
Evolving Fixed-parameter Tractable Algorithms

Stefan A. van der Meer a Iris van Rooij a,b Ida Sprinkhuizen-Kuyper a,b

a Radboud University Nijmegen, Department of Artificial Intelligence
b Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour

Abstract
One effective means of computing NP-hard problems is provided by fixed-parameter tractable (fpt-) al-
gorithms. An fpt-algorithm is an algorithm whose running time is polynomial in the input size and su-
perpolynomial only as a function of an input parameter. Provided that the parameter is small enough, an
fpt-algorithm runs fast even for large inputs. In this paper, we report on an investigation of the evolvability
of fpt-algorithms via Genetic Programming (GP). The problem used in this investigation is the NP-hard
2D-Euclidean Traveling Salesman Problem (TSP), which is known to be fpt if the number of points not on
the convex hull is taken as the parameter. The algorithm evolved in our GP study turns out to have clear
characteristics of an fpt-algorithm. The results suggest GP can be utilized for generating fpt-algorithms
for NP-hard problems in general, as well as for discovering input parameters that could be used to develop
fpt-algorithms.

1 Introduction
Many computational problems, including those figuring in computational cognitive theories, are NP-hard.
Traditionally, such NP-hard problems are considered intractable for all but small input sizes [3]. This has led
applied computer scientists to focus attention on developing inexact (heuristic) methods for approaching NP-
hard problems, and cognitive scientists to reject NP-hard problems as psychologically implausible models
of human cognition [14]. However, it is known that certain NP-hard functions can be computable in a time
that is polynomial for the overall input size and superpolynomial for only a small aspect of the input, called
the parameter. Problems for which this holds are called fixed-parameter tractable and are said to belong to
the complexity class FPT [2]. As long as the parameter is small enough for those instances of interest, an
NP-hard problem in FPT can be considered efficiently solvable.

How do we know if a given problