difference of two sets V

and W is denoted by V \W ¼ fx 2 V jxeW g:
Note that for any specific hypergraph H ¼ ðV ;EÞ

there exists a positive integer �pjV j such that
spanH ðeÞp� for all e 2 E: In the special case that � ¼ 2
(i.e., E � V 2), we will write G ¼ ðV ;EÞ instead of H ¼

ðV ;EÞ; and call G a graph and e 2 E an edge.
Note that degGðxÞ ¼ jNGðxÞj: We define the
following terms specifically for graphs. A sequence
hx1;x2; . . . ; xki of pairwise distinct vertices with
ðx1;x2Þ; ðx2;x3Þ; . . . ; ðxk21;xkÞ 2 E is called a path in G.
If x1 ¼ xk and kX3 then hx1;x2; . . . ;xki is called a cycle

in G. A graph is connected if for every pair of vertices
x; y 2 V there is a path in G from x to y. An acyclic
graph is called a forest and a connected forest is called a
tree. A rooted tree is a tree with a designated vertex
called the root. Let T ¼ ðV T ;ET Þ be a rooted tree, with
root r 2 V T : A pendant vertex in a tree is called a leaf.
For two vertices x; y 2 VT , with ðx; yÞ 2 ET ; we say x is
parent of y, and y is child of x, if hr; . . . ;x; yi is a path in
T. A graph G0 ¼ ðV 0;E0Þ is a subgraph of G ¼ ðV ;EÞ if
V 0 � V and E0 � E: For any V 0 � V ; G0 ¼ ðV 0;EH ðV

0ÞÞ
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Table 3

Overview of the special value-structures consider in this article

Value-structure uðxÞ DðeÞ span(e)

Unit-weighted conflict graph (UCG) þ1 �1 2

Unit-weighted surplus graph (USG) �1 þ1 2

Edge-weighted conflict graph (ECG) þ1 p� 1 2

Vertex-weighted conflict graph (VCG) X1 �1 2

Conflict graph (CG) X1 p� 1 2

Conflict hypergraph (CH) X1 p� 1 pjV j

Note: uðxÞ denotes the weight of a vertex x, DðeÞ denotes the weight on
a hyperedge e, and span(e) denotes the span of a hyperedge e.
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is called the subgraph of G induced by V0. Let Gn ¼

ðVn;EnÞ be a subgraph of G. We say Gn is a component

of G if (1) Gn is connected, and (2) there does not exist a
subgraph G0 of G, GnaG0; such that G0 is connected and
Gn is a subgraph of G0.
In our analyses we consider value-structures that can

be represented by hypergraphs with special weighting
functions. Let H ¼ ðV ;EÞ be a weighted hypergraph,
then we define the following classes for hypergraphs. (1)
We say H is a unit-weighted hypergraph if uðxÞ 2

f�1;þ1g for all x 2 V and DðeÞ 2 f�1;þ1g for all e 2

E: (2) We say H is an edge-weighted hypergraph if uðxÞ 2

f�1;þ1g for all x 2 V and DðeÞ 2 Z\f0g for all e 2 E: (3)
We say H is a vertex-weighted hypergraph if uðxÞ 2 Z

and DðeÞ 2 f�1;þ1g for all e 2 E: (4) We say H is a
conflict hypergraph if uðxÞX0 for all x 2 V and DðeÞp�
1 for all e 2 E: (5) We say H is a surplus hypergraph if
uðxÞp0 for all x 2 V and DðeÞXþ 1 for all e 2 E:
Conjunctions of these classes provide further restrictions
on the value-structure (e.g., edge-weighted conflict
graphs, unit-weighted surplus hypergraphs, etc.).
Table 3 gives an overview of the classes considered in
our analyses.
3. Classical complexity theory

This section introduces the basic concepts and
terminology of classical complexity theory.5 For more
details the reader is referred to Garey and Johnson
(1979), Karp (1975), and Papadimitriou and Steiglitz
(1988). Cognitive psychologists may find treatments by
Frixione (2001), Parberry (1997), and Tsotsos (1990)
particularly illustrative.
5The reader is advised that what we call classical complexity theory

is typically referred to as (computational) complexity theory in both

the computer science and cognitive science literature. Because we wish

to contrast this theory with a younger branch of complexity theory,

called parameterized complexity theory and discussed in Section 5, we

refer to the earlier theory as ‘‘classical.’’
3.1. Optimization and decision problems

Complexity theory distinguishes between optimization

problems and decision problems. In an optimization
problem, the required output is one that is optimized
(either maximized or minimized) on some dimension.
We already encountered examples of optimization
problems in the form of Additive Subset Choice,
Generalized Subset Choice, Graph Subset Choice, and
Hypergraph Subset Choice. In each case, the output is a
subset that is maximized with respect to subset value. A
decision problem, on the other hand, states a Yes/No-
question and its required output is the answer to that
question.
For any given optimization problem we can formulate

a decision version as follows: Let P be an optimization
problem that, given a choice set V, asks for a subset
A � Vsuch that u(A) is maximized (respectively, mini-
mized). Its decision version, PD; then asks if there exists
a subset A � V such that uðAÞXp (respectively,
uðAÞpp), for some preset threshold p. Below we state
the decision versions of Hypergraph Subset Choice and
its special case Graph Subset Choice. (The decision
versions of Additive Subset Choice and Generalized
Subset Choice can be analogously derived.)

Hypergraph Subset Choice (decision version)

Input: A weighted hypergraph H ¼ ðV ;EÞ; E �S
2phpjV jV

h: For every x 2 V there is a weight uðxÞ 2

Z and for every e 2 E there is a weight DðeÞ 2 Z\f0g:
A positive integer p.
Question: Does there exist a subset A � V such that
uðAÞ ¼

P
x2A uðxÞ þ

P
e2EH ðAÞ

DðeÞXp?

Graph Subset Choice (decision version)

Input: A graph G ¼ ðV ;EÞ with vertex set
V ¼ fx1;x2; . . . ;xngand edge set E � V 2: For every
x 2 V there is an associated integer value u(x) and for
every edge ðy; zÞ 2 E there is an associated non-zero
integer value Dðy; zÞ: A positive integer p.
Question: Does there exist a subset A � V such that
uðAÞ ¼

P
x2A uðxÞ þ

P
ðy;zÞ2EG ðAÞ

Dðy; zÞXp?

Solving a decision problem consists of correctly
responding either ‘‘yes’’ or ‘‘no.’’ An input i for a
decision problem PD is called a yes-instance for PD if
the answer to the question posed by PD is ‘‘yes’’ for i.
Otherwise, i is called a no-instance. If an algorithm for a
decision problem returns a possible solution (e.g., in the
case of Hypergraph Subset Choice this would be a
subset A with uðAÞXp) whenever the answer to the
question is ‘‘yes,’’ then we say the algorithm is
constructive. All algorithms that we consider are
constructive.
Note that there is a strong relationship between the

time-complexity of an optimization problem and its
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decision version. Clearly, solving a decision problem
cannot be more difficult than solving its corresponding
optimization version: viz., if we know a solution to the
optimization version of Hypergraph Subset Choice (i.e.,
we know a subset A � V such that u(A) is maximized),
then we also know if there exists a subset with uðAÞXp;
for any p. The converse, that solving an optimization
problem is computationally not much harder than
solving its decision version, is perhaps less obvious.
Note, however, that we can easily determine a maximum
valued subset by solving the decision version of
Hypergraph Subset Choice for different p: viz., if we
find that there exists a subset A � Vwith uðAÞXp for
p ¼ c but not for p ¼ cþ 1; then we can conclude that
A � V with uðAÞ ¼ c is a maximum valued subset, and
hence A is a solution to the optimization version of
Hypergraph Subset Choice. This means that the
optimization version of Hypergraph Subset Choice is
solvable in polynomial time, if and only if the decision
version is solvable in polynomial time. This observation
enables us to use the theory of NP-completeness and its
accompanying notion of polynomial-time reducibility to
assess the computational complexity of Hypergraph
Subset Choice.

3.2. NP-completeness and polynomial-time reduction

In the theory of NP-completeness, a distinction is
made between (1) decision problems that are solvable in
(deterministic) polynomial time (class P) and (2) decision
problems that are solvable in non-deterministic poly-

nomial time (class NP), with P � NP: A decision
problem P is a member of the class P, P 2 P; if there
exists an algorithm that solves P for any possible input i

in time OðnaÞ (where a is a constant and jij ¼ n). A
decision problem P is a member of the class NP, P 2
NP; if, given a yes-instance i for P and a candidate
solution for i, we can verify in polynomial time whether
the candidate solution is indeed a solution for i. For
example, given a yes-instance for Graph Subset Choice
and a candidate solution A � V ; we can compute
uðAÞ ¼

P
x2AuðxÞ þ

P
ðy;zÞ2EG ðAÞ

Dðy; zÞ; and compare
u(A) to p, in time OðjV j2Þ:
It is widely believed that there exist problems in NP

that are not in P, and thus that PaNP: This conjecture
is motivated, among other things, by the existence of so-
called NP-hard problems. To explain NP-hardness we
define the notion of polynomial-time reducibility: For
decision problems P1 and P2 we say that P1 reduces to
P2 if there exists an algorithm that transforms any input
i1 for P1 into an input i2 for P2 such that input i1 is a
yes-instance for P1 if and only if input i2 is a yes-
instance for P2: We say the reduction is a polynomial-

time reduction if the algorithm performing this transfor-
mation runs in polynomial time. A decision problem P
is NP-hard if every problem in NP can be polynomial-
time reduced to P: Thus, NP-hard problems are not in P
unless P ¼ NP: Problems that are NP-hard and mem-
bers of NP are called NP-complete.
The technique of polynomial-time reduction is very

useful. Once a problem is known to be NP-hard we can
prove other problems to be NP-hard by polynomial-
time reducing it to these other problems. Today
hundreds of problems are known to be NP-hard
(including Graph Subset Choice, and thus also Hyper-
graph Subset Choice). Despite great efforts from many
computer scientists, nobody to date has succeeded in
finding a polynomial-time algorithm that solves an NP-
hard problem (hence, the belief that PaNP). Therefore,
the finding that a decision problem P is NP-hard is seen
as very strong evidence that all algorithms solving P run
at best in exponential-time; e.g., in time OðanÞ; where a is
a constant and n is the input size.
4. Classical complexity results

Fishburn and LaValle (1996) already considered the
time-complexity of Graph Subset Choice. In their paper
they sketched a polynomial-time reduction from the
problem Independent Set to Graph Subset Choice. A
subset A � V is called an independent set for a graph
G ¼ ðV ;EÞ if no two vertices in A are adjacent (i.e.,
8x; y 2 A; ðx; yÞeE). The problem Independent Set is
then defined as follows.

Independent Set (decision version)

Input: A graph G ¼ ðV ;EÞ and a positive integer k.

Question: Does there exist an independent set A � V

for G with jAjXk?

Independent Set is known to be NP-complete (Garey &
Johnson, 1979). As a consequence the polynomial-time
reduction described by Fishburn and LaValle (1996)
establishes the following theorem.

Theorem 1. (Fishburn & LaValle, 1996). Graph Subset

Choice is NP-hard.

With Lemma 1 we also present a reduction from
Independent Set to Graph Subset Choice, but a different
one than described by Fishburn and LaValle (1996).
From Lemma 1 we conclude an even stronger result
than Theorem 1 (see Corollary 1).

Lemma 1. Let the graph G ¼ ðV ;EÞ and the positive

integer k form an instance for Independent Set. Then we

define an instance for Graph Subset Choice, consisting of

a weighted graph G� and a positive integer p, as follows.

Let Gn ¼ ðVn;EnÞ with Vn ¼ V and En ¼ E: Further, for

every x 2 Vn let uðxÞ ¼ þ1 and for every e A E� let

DðeÞ ¼ 21. Let p ¼ k. Then G and k form a yes-instance
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for Independent Set if and only if G� and p form a yes-

instance for Graph Subset Choice.

Proof. ð)Þ Let (G, k) be a yes-instance for Independent
Set. Then there exists an independent set A � V for G

with jAjXk: Since Gn ¼ G; A is also an independent set

for Gn: This means that EGn ðAÞ ¼ fðx; yÞ 2 En : x; y 2
Ag ¼+ and thus uðAÞ ¼

P
x2A uðxÞ þ

P
e2EGn ðAÞ DðeÞ ¼

jAj � jEGn ðAÞj ¼ jAjXk ¼ p: We conclude ðGn; pÞ is a

yes-instance for Graph Subset Choice. ð(Þ Let ðGn; pÞ
be a yes-instance for Graph Subset Choice. Then there

exists a subset A � Vn with uðAÞXp:We distinguish two
cases: (1) If EGn ðAÞ ¼+ then EGðAÞ ¼+ and thus A is
an independent set for G, with jAjXp ¼ k: We conclude
that ðG; kÞ is a yes-instance of Independent Set. (2) If
EGn ðAÞ ¼+ then EGðAÞa+: We transform A into an
independent set A0 for G using the following algorithm:

1. A0  A

2. while EGðA
0Þa+ do

3. pick an edge ðx; yÞ 2 EGðA
0Þ

4. A0  A0\fxg

5. end while

6. return A0

The algorithm considers each edge in G at most once and
thus runs in time OðjEjÞ or OðjV j2Þ: Note that every call
of line 4 results in the removal of at least one edge from
EG(A

0). Hence, uðA0ÞXuðAÞXp: Furthermore, when the
algorithm halts then EGðA

0Þ ¼+ and thus A0 is an
independent set of size at least p ¼ k for G. We conclude
that (G, k) is a yes-instance for Independent Set. &

Note that the reduction in Lemma 1 is a polynomial-time
reduction. Namely, we can copy every element in V to Vn

and E to En in time OðjV j2Þ; we can set p ¼ k in time O(1),
and we can assign each vertex in V the weight ‘1’ and assign
each edge in E the weight ‘�1’ in time OðjV j2Þ: Further, the
algorithm that, given a subset with value at least p,
computes an independent set of size at least k ¼ p; runs
in time OðjV j2Þ: Also note that Gn in Lemma 1 is a very
special type of weighted graph, viz., one in which uðxÞ ¼ 1
for all x 2 V and DðeÞ ¼ �1 for all e 2 E: In other words,
Gn is a unit-weighted conflict graph as discussed in the
Introduction (see also Table 3). The polynomial-time
reduction in Lemma 1 thus shows that Graph Subset
Choice is NP-hard even in the restricted case where the
input can be represented by a unit-weighted conflict graph:6
6Note that any value-structure G ¼ ðV ;EÞ; E � V 2; with integer

weight uðxÞ ¼ a; for constant aX1; and DðeÞ ¼ �uðxÞ; for all x 2 V and

all e 2 E; can be represented by a unit-weighted conflict graph Gn ¼

ðVn;EnÞ: In general, any value structure H ¼ ðV ;EÞ with uðxÞ 2 Z for

all x 2 V and DðeÞ 2 Z\f0g for all e 2 E; can be modeled by a

hypergraph Hn ¼ ðVn;En), with unðxÞ ¼ uðxÞ
d
for all x 2 Vn and Dn

ðeÞ ¼
DðeÞ

d
for all e 2 En; where d is a common divisor of all vertex and

hyperedge weight values in H. There exist a subset A � V with uðAÞ ¼

p for H if and only if unðAÞ ¼ p
d
for Hn:
Corollary 1. UCG Subset Choice is NP-hard.

As a comparison, we also consider the restricted
version of Graph Subset Choice that only takes unit-

weighted surplus graphs as inputs (see Table 3). We call
this special case USG Subset Choice. Note that the only
difference between unit-weighted conflict graphs and
unit-weighted surplus graphs is a reversal in sign of
vertex- and edge-weights. Interestingly, this reversal in
sign leads to a version of subset choice that is
polynomial-time solvable.

Theorem 2. USG Subset Choice 2 P:

Theorem 2 follows directly from the following lemma:

Lemma 2. Let G ¼ ðV ;EÞ be an instance USG Subset

Choice. Let Ci ¼ ðVi;EiÞ; 1pipl; be the components of

G. Let U denote the set of components in G that contain at

least one cycle. Then A ¼ fx 2 V jx 2 V i and Ci 2 U ;
1piplg has maximum value u(A).

Proof. Let A ¼ fx 2 V jx 2 V i and Ci 2 U ; 1piplg: We
show in two steps that u(A) is maximum. We show that
(1) we cannot improve the value of any vertex set An �

V by including vertices from V \A in An: We conclude
that there is a vertex set with maximum value that does
not contain any vertices in V \A: Then we show that (2)
there does not exist a set An � A with uðAnÞ4uðAÞ:
(1)
 Let An � V : Consider the subgraph F of G induced
by vertex set V \A: Then by the definition of A, F ¼

ðV \A;EGðV \AÞÞ is a forest. In any forest the number
of edges is smaller than the number of vertices (for a
proof of this basic property see e.g. Gross and
Yellen (1999)). Since every subgraph of a forest is
also a forest, we know that for any subset A0 �

V \A; jEGðA
0ÞjojA0j: Therefore, for any subset A0 �

V \A; valueGðA
0Þ ¼ jEGðA

0Þj � jA0jo0: Consider
An [ A0: Then valueGðA

n [ A0ÞovalueGðA
nÞ: In

other words, we can never improve the value of a
vertex set An � V by including vertices in V \A:
(2)
 From the above we know that if the value of A is
not maximum, then there must exist a set An � A

with uðAnÞ4uðAÞ: We show by contradiction that
such a set cannot exist. Let An � A be a largest
vertex set with uðAnÞ4uðAÞ: Then at least one of the
following two situations is true. (a) There exists a
vertex x 2 A\An such that x has at least one
neighbor y 2 An: But then uðAn [ fxgÞXuðAnÞ þ

jEGðfx; ygÞj2jfxgj ¼ uðAnÞ þ jfðx; yÞgj2jfxgj ¼
uðAnÞ þ ð121Þ ¼ uðAnÞ; contradicting the claim that
An is a largest vertex set with uðAnÞ4uðAÞ: (b) There
exists a cycle hv1; v2; . . . ; vk; v1i with v1; v2; . . . ; vk 2

A\An: But then uðAn [ fx1;x2; . . . ;xkgÞXuðAnÞ þ

jEGðfx1;x2; . . . ;xkgÞj � jfx1; x2; . . . ; xkgjXuðAnÞ þ

k � kXuðAnÞ; again contradicting the claim that A�

is a largest vertex set with uðAnÞ4uðAÞ: &
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The lemma implies that we can solve USG Subset
Choice by simply choosing all the vertices in every
component of G that contains at least one cycle; we then
check whether this set of vertices has at least p value in
G. Since the components and cycles in a graph can be
found in polynomial time (Brandstädt, Le, & Spinrad,
1999; Gross & Yellen, 1999), Theorem 2 follows.

We have shown that, although Graph Subset Choice
is computationally tractable for some very restricted
inputs (Theorem 2), in its general form it is of non-
polynomial time-complexity (unless P ¼ NP; Theorem
1). Furthermore, even the special case UCG Subset
Choice requires non-polynomial time to be computed
(unless P ¼ NP; Corollary 1), meaning that the same
holds for Hypergraph Subset Choice on any general-
ization of the unit-weighted conflict graph (i.e., for all
value-structures in Table 3, except for unit-weighted
surplus graphs).
7See, for example, Downey and Fellows (1999) for a definition of the

class W[1].
5. Parameterized complexity theory

This section introduces the basic concepts and
terminology of parameterized complexity theory. For
more details the reader is referred to Downey and
Fellows (1999), Downey, Fellows, and Stege (1999a, b),
and Fellows (2001, 2002). Cognitive psychologists may
find treatments by van Rooij (2003) and Wareham
(1998) particularly illustrative.

5.1. Fixed-parameter (in)tractability

We denote a parameter set by k ¼ fk1; k2; . . . ; kmg;
where each ki, i ¼ 1; 2; . . . ;m; denotes an aspect of the
input. We denote a problem P parameterized on k by
k-P; and call k-P a parameterized problem. An instance
for k-P; with input i and parameter k; is denoted by a
tuple ði; kÞ:
When a problem is shown to be NP-hard (like

Hypergraph Subset Choice) it is important to under-
stand which aspects of the input are actually responsible
for the non-polynomial time behavior of the problem.
The theory of parameterized complexity is motivated by
the following observation. Some NP-hard problems can
be solved by algorithms whose running time is non-
polynomial in some parameter k but polynomial in the
input size jij: In other words, the main part of the input
contributes to the overall complexity in a ‘‘good’’ way,
while only k contributes to the overall complexity in a
‘‘bad’’ way. In these cases, we say k confines the non-
polynomial time complexity in the problem, and the
problem is said to be fixed-parameter tractable for
parameter k:
More formally, a parameterized problem k-P is said

to be fixed-parameter tractable if any instance ði;kÞ for
k-P can be decided in time Oðf ðkÞnaÞ; where f ðkÞ is a
function depending only on k: An algorithm that solves
a parameterized problem k-P in time Oðf ðkÞnaÞ is called
a fixed-parameter tractable (fpt-) algorithm. Parameter-
ized decision problems that are not fixed-parameter
tractable are called fixed-parameter intractable. Analo-
gous to the classical complexity classes P and NP,
parameterized complexity theory introduces the para-
meterized complexity classes FPT and W[1], with
FPT �W½1�:7 Fixed-parameter tractable parameterized
problems are said to be in the class FPT. It is widely
believed that there exist parameterized problems in W[1]
that are fixed-parameter intractable, and thus that
FPTaW½1�: This conjecture is, among other things,
motivated by the observation that there exist W[1]-hard
problems.
To explain W[1]-hardness we define the notion of

parametric reduction: For parameterized problems
k1-P1 and k2-P2 and functions f and g, we say a
parametric reduction from k1-P1 to k2-P2 is a reduction
that transforms any instance i1 for k1-P1 into an
instance i2 for k2-P2 with k2 ¼ gðk1Þ: Further, the
reduction runs in time f ðkÞji1ja; where a is a constant. A
parameterized problem k-P is said to be W[1]-hard if
any parameterized problem k0-P0 2W½1� can be trans-
formed to k-P via a parametric reduction. Problems
that are W[1]-hard and in W[1] are called W[1]-complete.
Since membership of a W[1]-hard problem in FPT
would imply that FPT ¼W½1�; the finding that a
problem is W[1]-hard is seen as very strong evidence
that the problem is not in FPT.
It is important to realize that in classical complexity

theory we analyze and classify the complexity of
problems, while in parameterized complexity theory we
analyze and classify the complexity of a given
problem with respect to different parameters, i.e.,
parameterized problems. Thus, one and the same
problem may be in FPT for one parameter but not in
FPT for another.

5.2. Bounded search tree technique

There exist several techniques for constructing fpt-
algorithms (see e.g., Downey & Fellows, 1999; Fellows,
2001, 2002; Fellows, McCartin, Rosamond, & Stege,
2000; Niedermeier, 2002). In this paper we use the
bounded search tree technique. A search tree T is created
as follows (see Fig. 2 for an illustration): First, the root
of the tree, denoted s, is labeled by the parameterized
instance ði; kÞ: Then we recursively apply a
branching rule that creates a set children of s, denotes
s1; s2; . . . ; sd ; and labels them by new instances,
ði1;k1Þ; ði2;k2Þ; . . . ; ðid ;kdÞ; such that i is a yes-instance
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Fig. 2. A graphical illustration of a bounded search tree T for a

parameterized problem k-P: The root of T is labeled by the to-be-

decided instance ði;kÞ for k-P: Each node s in T, labeled by an

instance ðis;ksÞ; has children s1; s2; . . . ; sk ; labeled by

ðis1
; ks1
Þ; ðis2

;ks2
Þ; . . . ; ðisk

; ksk
Þ; such that ðis; ksÞ is a yes-instance for

k-P if and only if at least one of ðis1
;ks1
Þ; ðis2

;ks2
Þ; . . . ; ðisk

;ksk
Þ is a yes-

instance for k-P: If the length of the longest path from the root to a

leaf in T is depth(T) and the maximum number of children per node in

T is fan(T), then the size of the whole tree, size(T), is O(fan(T)depth(T)).

Table 4

Overview of the input parameters considered in this article

Parameter Definition

� Smallest positive integer such that, for all e 2 E;
spanH ðeÞp�

umax Smallest positive integer such that, for all x 2 V ;
uðxÞpumax

umin Smallest positive integer such that, for all x 2 V ;
uðxÞX� umin

Dmax Smallest positive integer such that, for all e 2 E;
DðeÞpDmax

Dmin Smallest positive integer such that, for all e 2 E;
DðeÞp� Dmin

dmax Smallest positive integer such that, for all x 2 V ;
degH ðxÞpdmax

Nmax Smallest positive integer such that, for all x 2 V ;
NH ðxÞpNmax

P A positive integer

k A positive integer

q q ¼ p� uðV Þ
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for k-P if and only if i1 or i2 or . . . or id is a yes-instance
for k-P: For each newly created node in the search tree,
the branching rule is applied again, until a node sj is
encountered that is labeled by either an identifiable yes-
instance or an identifiable no-instance. As soon as a yes-
instance is encountered the algorithm halts and returns
the answer ‘‘yes.’’ If the algorithm halts without
returning the answer ‘‘yes’’ (i.e., if all leaves of the
search tree are labeled by identifiable no-instances) then
the algorithm returns the answer ‘‘no.’’
We denote the maximum number of children created

per node in a search tree by fan(T) and the maximum
length of the path from root to any leaf in T by
depth(T). The total number of nodes in the search tree is
denoted by size(T). Note that size(T) is bounded by
2fan(T)depth(T)�1 which is O(fan(T)depth(T)) .The goal of
the bounded search tree technique is to construct the
search tree such that for every instance i for k-P; the
following two conditions are met: (1) each node in the
search tree can be created and labeled in fpt-time,
OðgðkÞnaÞ; and (2) the size of the search tree is bounded
by some function hðkÞ: These two conditions ensure that
the bounded search tree algorithm runs in fpt-time.
Namely, let OðgðkÞnaÞ be the time required to create a
node in T and let sizeðTÞphðkÞ; then the bounded search
tree algorithm runs in time OðhðkÞgðkÞnaÞ ¼ Oðf ðkÞnaÞ:

5.3. Identifying sources of non-polynomial time-

complexity

Consider a problem P with parameter k such that
PeP and k-P 2 FPT: Although clearly k is sufficient for
confining the non-polynomial complexity inherent in P;
it may contain one or more parameters that are
‘redundant,’ in the sense that the fpt-classification of
k-P does not depend on those parameters. Namely, for
a problem P and parameter set k; if k-P 2 FPT then
k0-P 2 FPT for all k0 � k: To distinguish between
parameter sets that exactly circumscribe a source of
non-polynomial time complexity in P and parameter
sets that merely contain such a source, we define the
notion of a minimal parameter set (cf. Wareham’s
(1998) notion of intractability map).
A parameter set k is said to be minimal if and only if

k-P 2 FPT and there does not exist a proper subset k0 �
k such that k0-P 2 FPT: If k is a minimal parameter set
for a classically intractable problem P we also call k a
crucial source of (non-polynomial time) complexity in P;
because then P is ‘‘easy’’ for small values of parameters
in k irrespective the size of other input parameters. Note
that a crucial source of complexity need not be unique.
That is, there may exist different parameter sets k and k0;
with k0gk; such that k-P 2 FPT and k0-P 2 FPT: Also
note that every problem has k ¼ fjijg as a crucial source
of complexity. Thus the label ‘crucial source of
complexity’ should be read as denoting a minimal set
of parameters that is sufficient, but not necessary, for
confining the non-polynomial time behavior in a
problem.
In the following Sections (6–8) we set out to identify

some crucial sources of complexity in Hypergraph Subset
Choice, using the techniques of parametric reduction and
bounded search tree. In our analyses we consider several
parameters (see Table 4 for an overview).
6. Subset choice on unit-weighted conflict graphs

In Section 3 we saw that Hypergraph Subset Choice is
NP-hard even for the special case where the value-
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structure can be modeled by a unit-weighted conflict
graph, called UCG Subset Choice (Corollary 1). In this
section we investigate the parameterized complexity of
UCG Subset Choice for two different parameters. The
first parameter is the positive integer p explicitly stated
as part of the input to UCG Subset Choice. The second
parameter is the implicit parameter q, where q is defined
as follows: Let (H, p), with H ¼ ðV ;EÞ; be an instance
for Hypergaph Subset Choice; then q ¼ p� uðV ). As we
can rewrite p ¼ uðV Þ þ q; the criterion q is naturally
interpreted as the requirement that the value of
the chosen subset A should exceed the value of V by
amount q.
First, in Section 6.1, we show that p-UCG Subset

Choice is not in FPT (unless FPT ¼W½1�). In Section
6.2, we explain in more detail how the relational
parameter q for Hypergraph Subset Choice relates to
the parameter p, by introducing a problem called
Hypergraph Subset Rejection. Then, in Section 6.3, we
show that q-UCG Subset Choice is in FPT.

6.1. p-UCG subset choice is W[1]-hard

The following theorem shows that p-UCG Subset
Choice is not in FPT (unless FPT ¼W½1�). The proof
involves a reduction from the known W[1]-complete
problem, k-Independent Set (Downey & Fellows, 1999).

Theorem 3. p-UCG Subset ChoiceeFPT (unless

FPT ¼W½1�).

Proof. Reconsider the proof of Lemma 1. Lemma 1
presents a polynomial-time reduction in which we
transform any instance (G, k) for Independent Set to
an instance ðGn; pÞ for Graph Subset Choice, with Gn a
unit weighted conflict graph and p ¼ k: In other words,
Lemma 1 presents a parametric reduction from k-
Independent Set to p-UCG Subset Choice that runs in
polynomial time (and thus also fpt-time). Since, the
problem k-Independent Set is known to be W[1]-
complete, we conclude that p-UCG Subset Choice is
W[1]-hard. &

Since UCG Subset Choice is a special case of
Hypergaph Subset Choice we conclude:

Corollary 2. p-Hypergraph Subset ChoiceeFPT (unless

FPT ¼W½1�).

Corollary 2 shows that the desire to obtain a
satisfactorily large subset value (i.e., we want a value
of at least p) is not in itself a crucial source of complexity
in Hypergraph Subset Choice.

6.2. Subset rejection and parameter q

This section explains in more detail the parameteriza-
tion of Hypergraph Subset Choice by q ¼ p2uðV Þ: To
facilitate thinking in terms of the parameter q (instead of
p), we define a new value function on subsets of
vertices in a weighted hypergraph: Let H ¼ ðV ;EÞ
be a hypergraph and let B � V be a subset.
Then the improvement in value of A ¼ V \B; relative
to the value of V, is called rejection value of B and is
defined as

urðBÞ ¼ uðV=BÞ � uðV Þ

¼
X

x2V \B

uðxÞ þ
X

e2EH ðV \BÞ

DðeÞ

 !

�
X
x2V

uðxÞ þ
X

e2EH ðV Þ

DðeÞ

 !

¼ �1 �
X
x2B

uðxÞ þ
X

e2RH ðBÞ

DðeÞ

 !
,

where RH ðBÞ ¼ fðx1;x2; . . . ;xhÞ 2 Ejx1 or x2 or . . . or
xh 2 Bg denotes the set of hyperedges incident to at least
one vertex in B.
Note that a vertex x has positive rejection-value if its

weight plus the sum of the weights of its incident
hyperedges is negative. In other words, a choice
alternative has positive rejection-value if it
strongly clashes with other choice alternatives in the
set of available alternatives. More generally, a
subset B � V has positive rejection-value if the sum of
the values of its elements plus the sum of the weights of
all hyperedges incident to a vertex x 2 V is
negative. Thus, removing a rejection set B with positive
rejection-value from V entails the removal of negative
value from H.
We can now state a new problem, called Hypergraph

Subset Rejection:

Hypergraph Subset Rejection (decision version)

Input: A weighted hypergraph H ¼ ðV ;EÞ; E �S
2phpjV jV

h; for every x A V a weight uðxÞ 2 Z; for

every e 2 E a weight DðeÞ 2 Z\f0g; and a positive
integer q.

Question: Does there exist a subset B � V such that
urðBÞ ¼ �1 �

P
x2B uðxÞ þ

P
e2RH ðBÞ

DðeÞ
� �

Xq?

While the problem Hypergraph Subset Choice
asks for the subset A that we want to choose,
the problem Hypergraph Subset Rejection asks for
the subset B ¼ V \A that we want to reject (in the
latter case A ¼ V \B is the subset that we want to
choose). Note that there exists a subset B � V with
urðBÞXq ¼ p� uðV Þ if and only if there exists
a subset A ¼ V \B with uðAÞXp ¼ qþ uðV Þ: Thus,
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solving Hypergraph Subset Rejection is equivalent to
solving Subset Choice.8
6.3. q-UCG subset choice is in FPT

We consider the parameterized complexity of q-
Hypergraph Subset Choice on unit-weighted conflict
graphs, i.e., q-UCG Subset Choice and prove the
following theorem.

Theorem 4. q-UCG Subset Choice 2 FPT:

For simplicity, we work with the version UCG Subset
Rejection instead of UCG Subset Choice. That is, we
consider the problem as one of deciding whether or not
a subset B with urðBÞXp� uðV Þ ¼ q exists; instead of
deciding whether or not a subset A ¼ V \B with uðAÞXp

exists. Keep in mind, though, that the two conceptua-
lizations are equivalent; i.e., the answer is ‘‘yes’’ for the
one if and only if the answer is ‘‘yes’’ for the other.
The proof of Theorem 4 is organized as follows. We

start with two observations: The first is a general
observation that holds for conflict hypergraphs (Ob-
servation 1), the second applies specifically to unit-
weighted conflict graphs (Observation 2). Using Ob-
servations 1 and 2, we define a branching rule, (B1), that
can be used to construct a bounded search tree for q-
UCG Subset Rejection, and thus also for q-UCG Subset
Choice. Finally, we conclude an fpt-algorithm that
solves q-UCG Subset Choice in time Oð2qjV jÞ:
Observation 1 applies to general conflict hypergraphs.

It shows that a vertex x with non-positive rejection-
value (i.e., its weight plus the weights of its incident
edges is positive), in a conflict hypergraph, never needs
to be rejected (i.e., always can be chosen). Namely, if
urðxÞp0; then there always exists a subset B with
maximum rejection-value such that xeB:

Observation 1. Let conflict hypergraph H ¼ ðV ;EÞ and

positive integer q form an instance for Conflict Hyper-

graph (CH) Subset Rejection. Further, let x 2 V be a

vertex such that urðxÞp0: Then (H, q) is a yes-instance for

CH Subset Rejection if and only if there exist a subset B

with urðBÞXq and xeB:
8Even though Hypergraph Subset Choice and Hypergraph Subset

Rejection ask for a different solution subset (i.e., if A � V is a solution

for the one problem, then V \A is a solution for the other), this

difference is insubstantial for present purposes. Namely, the transfor-

mation from a subset A to its complement V \A can be done in

polynomial-time and thus does not affect the (classical and para-

meterized) complexity classification of Hypergraph Subset

Choice=Hypergraph Subset Rejection. Further, since V is given as

part of the input, one can build the sets A and V \A simultaneously by

deleting a vertex x from V as soon as x is included in A; the remaining

vertices in V together form V \A:
Proof. ð)Þ Let (H, q) be a yes-instance for CH Subset
Rejection. Then there exists a subset C � V with
urðCÞXq: We show that there exist a subset B � C with
urðBÞXurðCÞXq and xeB: We distinguish two cases: (1)
Let xeC: Then B ¼ C proves the claim. (2) Let x 2 C:
Then consider the subset C\fxg: Since H is a conflict
hypergraph (i.e., it has only negative edges and positive
vertices) and urðxÞp0; we know that
urðC\fxgÞXurðCÞXq: Then B ¼ C\fxg proves the claim.
ð(Þ Let (H, q) be an instance for CH Subset Rejection
and let B � V with urðBÞXq and xeB: Then (H, q) is a
yes-instance for CH Subset Rejection. &

We remark that Observation 1 implies that if a
conflict hypergraph H ¼ ðV ;EÞ does not contain any
vertices of positive rejection-value, then the subset A �

V with A ¼+ has maximum value uðAÞ ¼ 0; and thus
H is a no-instance for any q40:
Observation 2 applies to unit-weighted conflict

graphs. It shows that for every edge (x, y) in a unit-
weighted conflict graph we may reject x or y. Namely, in
that case, there always exists a subset B with maximum
rejection-value with at least one of x or y in B.

Observation 2. Let G ¼ ðV ;EÞ and q form an instance for

UCG Subset Rejection and let ðx; yÞ 2 E: Then (G, q) is a

yes-instance for UCG Subset Rejection if and only if there

exists B � V with urðBÞXq and x 2 B or y 2 B:

Proof. ð)Þ Let (G, q) be a yes-instance for UCG Subset
Rejection and let ðx; yÞ 2 E: Then there exists a subset
C � V with urðCÞXq:We show that there exists a subset
B � C with urðBÞXurðCÞXq such that x 2 B: We
distinguish two cases: (1) Let x 2 C or y 2 C: Then the
B ¼ C proves the claim. (2) Let x; yeC: Then
ðx; yÞeRGðCÞ: Since DðxÞ ¼ 1 and Dðx; yÞ ¼ �1 we know
urðC [ fxgÞXurðCÞ þ ð�DðxÞ � Dðx; yÞÞ ¼ urðCÞXq:
Then B ¼ C [ fxg proves the claim. ð(Þ Let (G, q) be an
instance for UCG Subset Rejection and let B � V with
urðBÞXq and x 2 B or y 2 B: Then (G, q) is a yes-
instance for UCG Subset Rejection. &

From Observations 1 and 2 we derive the following
branching rule (refer to Fig. 3 for an illustration):

(B1) The Positive Endpoint Edge-Branching Rule. Let

s be a search tree node labeled by an instance (G, q),

G ¼ ðV ;EÞ, for UCG Subset Rejection and let

ðx1; x2Þ 2 E with urðxiÞ40 for at least one vertex

xi 2 fx1; x2g. Then for each xi 2 fx1;x2g with urðxiÞ40
we create a child si of s and label it by (Gi, qi), where

Gi ¼ ðV \fxig; E\RGðfxigÞÞ; qi ¼ q2urðxiÞ:

Note that (B1) only applies if there exists an edge (x1,
x2) in G with urðx1Þ40 or urðx2Þ40: Thus application of
(B1) to a node in the search tree always leads to the
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(b)

(a)

Fig. 3. Illustration of the application of branching rule (B1) to an

instance (G, q) for UCG Subset Rejection. Part (a) of the figure

illustrates branching on an edge (x, z), where only one endpoint, x, has

positive rejection-value, and part (b) of the figure illustrates branching

on an edge (x, y) in G where both endpoints x and u have positive

rejection-value. In the first case one new instance (G1, q1) is created,

while in the second case two new instances (G1, q1) and (G2, q2) are

created.
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creation of at least one child of that node. If only one of
x1 and x2 has positive rejection-value then exactly one
child is created, and if both x1 and x2 have positive
rejection-value then exactly two children are created.
To prove that (B1) is a valid branching rule for UCG

Subset Rejection, we need to show that (G, q) is a yes-
instance for UCG Subset Rejection if and only if at least
one of the children of s is labeled by a yes-instance for
UCG Subset Rejection.

Proof of (B1). Let (G, q) be a yes-instance for UCG
Subset Rejection and let ðx1;x2Þ 2 E with urðxiÞ40 for
at least one vertex xi 2 fx1;x2g: We distinguish two
cases: (1) Let both x1 and x2 have positive rejection-
value. Then application of rule (B1) to edge (x1, x2)
leads to the creation of two instances (G1, q1) and (G2,
q2), where (G1, q1) represents the possibility that x1 2 B

and (G2, q2) represents the possibility that x2 2 B: From
Observation 2 we know that there exists a subset B � V

with maximum rejection-value such that x1 2 B or x2 2

B: We conclude that (G, q) is a yes-instance for UCG
Subset Rejection if and only if (G1, q1) or (G2, q2) is a
yes-instance for UCG Subset Rejection. (2) Let only one
of x1 and x2 have positive rejection-value. W.l.o.g. let
urðx1Þ40 and urðx2Þp0: Then application of rule (B1)
leads to the creation of only one instance (G1, q1)
representing the assumption that x1 2 B: From
Observation 2 we know that there exists a subset B �

V with maximum rejection-value and x1 2 B or x2 2 B:
Further, from Observation 1 we know that there
exists a subset B � V with maximum rejection-value
such that x2eB: We conclude that (G, q) is a yes-
instance for UCG Subset Rejection if and only
if (G1, q1) or (G2, q2) is a yes-instance for UCG Subset
Rejection. &

With the following lemma we conclude an fpt-
algorithm for q-UCG Subset Rejection that runs in
time Oð2qjV jÞ:

Lemma 3. q-UCG Subset Rejection can be solved in time

Oð2qjV jÞ:

Proof. We describe an fpt-algorithm for q-UCG Subset
Rejection. The algorithm takes as input an instance (G,
q) and creates a search tree T by recursively applying
(B1) to (G, q) until an instance (Gi, qi) in encountered
such that either (1) qip0 (in which case the algorithm
returns the answer ‘‘yes’’) or Gi does not contain any
vertices with positive-rejection value anymore (in which
case we know, from Observation 1, that Gi is a no-
instance). If the algorithm halts without returning the
answer ‘‘yes’’ then we know that all leaves of the search
tree T are labeled by no-instances and we conclude (G,
q) is a no-instance. We now prove that the algorithm
halts in time Oð2qjV jÞ:
First, to apply (B1) to an instance (G, q), G ¼ ðV ;EÞ;

we need to find a vertex x 2 V with urðxÞX1: To find
such a vertex we need to consider at most jV j vertices.
Further, whenever we consider a vertex that has non-
positive rejection-value we spend no more than O(1)
time to compute its rejection-value. Hence, we can find a
vertex with positive rejection-value (or know that none
exists) in time OðjV jÞ: If we find a vertex x with urðxÞX1;
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then we branch on any edge (x, y) incident to x. For
each new search tree node si that we create we spend at
most OðjV jÞ time to label it by (Gi, qi). Namely, we
spend time O(degG(x)) to compute the value ur(x), and
we need time O(degG(x)) to delete x and its adjacent
edges from G. Thus each node in the search tree can be
labeled in time O(degG(x)). Since degGðxÞpjV j � 1; we
conclude that OðdegGðxÞÞpOðjV jÞ:
Second, observe that each application of (B1) leads to

the creation of at most 2 new branches in the search tree,
and thus fanðTÞp2: Further, whenever (B1) creates a
node labeled by (Gi, qi) for a parent labeled by (G, q)
then qipq� 1: Thus, we have depthðTÞpq: We
conclude that sizeðTÞpOð2qÞ: Combined with the time
spent per node of the search tree we conclude the
algorithm runs in time Oð2qjV jÞ: &

Since, the parameterized problem q-UCG Subset
Rejection is equivalent to q-UCG Subset Choice, we
also have:

Corollary 3. q-UCG Subset Choice can be solved in time

Oð2qjV jÞ:

Since, Oð2qjV jÞ is fpt-time for parameter q, Corollary
3 proves Theorem 4.
We have shown how we can solve q-UCG Subset

Choice in fpt-time Oð2qjV jÞ: The arguments we used to
derive this result are intended to provide an easy to
follow illustration. We remark that, with the use of
different techniques and a better running-time analysis,
it is possible to derive a much faster fpt-algorithm for q-
UCG Subset Choice that runs in time Oð1:151q þ qjV jÞ:
This improved result follows from an analysis by Stege,
van Rooij, Hertel, and Hertel (2002) and is discussed by
van Rooij (2003).
7. Generalizing q-UCG subset choice

Theorem 4 shows that if a decision-maker has a value-
structure that can be represented by a unit-weighted
conflict graph, and s/he aims to choose a subset with a
value that is at least q more than u(V), then the task is
practically feasible for large jV j as long as q is not too
large. In this section, we study to what extent this result
generalizes to value-structures that form generalizations
of the unit-weighted conflict graph. Specifically, we
consider Subset Choice on edge-weighted conflict graphs
(ECG Subset Choice), vertex-weighted conflict graphs
(VCG Subset Choice), conflict graphs (CG Subset
Choice), and conflict hypergraphs (CH Subset Choice)
(see Table 3). For problemsP andP0; letP0 � P denote
thatP0 is a special case of P: Then we have UCG Subset
Choice � ECG Subset Choice � CG Subset Choice �
CH Subset Choice; and also UCG Subset Choice �
VCG Subset Choice � CG Subset Choice � CH Subset
Choice.
The investigation in Sections 7.1–7.4 takes the

following form. Each subsection considers one of the
aforementioned problems. For each considered problem
P we ask: Is q sufficient to capture the non-polynomial
complexity inherent in P? If the answer is ‘‘no,’’ we
attempt to find a superset k � q; such that k-P 2 FPT:
In Section 8, we will review to what extent the analyses
have led to the identification of crucial sources of
complexity as defined in Section 5.3.

7.1. q-ECG subset choice is in FPT

Here we show that q-ECG Subset Choice is in FPT.
First note that Observation 1 above also applies to ECG
Subset Choice (viz., edge-weighted conflict graphs are a
special type of conflict hypergraphs). Further, Observa-
tion 2 for unit-weighted conflict graphs directly gen-
eralizes for edge-weighted conflict graphs, as shown in
the next observation.

Observation 3. Let G ¼ ðV ;EÞ and q form an instance for

ECG Subset Rejection and let ðx; yÞ 2 E. Then (G, q) is a

yes-instance for ECG Subset Rejection if and only if there

exists B � V with urðBÞXq and x 2 B or y 2 B:

Proof. Analogous to the proof of Observation 2, with G

being an edge-weighted conflict graphs instead of a unit-
weighted conflict graph. &

From Observations 1 and 3 we conclude that the
algorithm described for q-UCG Subset Choice also
solves q-ECG Subset Choice in time Oð2qjV jÞ:

Corollary 4. q-ECG Subset Choice 2 FPT:

Corollary 4 shows that the presence of edge-weights in
a conflict graph, in itself, does not add non-polynomial
time complexity to subset choice on conflict-graphs over
and above the non-polynomial time complexity already
captured by q.

7.2. q-VCG subset choice is W[1]-hard

We next show that, although q is sufficient for
capturing the non-polynomial time complexity in ECG
Subset Choice, the same is not true for VCG Subset
Choice (unless FPT ¼W½1�).

Theorem 5. q-VCG Subset ChoiceeFPT (unless

FPT ¼W½1�).

To prove Theorem 5, we present a parametric
reduction from k-Independent Set to q-VCG Subset
Choice in Lemma 4 (see Fig. 4 for an illustration). For
simplicity, in this reduction we assume that the input
graph for k-Independent Set is of minimum degree 1
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Fig. 4. Illustration of the reduction in Lemma 4. The reduction

transforms G into G�: The unweighted version of the figure represents

graph G, and the weighted version of the figure represents the graph

G�: Only the vertex weights are shown for G� ; since G� is a vertex-

weighted conflict graph, all edge weights are set ‘�1.’ Note that uðxÞ ¼

degGðxÞ � 1 for each vertex x in G�: This property ensures that G has

an independent set of size k if and only if there exists a subset B � V ;
with urðBÞXq ¼ k:
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(i.e., G contains no singletons). Since k-Independent Set
(with or without singletons) is known to be W[1]-
complete (Downey & Fellows, 1999) the reduction
shows that q-VCG Subset Choice is W[1]-hard.

Lemma 4. Let (G, k), G ¼ ðV ;EÞ; be an instance for k-

Independent Set, where G contains no singletons. We build

an instance ðGn; qÞ; with Gn ¼ ðVn;EnÞ; for q-VCG
Subset Choice as follows. Gn has the same edges and

vertices as G but is a vertex-weighted conflict graph.

Therefore let Vn ¼ V and En ¼ E. We define the weights

for Gn as follows: for every x 2 Vn let urðxÞ ¼ degGn ðxÞ �

1 and for every e 2 En let DðeÞ ¼ 21. Note that urðxÞ ¼ 1
for all x 2 Vn. Furthermore let q ¼ k. Then G has an

independent set of size at least k if and only if there exists

B � Vn with urðBÞXk:

Proof. ð)Þ Let B � V ; B ¼ fx1;x2; . . . ;xkg; be an
independent set for G. This means that no two vertices
xi, xj 2 fx1;x2; . . . ;xkg share an edge in G and since E ¼

En also no two vertices xi, xj 2 fx1;x2; . . . ;xkg share an
edge in Gn: Thus urðBÞ ¼ urðx1Þ þ urðx2Þ þ � � � þ

urðxkÞ ¼ k: ð(Þ Let B � Vn with urðBÞXq: We show G

has an independent set of size at least q. We distinguish
two cases: (1) If B is an independent set for Gn then B is
an independent set for G. Assume B ¼ fx1;x2; . . . ; xkg:
Then urðBÞ ¼ urðx1Þ þ urðx2Þ þ � � � þ urðxkÞXq; and thus
kXq: (2) If B is not an independent set for Gn; we
transform B into an independent set B0 for Gn with the
algorithm described in the proof of Lemma 1. Note that
line 4 of the algorithm always results in the removal of at
most degnGðxÞ � 1 edges from RGnðB0Þ: Hence, in line 4,
urðB

0fxgÞXurðB
0Þ � uðxÞ � ðdegGnðxÞ � 1Þ ¼ urðB

0Þ �

ðdegGn ðxÞ � 1Þ þ ðdegGn ðxÞ � 1Þ ¼ urðB
0Þ; and thus in

line 6, urðB
0ÞXq: Furthermore, when the algorithm halts

B0 is an independent set for Gn and therefore for G. Thus
case (1) applies to B ¼ B0: &

Because the above reduction runs in polynomial-time,
Lemma 4 also constitutes an alternative proof of
Theorem 1. Further, since VCG Subset Choice is a
special case of CG Subset Choice, which in turn
is a special case of CH Subset Choice, we also
conclude:

Corollary 5. q-CG Subset ChoiceeFPT (unless

FPT ¼W½1�).

Corollary 6. q-CH Subset ChoiceeFPT (unless

FPT ¼W½1�).

7.3. fq; umaxg-CG subset choice is in FPT

We consider another parameter for Hypergraph
Subset Choice: The maximum vertex weight, denoted
by umax. Note that for every instance (H, q), with H ¼

ðV ;EÞ; for Hypergraph Subset Choice, there exists a
positive integer value umax such that for all x 2 V ;
uðxÞpumax: Thus, umax is an implicit parameter for
Hypergraph Subset Choice. In the following we show
that, although q-CG Subset Choice is W[1]-hard
(Corollary 5), the parameter set fq; umaxg is sufficient
for capturing the non-polynomial time complexity
inherent in CG Subset Choice.

Theorem 6. fq; umaxg-CG Subset Choice 2 FPT:

The proof of Theorem 6 is organized as follows. First
we observe that for every vertex in a conflict graph with
positive rejection-value, we can always either reject that
vertex or reject at least one of its neighbors (Observation
4 below). Using Observations 1 and 4, we define a
branching rule (B2) that can be used to construct an fpt-
algorithm for fq; dmaxg-CG Subset Choice (as before,
dmax denotes the maximum vertex degree). Then we
show that there exists a function f ðumax; qÞ such that
dmaxpf ðumax; qÞ: This allows us to conclude the existence
of an fpt-algorithm for fq; umaxg-CG Subset Choice.
Observation 4 shows that, for an instance (G, q) for

CG Subset Choice and a vertex x with positive rejection-
value, if a subset B � V has maximum rejection-value
then there exist a vertex y in the open neighborhood of x

such that y 2 B:

Observation 4. Let G and q form an instance for CG

Subset Choice and let x 2 V with urðxÞ40. Then G and q

form a yes-instance for CG Subset Choice if and only if

there exists B � V with urðBÞXq; and at least one vertex

y 2 NG½x�; with y 2 B:
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Fig. 5. Illustration of the application of branching rule (B2) to an instance (G, q) for CG Subset Rejection. The instances obtained after branching

rule application on vertex x in G, are denoted (Gi, qi) with i ¼ 0; 1; 2; . . . ; degGðxÞ: For clarity, the vertex and edge weights are not depicted; but the

reader may assume that, in this example, each of the vertices u, v, w, x, and y, has positive rejection-value in G. In this example, degGðxÞ ¼ 4; thus (at
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Proof. ð)Þ Let (G, q) be a yes-instance for CG Subset
Choice and let x 2 V with urðxÞ40: Then there exists
C � V with urðCÞXq: We show there exists B � V such
that urðBÞXurðCÞXq and at least one vertex y 2 NG½x�;
with y 2 B: We distinguish two cases: (1) There exists a
vertex y 2 NG½x� with y 2 C: Then B ¼ C proves the
claim. (2) There does not exist y 2 NG½x� with y 2 C:
Then xeC; since x 2 NG½x�: Further, since urðxÞX1 we
know that urðC [ fxgÞXurðCÞ þ urðxÞXurðCÞ þ 14q;
and thus B ¼ C [ fxg proves the claim. ð(Þ Let G and
q form an instance for CG Subset Choice and let B � V

be any subset with urðBÞXq: Then ðG; qÞ is a yes-instance
for CG Subset Choice. &

The following rule (B2) uses Observations 1 and 4 to
branch on vertices with positive rejection-value in a
vertex-weighted conflict graph (refer to Fig. 5 for an
illustration).

(B2) The Positive Vertex-or-At-Least-One-Neighbor

Branching Rule #1. Let s be a search tree node labeled

by an instance (G, q), G ¼ ðV ;EÞ for CG Subset

Choice and let x 2 V, with urðxÞ40 and

NGðxÞ ¼ fx1; . . . ; xkg;kpdmax: Then for each xi 2

NG½x� with urðxiÞ40 we create a child si of s and label

it by (Gi, qi), Gi ¼ ðV \fxig; E\RGðfxigÞÞ; q ¼ q2urðxiÞ:

Proof. Let (G, q) be a yes-instance for CG Subset
Rejection and let x 2 V ; with urðxÞ40; NGðxÞ ¼

most) five new instances are created by (B2).
fx1; . . . ;xkg: Application of (B2) results in the creation
of an instance (Gi, qi) for each xi 2 NG½x� with urðxiÞ40:
Here, each instance (Gi, qi) represents the assumption
that xi 2 B: From Observation 4 we know that there
exists a subset B � V with maximum rejection-value and
B \ fxi 2 NG½x� : urðxiÞ40ga+: Further, from Obser-
vation 1 we know that there exists a subset B � V with
maximum rejection-value and xieB for all xi 2 NG½x�

with urðxiÞp0: We conclude (G, q) is a yes-instance for
CG Subset Rejection if and only if at least one of (Gi, qi)
is a yes-instance for CG Subset Rejection. &

Application of (B2) to a search tree node s leads to the
creation of at most degGðxÞ þ 1pdmax þ 1 children of s.
Further, for each newly created instance (Gi, qi), we have
jGijpjGj; dmaxi

pdmax; qipq� 1: Thus we can use (B2)
to build a search tree with fanðTÞpdmax þ 1 and
depthðTÞpq:

Lemma 5. fdmax; qg-CG Subset Rejection can be solved in

time Oððdmax þ 1ÞqjV jÞ:

Proof. Analogous to the proof of Lemma 3, we define
an fpt-algorithm for fdmax; qg-CG Subset Rejection: The
algorithm takes as input an instance ðG; qÞ and
recursively applies (B2) to some vertex x in G with
urðxÞ40 until either a ‘‘yes’’-answer is returned or (B2)
cannot be applied anymore. If the algorithm halts
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without returning the answer ‘‘yes’’ then we know that
each leaf si in the search tree T is labeled by an instance
ðGi; qiÞ; such that all vertices in Gi have non-positive
rejection-value. Then, from Observation 1, we can
conclude that ðG; qÞ is a no-instance.
We next prove that the algorithm halts in time

Oððdmax þ 1ÞqjV jÞ: To find a vertex x to branch on
(or know that none exists), and label a new node
in the search tree, we need at most time OðjV jÞ: Since
each application of (B2) leads to the creation of
at most dmax þ 1 new branches in the search tree,
we know that fanðTÞpdmax þ 1: Further, whenever
(B2) creates a node labeled by ðGi; qiÞ; for a
parent labeled ðG; qÞ; then qipq� 1; and thus
depthðTÞpq: We conclude that sizeðTÞpOððdmax þ
1ÞqÞ: Combined with the time spent per node of the
search tree we conclude the algorithm runs in time
Oððdmax þ 1ÞqjV jÞ: &

The following lemma shows that for any instance (G,
q) for CG Subset Rejection we can bound the vertex
degree by a function f(umax, q).

Lemma 6. Let (G, q) be an instance for CG Subset

Rejection and let umax be the maximum vertex weight in

G. If there exists a vertex x 2 V with degGðxÞXqþ umax
then (G, q) is a yes-instance.

Proof. We know for every x 2 V ; urðxÞ ¼ �ðuðxÞ þP
e2RGðfxgÞ

DðeÞÞX� umax þ degGðxÞ: Let x 2 V be a
vertex with degGðvÞXqþ umax: Then urðxÞXq and thus
(G, q) is a yes-instance for CG Subset Rejection. &

From Lemma 6 we conclude a refinement of the
search tree algorithm described in Lemma 5: As soon as
we encounter a node labeled by (G, q), such that
dmaxXqþ umax; we terminate the search and return the
answer ‘‘yes.’’ This way we ensure that for the resulting
bounded search tree T, fanðTÞpdmax þ 1pqþ umax:

Corollary 7. fq; umaxg-CG Subset Choice can be solved in

time Oððqþ umaxÞ
q
jV jÞ:

Since time Oððqþ umaxÞ
q
jV jÞ is fpt-time for fq; umaxg-

CG Subset Choice, Corollary 7 proves Theorem 6. Note
that, since VCG Subset Choice is a special case of CG
Subset Choice, all results discussed above for CG Subset
Choice also apply to VCG Subset Choice.

7.4. fq; umax; �g-CH subset choice is in FPT

In this section we consider Subset Choice on general
conflict hypergraphs and we prove the following
theorem.

Theorem 7. fq; �; umaxg-CH Subset Choice 2 FPT:

Recall that � denotes the maximum span in a
hypergraph. Since, for every hypergraph H ¼ ðV ;EÞ;
there exists a positive integer � such that spanðeÞp� for
every e 2 E; the integer � is an implicit parameter for CH
Subset Choice.
The proof of Theorem 7 is organized as follows. First,

we observe that Observation 4 for conflict graphs
directly generalizes to conflict hypergraphs (Observation
5). Then we consider a new input parameter
Nmax, denoting the maximum neighborhood of a
vertex in H (i.e., Nmax is the smallest positive integer,
such that for every x in H, jNH ðxÞjpNmax). Using
Observations 1 and 5, we derive a branching
rule (B3) that can be used to construct an fpt-algorithm
for fq;Nmaxg-CH Subset Rejection. We will show
that there exists a function f ð�; dmaxÞ with
Nmaxpf ð�; dmaxÞ: This allows us conclude an fpt-algo-
rithm for fq; �; dmaxg-CH Subset Rejection. Finally, we
show that there exists a function g(umax, q), with
dmaxpgðumax; qÞ; and conclude an fpt-algorithm for
fq; �; umaxg-CH Subset Choice.

Observation 5. Let H and q form an instance for CH

Subset Choice and let x 2 V with urðxÞ40. Then H and q

form a yes-instance for CH-Subset Choice if and only if

there exists B � V ; with urðBÞXq; and at least one vertex

y 2 NH ½x�; with y 2 B:

Proof. Analogous to the proof of Observation 4, using
as instance (H, q), such that H is a conflict hypergraph
instead of conflict graph. &

From Observations 1 and 5 we conclude a branching
rule (B3) for CH Subset Choice that allows us to
construct a bounded search tree T, with
sizeðTÞpf ðq;NmaxÞ: Note that (B3) is identical to (B2)
with the exception that it takes as input a conflict
hypergraph instead of a conflict graph.

(B3) The Positive Vertex-or-At-Least-One-Neighbor

Branching Rule #2. Let s be a search tree node labeled

by an instance ðH ; qÞ; H ¼ ðV ;EÞ for CH Subset

Rejection and let x 2 V, with urðxÞ40 and NH ðxÞ ¼

fx1; . . . ;xkg; kpNmax: Then for each xi 2

fx; x1; . . . ;xkg with urðxiÞ40 we create a child si of s

and label it by ðHi; qiÞ; Hi ¼ ðV \fxig; E\RH ðfxigÞÞ;
qi ¼ q2urðxiÞ:

Proof. Analogous to the proof of (B2), using as instance
(H, q), such that H is a conflict hypergraph instead of a
conflict graph, and using Observation 5 instead of
Observation 4. &

We now show how (B3) can be used to define an fpt-
algorithm for fq;Nmaxg-CH Subset Rejection.

Lemma 7. fq;Nmaxg-CH Subset Rejection can be solved

in time OððNmax þ 1ÞqjV j2Þ:
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Proof. Analogous to the proofs of Lemmas 3 and 5, we
define an fpt-algorithm for fq;Nmaxg-CH Subset Rejec-
tion. The algorithm takes as input an instance ðH ; qÞ and
recursively applies (B3) to a vertex x in H until either a
‘‘yes’’-answer is returned or (B3) cannot be applied
anymore (in which case, by Observation 1, we return the
answer ‘‘no’’). We can find a vertex x to branch on (or
know that none exists), and label a new node in the
search tree, in time OðjV j2Þ (the labeling can no longer
be done in linear time, because a vertex in a hypergraph
may have as many as ððjV j � 1ÞðjV j � 2ÞÞ=2 incident
hyperedges). Since (B3) creates a bounded search tree T

with fanðTÞpNmax þ 1 and depthðTÞpq; we
conclude that sizeðTÞpOððNmax þ 1ÞqÞ: In sum, we can
decide fq;Nmaxg-CH Subset Rejection in time
OððNmax þ 1ÞqjV j2Þ: &

Note that unlike NG(x), NH(x) may be larger than
degH(x), and thus Nmax is not bounded by a function
f ðdmaxÞ in hypergraphs. Since spanH ðeÞp� for all e 2 E;
we do know that, for every x 2 V ; jNH ðxÞjpð��
1ÞdegH ðxÞ; and thus Nmaxpð�� 1Þdmax: This observation
allows us to conclude the following corollary.

Corollary 8. fq; �; dmaxg-CH Subset Rejection can be

solved in time Oððð�� 1Þdmax þ 1ÞqjV j2Þ:

To show that dmax is bounded by some function
g(umax, q), we observe that Lemma 6 for conflict graphs
generalizes directly to Lemma 8 for conflict hyper-
graphs.

Lemma 8. Let ðH; qÞ; with H ¼ ðV ;EÞ; be an instance for

CH Subset Rejection and let umax be the maximum vertex

weight in H. If there exists a vertex x 2 V with

degH ðxÞXqþ umax; then ðH; qÞ is a yes-instance.

Proof. We know for every x 2 V ; urðxÞ ¼ �1 � ðuðxÞ þP
e2RH ðfxgÞ

DðeÞÞX� umax þ degH ðxÞ: Let x 2 V be a
vertex with degH ðxÞXqþ umax: Then urðxÞXq

and thus (H, q) is a yes-instance for CH Subset
Rejection. &

Using Lemma 8 we can refine the algorithm in
Lemma 7: We terminate the search as soon as we
encounter an instance (G, q) with dmaxXqþ umax and
return the answer ‘‘yes.’’ This ensures that fanðTÞpqþ

umax � 1: We conclude the following corollary:

Corollary 9. fq; �; umaxg-CH Subset Choice can be solved

in time Oððð�� 1Þðqþ umax � 1Þ þ 1ÞqjV j2Þ:

Since time Oððð�� 1Þðqþ umax � 1Þ þ 1ÞqjV j2Þ is fpt-
time for fq; �; umaxg-CH Subset Choice, Corollary 9
proves Theorem 7.
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8. Crucial sources of complexity

In this section we reconsider some of the results
obtained in the previous sections, with the aim of
identifying crucial sources of complexity in Subset
Choice for value-structures that are represented by
conflict hypergraphs. We start by reconsidering the
result that fq; �; umaxg-CH Subset Choice 2 FPT (Cor-
ollary 9). Is the parameter set fq; �; umaxg a crucial source
of complexity for CH Subset Choice? Recall from
Section 5.3 that we can conclude that fq; �; umaxg is a
crucial source of complexity for CH Subset Choice if
and only if k-CH Subset ChoiceeFPT for every k �
fq; �; umaxg: In other words, we need to know if
fq; �; umaxg is a minimal parameter set for CH Subset
Choice. What do we know about the parameterized
complexity of k-CH Subset Choice for different k �
fq; �; umaxg? To answer this question, in the following we
first reconsider Theorem 3 and then Theorem 5.
Theorem 3 states that p-UCG Subset Choice is not in

FPT (unless FPT ¼W½1�). We next show how this
theorem implies the fixed-parameter intractability of k-
Hypergraph Subset Choice for the parameter set k ¼
fp; �; umin; umax;Dmin;Dmaxg: Here, p, � and umax are
defined as before (i.e., the positive integer in the input,
the maximum span, and the maximum vertex weight),
and the new parameters umin, Dmin; Dmax are defined as
follows: Let uminX0; DminX1; DmaxX1; be the smallest
integers that for all x 2 V ; 2uminpuðxÞpumax and for
all e 2 E; �DminpDðeÞpDmax:
For UCG Subset Choice, the input hypergraph

is a unit-weighted conflict graph. In other words, in
UCG Subset Choice, the values �; umin, umax, Dmin; Dmax

are all constants; specifically we have � ¼ 2; umin ¼ 0;
umax ¼ 1; Dmin ¼ 1; and Dmax ¼ 1: This means
that we can conclude the following corollary from
Theorem 3.

Corollary 10. fp; �; umin; umax;Dmin;Dmaxg-CH Subset

ChoiceeFPT (unless FPT ¼W½1�).

Proof. The proof is by contraction. Assume
fp; �; umin; umax;Dmin;Dmaxg-CH Subset Choice 2 FPT
and FPTaW½1�: Then there exists an algorithm solving
Subset Choice in time Oðf ðp; �; umin; umax;Dmin;DmaxÞn

aÞ:
In UCG Subset Choice we have � ¼ 2; umin ¼ 0; umax ¼

1; Dmin ¼ 1; and Dmax ¼ 1; and thus we can solve
UCG Subset Choice in time Oðf ðp; �; umin; umax;
Dmin;DmaxÞn

aÞ ¼ Oðf ðp; 2; 0; 1; 1; 1ÞnaÞ ¼ Oðf ðpÞnaÞ: This
means that p-UCG Subset Choice 2 FPT: But
then, from Theorem 3, we can conclude that
FPT ¼W½1�: &

Recall from Section 5.3 that for a problem P and
parameter set k; if k-P 2 FPT then k0-P 2 FPT for all
k0 � k: Thus, Corollary 10 implies that k-Subset
ChoiceeFPT; for all k � fp; �; umin; umax;Dmin;Dmaxg
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(unless FPT ¼W½1�). In other words, we can conclude
from Corollary 10 that k-CH Subset ChoiceeFPT;
for k ¼ f�g; k ¼ fumaxg; and k ¼ f�; umaxg (unless
FPT ¼W½1�).
We now reconsider Theorem 5. This theorem states

that q-VCG Subset Choice is not in FPT (unless
FPT ¼W½1�). Since VCG Subset Choice is a
special case of CH Subset Choice, with � ¼ 2; umin ¼ 0;
Dmin ¼ 1; Dmax ¼ 1; we conclude the following
corollary.

Corollary 11. fq; �; umin;Dmin;Dmaxg-UC Subset

ChoiceeFPT (unless FPT ¼W½1�).

Proof. Analogous to the proof of Corollary 10. &

From Corollary 11, we conclude that k-CH Subset
ChoiceeFPT; for k ¼ fqg; and k ¼ fq; �g (unless
FPT ¼W½1�).
In sum, from the above analyses, we know that k-CH

Subset Choice is not in FPT (unless FPT ¼W½1�) for
five of the six possible k � fq; �; umaxg: The only proper
subset that was not considered is k ¼ fq; umaxg: It
remains an open question whether or not fq; umaxg-CH
Subset Choice is in FPT. Hence, at present time, we do
not know whether fq; �; umaxg or fq; umaxg is a crucial
source of complexity in CH Subset Choice.
Despite the open question posed above, we note that

we did succeed in identifying crucial sources of
complexity for some special cases of CH Subset Choice.
Namely, from Theorem 4 we know that q-ECG Subset
Choice 2 FPT: Since fqg contains only one element it is
minimal, and thus we know that fqg is a crucial source of
complexity for ECG Subset Choice (and thus also for
UCG Subset Choice). Further, from Corollary 5 we
know q-CG Subset ChoiceeFPT (unless FPT ¼W½1�),
from Corollary 10 we know fumaxg-CG Subset
ChoiceeFPT (unless FPT ¼W½1�), and from Theorem
6 we know fq; umaxg-CG Subset Choice 2 FPT: We
conclude that fq; umaxg is a crucial source of complexity
in CG Subset Choice (and thus also for VCG Subset
Choice).
9. Subset choice when subset size matters

Throughout this article we have assumed no restric-
tions on the size of the chosen subset. Clearly, in many
real-world settings size restrictions do apply; e.g., there
may be an exact bound (as when you have exactly k job
positions to fill), an upper-bound (as when you can
afford at most k toppings on your pizza), or a lower-
bound (as when you require at least k members on a
committee). In this section we offer a word of caution:
One cannot assume that the results for subset choice
without size restrictions automatically generalize to
subset choice with size restrictions. To illustrate, we
consider the problem Exact-bound Subset Choice:

Exact-bound Subset Choice

Input: A weighted hypergraph H ¼ ðV ;EÞ;S
2phpjV jV

h; for every x A V a weight uðxÞ 2 Z; for
every e A E a weight DðeÞ 2 Z\f0g: Positive integers p

and k.

Question: Does there exist a subset A � V such that
uðAÞXp and jAj ¼ k?

Recall that USG Subset Choice without size restric-
tions is in P (Theorem 2). In contrast, we have the
following theorem for Exact-bound Subset Choice on
unit-weighted surplus graphs.

Theorem 8. USG Exact-bound Subset Choice is

NP-hard.

To prove Theorem 8 we reduce from the NP-complete
problem Clique (Garey & Johnson, 1979). For a graph
G ¼ ðV ;EÞ and a subset A � V ; we say A is a clique for
G if for every two vertices x; y 2 A; ðx; yÞ 2 E:

Clique (decision version)

Input: A graph G ¼ ðV ;EÞ and a positive integer k.

Question: Does there exist a clique A � V for G with
jAjXk?

For a graph G ¼ ðV ;EÞ and a positive integer k, we
make two observations. First, if A is a clique for G then
any subset A0 � A is also a clique for G. We conclude
Observation 6.

Observation 6. If G and k form a yes-instance for

Clique then there exists A � V such that A is a clique

and jAj ¼ k:

Further, for any set A � V ; with jAj ¼ k; the number
of possible pairs of vertices is given by kðk�1Þ

2
: We

conclude Observation 7.

Observation 7. Let A � V with jAj ¼ k: Then A is a

clique if and only if jEGðAÞj ¼
kðk�1Þ

2 :

Using Observations 6 and 7, we now prove
Theorem 8.

Proof of Theorem 8. Let graph G ¼ ðV ;EÞ and positive
integer k constitute an instance for Clique. From G and
k we build an instance for USG Exact-bound Subset
Choice consisting of Gn; p and k as follows: let Gn ¼

ðVn;EnÞ be a weighted graph such that Vn ¼ V and
En ¼ E: For every x 2 Vn let uðxÞ ¼ �1 and for every
e 2 En let DðeÞ ¼ þ1 (i.e., Gn is a unit-weighted surplus
graph). Further, let p ¼ kðk�1Þ

2
� k: This transformation

can be done in time OðjV j2Þ: It remains to be shown that
G and k form a yes-instance for Clique if and only if Gn;
p and k form a yes-instance for Exact-bound Subset
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Fig. 6. Illustration of the space of possible subset choice models

subsuming Additive Subset Choice (ASC) and subsumed by General-

ized Subset Choice (GCS). Each path from ASC to GSC represents a

chain of models P1;P2; . . . ;Pn; such that ASC � P1 � P2 � � � � �

Pn;� GSC (The relation ‘‘D’’ is depicted in the figure with an arrow

‘‘-’’). Because ASC is computationally feasible, while GSC is

computationally unfeasible, each chain contains a transition from

the feasible to the unfeasible domain. The exact placement of the

boundary between feasible and unfeasible models depends to some

extent on assumptions about the size of problem parameters,

processing speed and degree of parallelism, as explained in Section 1.1.
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Choice. Because Clique is NP-hard even for kX5
(Garey & Johnson, 1979), in the following we can
assume that kX5:
ð)Þ Let G and k form a yes-instance of Clique. Then,

from Observation 6, we know there exists A � V ; such
that A is a clique and jAj ¼ k: Since uðAÞ ¼

P
x2A uðxÞ þP

e2EGn ðAÞ DðeÞ ¼ jEGn ðAÞj � jAj ¼ kðk�1Þ
2
� k ¼ p; we

conclude that Gn; p and k form a yes-instance for
USG Exact Bound Subset Choice. ð(Þ Let Gn; p and k

form a yes-instance for USG Exact Bound Subset
Choice. Then there exists A � V ¼ Vn with jAj ¼ k and
uðAÞ ¼ jEGn ðAÞj � jAjXp ¼ kðk�1Þ

2 � k: But that means
that jEGðAÞj ¼ jEGn ðAÞj ¼ kðk�1Þ

2
and thus, from Obser-

vation 7, we conclude that A is a clique for G of
size k. &

Note that the polynomial-time reduction in the proof
above also happens to be a parametric reduction from k-
Clique to fk; pg-USG Exact Bound Subset Choice, with
p ¼ kðk�1Þ

2
� k: Since k-Clique is known be W[1]-com-

plete (Downey & Fellows, 1999), the reduction estab-
lishes that fk; pg-USG Exact Bound Subset Choice is
W[1]-hard.

Corollary 12. fk; pg-USG Exact Bound Subset

ChoiceeFPT (unless FPT ¼W½1�).

Theorems 2 and 8 illustrate that classical complexity
results do not automatically generalize to subset choice
under subset-size restrictions. The same holds for
parameterized complexity results (compare, for exam-
ple, Theorem 2 to Corollary 12). To know which results
do generalize, and which do not, a case-by-case analysis
will need to be performed.
10. Discussion

In the Introduction we presented two models of
subset choice, Generalized Subset Choice and Additive
Subset Choice. We observed that Additive Subset
Choice fails to be descriptively adequate in situations
where the value of a subset is not equal to the sum of the
values of its elements (Table 1). To model such
situations, models of subset valuation need to incorpo-
rate the possibility of value interdependencies between
choice alternatives (Fishburn, 1992; Fishburn & La-
Valle, 1996). Introducing such value interdependencies,
however, may lead one into the quicksand of computa-
tional intractability. For one, we know that if no
constraints whatsoever are imposed on the amount and
structure of value interdependencies—as is the case for
Generalized Subset Choice—choosing a subset of
maximum value is computationally unfeasible for all
but very small choice sets (viz., then the decision-maker
must search through all 2jV j subsets of jV j choice
alternatives). This does not mean that all interactive
subset choice models are computationally unfeasible,
but it does mean that the set of psychologically plausible
interactive models is strongly constrained by the
requirement of computational feasibility. Fig. 6 illus-
trates this point.
Fig. 6 shows a partition of the space of possible subset

choice models into computationally feasible and un-

feasible models, where a subset choice model is
considered psychologically plausible only if it is feasible.
The model Additive Subset Choice (ASC) is depicted on
the far left in the computationally feasible part of the
space, and the model Generalized Subset Choice (GSC)
is depicted on the far right in the computationally
unfeasible part of the space. The ASC model is
subsumed under GSC as a special case (in short,
ASC � GSC). There are many (possibly intertwining)
chains of models P1;P2; . . . ;Pn; such that ASC � P1 �

P2 � � � � � Pn;� GSC: (The relation ‘‘D’’ is depicted in
Fig. 6 with an arrow ‘‘-’’). Each such chain of models
traces a path from the computationally feasible model
ASC to the computationally unfeasible model GCS.
Somewhere on that path a transition occurs from the
feasible domain to the unfeasible domain—i.e., there are
models Pj and Pjþ1; j ¼ 1; 2; . . . ; n; such that Pj is
feasible but Pjþ1 is not. By tracing many different paths
from ASC to GCS, and by observing where these
transitions take place on a given path, we can gain
insight into the properties of human value-structures
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that are (in)sufficient to render subset choice computa-
tionally feasible. The space of possible models is vast, as
there exist in principle infinitely many different
subset choice models. In this article we investigated
only a small number of subset choice models (Table 3).
Our results nonetheless allow us to map out a significant
part of the space of subset choice models. This is
because computational feasibility of a task t is
automatically inherited by every special case t0 � t;
and conversely, computational unfeasibility of a task t is
automatically inherited by every generalization tn � t

(Section 5.3). In the following we will explain this in
more detail.
10.1. Special types of value-structures

We introduced the h-ary interaction model of subset
choice in Section 2. Unlike the binary model of
Fishburn and LaValle (1996), the h-ary model can
accommodate all possible value interdependencies that
may arise in subset choice. Using Eq. (4) we can always
decompose a set of subset-value pairs into a set of vertex
weights and hyperedge weights. This means that the h-
ary model, in its general form, is computationally
equivalent to Generalized Subset Choice, and conse-
quently as implausible as a descriptive model. There
exists a real possibility, however, that human value-
structures are such that special types of weighted
hypergraphs can model them. We next consider several
conceivable restrictions that may apply to human value-
structures.
10.1.1. Limited sensitivity

Humans are limited in the sensitivity with which they
can detect and represent differences in value (Edwards,
1954). This limitation may express itself in human value-
structures in several different ways. First, a decision-
maker may distinguish only a limited number of value-
levels for choice alternatives, causing the parameters
umin and umax to be relatively small (e.g., in Fig. 1, umin ¼

0; and umax ¼ 9). Second, a decision-maker may
distinguish a limited number of value-levels for interac-
tions, causing the parameters Dmin and Dmax to be
relatively small (e.g., in Fig. 1, Dmin ¼ 7 and Dmax ¼ 5).
Lastly, if the value associated with higher-order inter-
actions is generally small, the decision-maker may fail to
detect (or take into account) the presence of such
interactions, causing the parameter � to be
relatively small (e.g., in Fig. 1, � ¼ 2). Using these
parameters, we can define many different chains of
models P1;P2; . . . ;Pn; such that ASC � P1 � P2 �

� � � � Pn;� GSC: Each model Pj is defined by a
different parameter setting, and for any two models Pi

and Pj ; we have Pi � Pj if and only if the
parameters umin, umax, Dmin; Dmax; and � are set at least
as large for Pj as for Pi: Consider, for example, the
following three models:
(1)
 Pi; where umin ¼ 5; umax ¼ 5; Dmin ¼ 3; Dmax ¼ 2;
and � ¼ 6;
(2)
 Pj ; where umin ¼ 5; umax ¼ 5; Dmin ¼ 1; Dmax ¼ 1;
and � ¼ 2;
(3)
 Pk; where umin ¼ 10; umax ¼ 10; Dmin ¼ 3; Dmax ¼ 2;
and � ¼ 4:
Here Pj � Pi and Pj � Pk: The models Pi and Pk are
not members of a common chain, however, because � is
larger for Pi than for Pk and, at the same time, umin and
umax are larger for Pk than for Pi:
In Section 4 we studied the model UCG Subset

Choice and found that it is NP-hard (Corollary 1). This
means that, without imposing further constraints, the
model Pn with umin ¼ 0; umax ¼ 1; Dmin ¼ 1; Dmax ¼ 0;
and � ¼ 2 is computationally unfeasible for all but small
jV j: By implication, the same conclusion holds for all
models that generalize Pn; including the models Pi; Pj ;
and Pk discussed above. In sum, our analyses show that
limited sensitivity of humans is not sufficient to render
interactive models of subset choice computationally
feasible—not even when we assume that the decision-
maker can distinguish at most two value-levels for
alternatives, at most two value-levels for interactions,
and can detect only second-order interactions.

10.1.2. Conflict versus surplus

We can distinguish between two different types of
interactions, negative interactions (i.e., Dðx; y; . . . ; zÞo0)
and positive interactions (i.e., Dðx; y; . . . ; zÞ40). Nega-
tive interactions may arise, for example, if choice
alternatives share value-supporting properties (e.g.,
when a committee selects a subset of job applicants
with overlapping skills) or when choice alternatives are
in conflict (e.g., when a student selects a subset of
courses with overlapping lecture times). Positive inter-
actions, on the other hand, may arise when choice
alternatives complement each other (e.g., the different
parts of a computer system, see Section 2).
Intuitively, the presence of both positive and negative

interactions seems to complicate subset choice, because
one can never be sure whether adding alternatives will
increase or decrease the total value. Is subset choice
computationally easier in situations where either only
negative or only positive interactions arise? We first
consider the case with only negative interactions. In
Section 4, we studied a particular value-structure in this
domain: The unit-weighted conflict graph. In this value-
structure, all alternatives have the same value, uðxÞ ¼ 1;
and all interactions are binary and have the same value,
Dðx; yÞ ¼ �1: We found that subset choice is of
exponential-time complexity even if the value-structure
is of this special type (unless P ¼ NP; Corollary 1). Since
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unit-weighted conflict graphs only contain negative
interactions, Corollary 1 shows that the absence of
positive interactions, by itself, does not make the task of
selecting a maximum-valued subset computationally
feasible.
To study the complexity of subset choice in the

absence of negative interactions, we considered unit-
weighted surplus graphs. The unit-weighted surplus
graph is in a sense the ‘‘complement’’ of the unit-
weighted conflict graph: all alternatives have the value
uðxÞ ¼ �1 and all interactions are binary and have the
value Dðx; yÞ ¼ 1: Interestingly, we found that if one’s
value-structure is modeled by this type of unit-weighted
surplus graph then determining a maximum-valued
subset is easy (Theorem 2): Starting with all alternatives
and successively removing alternatives with degree 1
from V we obtain a subset A of maximum value. This
tractability result of course generalizes to subset-choice
models that are subsumed by USG Subset Choice, but
not necessarily to more general models. Time-complex-
ity of subset choice for value-structures that generalize
the unit-weighted surplus graph remains an open
problem.

10.2. Maximizing versus satisficing

Up to this point we have been assuming that the
decision-maker chooses a subset of maximum value.
Under this assumption, the h-ary interaction model of
subset choice was shown to be computationally un-
feasible, even when human value-structures are severely
restricted (see Section 10.1 above). It may very well be
that human decision-makers do not (generally) choose
subsets with maximum value, but that they are content
with any subset whose value exceeds some minimum
threshold (cf. Herbert Simon’s notion of ‘‘satisficing’’).
To model this possibility, we assume that a decision-
maker has a preset threshold p, and s/he chooses a
subset A � V ; such that uðAÞXp; if one exists. If no such
subset exists, the decision-maker may adjust his/her
threshold to p0op and try the task again for p0.
Although satisficing may seem easier than maximiz-

ing, the two types of tasks are generally of equivalent
classical complexity—i.e., either both tasks are in P or
both are NP-hard (see also Section 3). The reason is
simple: Let pmax be the maximum value possible for
some subset A � V : If we can determine a subset A0 �

A; such that uðA0ÞXpmax; and we can determine that no
subset B � V with uðBÞXpmax þ 1 exists, then we have
determined a maximum-valued subset, A0. Computing a
maximum-valued subset is thus no harder than comput-
ing a satisfactory subset (or know that none exists) for
thresholds pmax and pmax þ 1: For this argument to
work, however, the aspiration level p must be able to
take values as large as pmax and pmax þ 1: It is possible
that human decision-makers have aspiration levels that
are much smaller than pmax. Is satisficing in those cases
computationally easier than maximizing? We investi-
gated this question by studying the parameterized
complexity of subset choice for parameter p. The
rationale behind this is the following: Determining a p-
valued subset for small p is computationally feasible if
and only if the exponential-time complexity inherent in
subset choice can be confined to the parameter p.
We found that p-Subset Choice is W[1]-hard (Cor-

ollary 2). This means that there does not exist any
procedure for computing p-Subset Choice that runs in
time Oðf ðpÞjijaÞ (unless FPT ¼W½1�). In sum, satisficing
is not any easier than maximizing—at least not when it
comes to Subset Choice. Furthermore, we note that the
W[1]-hardness result was obtained for the special case of
p-UCG Subset Choice (Theorem 3). Hence, for every
model P; such that P � Pn; where Pn with umin ¼ 0;
umax ¼ 1; Dmin ¼ 1; Dmax ¼ 0; and � ¼ 2; we know that
p-P is W[1]-hard. This shows that desiring a p-valued
subset, is not sufficient to render interactive models of
subset choice computationally feasible even for small
p—not even in the simplest of cases where we assume
that the decision-maker can distinguish at most two

value-levels for alternatives, at most two value-levels for
interactions, and can detect only second-order interac-
tions (cf. Section 10.1.1).

10.3. Choice versus rejection

In Section 10.2 we said that satisficing is not easier
than maximizing. To be precise we should have said that
satisficing is not easier than maximizing if the decision-
maker satisfices relative to the empty set. Because this is
often the most natural way to satisfice one may easily
overlook the alternative—i.e., to satisfice relative to the

entire choice set V. The latter form of satisficing is more
natural in situations where the decision maker already
owns all of the alternatives in V and s/he is to remove
some alternatives from V so as to improve the value of
the remainder (e.g., when one is presented with a fully
loaded pizza and one can choose to remove some of its
toppings; see Levin, Schreiber, Lauriola, & Gaeth,
2002). To model this situation, we assume that a
decision-maker has a preset threshold q, and s/he
chooses a subset A � V ; such that uðAÞ � uðV ÞXq; if
one exists. If no such subset exists, the decision-maker
may adjust his/her threshold to q0oq and try the task
again for q0. In this case, the status quo is u(V) instead of
uð+Þ ¼ 0: Is satisficing relative to u(V) computationally
equivalent to satisficing relative to uð+Þ ¼ 0? Not
necessarily. The reason is that p and q are more or less
independent thresholds. For example, it is possible that
pmax is small while qmax is large, and vice versa, all
depending on u(V).
We analyzed the parameterized complexity of q-

Subset Choice and found that, unlike p-UCG Subset
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Choice, q-UCG Subset Choice is in FPT (Theorem 4).
This result shows that there exist value-structures for
which determining a p-valued subset of V for small p is
computationally unfeasible, while at the same time
determining a q-valued subset of V for small q is
feasible. These special value structures include unit-
weighted conflict graphs (compare Corollary 2 to
Theorem 4) and edge-weighted conflict graphs (compare
Corollary 2 to Corollary 4), but not vertex-weighted
conflict graphs or any of their generalizations (Theorem
5). If we introduce the possibility of limited sensitivity
on the part of the decision-maker as in Section 10.1.1—
i.e., relatively small umin, umax, Dmin; Dmax; and �—the
feasibility of choosing p-valued and q-valued subset
diverges even further (Theorems 6 and 7).
Of course, our results do not show that p-Subset

Choice is always harder than q-Subset Choice (compare,
for example, Corollaries 10 and 11). There may very well
exist value-structures for which the latter is harder than
the former. All we have shown that this is not the case
for value-structure that generalize the unit-weighted
conflict graph (i.e., all models in Table 3 except USG
Subset Choice). The reason that finding a q-valued
subset is feasible for humans with limited sensitivity and
conflict-graph value structures is that the decision-
maker need only consider rejecting an alternative, x 2

V ; if it contributes negative value to the whole set, i.e.,
uðV \xÞÞ4uðV Þ: Because every removal of such an
alternative will lead to an increase in total value, after
at most q removals the value has improved by at least
the amount q (see, for example, the proof of Theorem 7
and refer to Fig. 5 for an illustration).

10.4. Choosing subsets of fixed size

Lastly we considered the influence of subset size
restrictions of the feasibility of subset choice. Specifi-
cally we studied the complexity of determining a
maximum-valued subset A containing exactly k ele-
ments. At first sight the constraint, k, may seem to
facilitate subset choice by constraining the space of
possible choices. This intuition is incorrect, however, as
it conflates size of the search space with the difficulty of
finding a solution. To illustrate, consider again subset
choice on unit-weighted surplus graphs. We showed that
this task is easily solvable by simply successively
removing all alternatives of degree 1 from V (Lemma
2). The resulting subset A has guaranteed maximum
value. But what happens if we introduce the constraint
that jAj should be exactly k? The described polynomial-
time algorithm for USG Subset Choice does not
guarantee that jAj ¼ k; and hence, does not automati-
cally solve USG Exact Bound Subset Choice. Does there
exist a different polynomial-time algorithm solving USG
Exact Bound Subset Choice? Theorem 8 proves that
there does not (unless P ¼ NP). Furthermore, this
unfeasibility result even applies if the decision-maker
would be satisfied with a p-valued subset of size k for
small p and/or k (Corollary 12).

10.5. Algorithms versus heuristics

Before closing, we would like to take this opportunity
to briefly comment on a common reply to computa-
tional intractability results: That humans would use
‘‘heuristics’’ instead of algorithms to make decisions
(Thagard & Verbeurgt, 1998; Martignon & Hoffrage,
2002; Martignon & Schmitt, 1999). In responding to this
concern, we wish to clarify what we believe to be a
confusion of different levels of explanation (see also
Frixione, 2001; van Rooij, 2003). All models considered
in this paper are situated at Marr’s computational level—
i.e., they specify a function that aims at describing the
input–output mapping realized by the decision process.
These models do not, in themselves, provide any
description of the decision process. In fact the models
make no claims about the decision process other than
that it is a process that somehow realizes the described
function. A description of the process would be situated
at Marr’s algorithmic level. At this level one would
describe the effective procedure by which inputs are
transformed into outputs. A heuristic explanation at this
latter level violates the required fit between an algo-
rithmic level theory and its computational level counter-
part, as we elaborate next.
Let us define terms. First, let P : I ! O be a function

that aims at describing the input–output mapping
realized by a human decision process. An algorithm M

for P is a procedure that, when given any i 2 I as input,
produces M(i) as output, such that MðiÞ ¼ PðiÞ; for all i.
A heuristic H for P is a procedure that when given any
i 2 I as input, produces H(i) as output, where sometimes

HðiÞ ¼ PðiÞ: Now two possibilities arise: Either (1)
HðiÞ ¼ PðiÞ for all i 2 I ; or (2) there exists some i 2 I

such that HðiÞaPðiÞ: If (1) is the case, then H is in fact
an algorithm for P; and hypothesizing H as an
algorithmic level description is perfectly consistent with
hypothesizing function P as a computational level
description. If, on the other hand, case (2) is true, then
P and H are theoretically inconsistent. To appreciate
this point it is important to keep in mind that P is
regarded as a descriptive model: If H is believed to be
descriptive of the decision process thenP cannot be, and
vice versa. Of course, if one believes that H is descriptive
of the decision process, one may choose to reject P and
hypothesize a new input–output model P0 such that
P0ðiÞ ¼ HðiÞ for all i 2 I (provided, of course, that the
available empirical data permit such a revision). This is
easily done by simply defining P0ðiÞ ¼ HðiÞ: Once this
theory revision is made, however, H has become an
algorithm for the new computational level descriptionP0

after all.
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There are examples in the literature of algorithmic
level descriptions that consist of non-algorithmic proce-
dures (see e.g. Thagard’s (2000) work on coherence
reasoning). We think that such a loose fit between
computational level and algorithmic level theories is a
poor choice for cognitive psychologists. Even when
exact correspondences are required, cognitive psychol-
ogy has to deal with identifiability problems (Anderson,
1978), because any given function can be computed by
many different algorithms. Allowing algorithmic level
description to be inconsistent with computational level
description can only make matters worse.

10.6. Conclusion

We have reviewed and discussed our main results
from several different psychological perspectives: limited
sensitivity, conflict versus surplus, maximizing versus
satisficing, choice versus rejection, restricted subset size
versus no size restriction. This has allowed us to map
out part of the space of subset choice models depicted in
Fig. 6. We would like to emphasize that the implications
of our results far exceed what we can explicate in a single
paper. We encourage researchers interested in subset
choice to compare their own models with the ones
considered here. If they find that their model is
subsumed by one of our models then they can adopt
the relevant feasibility results reported herein; conver-
sely, if they find that their model subsumes one of our
models then they can adopt the relevant unfeasibility
results.
The more general aim of this paper was to demon-

strate parameterized complexity analysis and how it
naturally extends classical complexity theory in allowing
more fine-grained investigation into the sources of
complexity in a given task. As will be evident by now,
the techniques of parameterized complexity allow us
answer questions such as ‘‘Is subset choice facilitated by
limited sensitivity for value differences?’’ and ‘‘Is
choosing a satisfactory valued subset computationally
easier than choosing a maximum valued subset?’’ It is
our hope that the results reported in this paper motivate
other researchers to adopt the same techniques for
studying other choice models of interest.
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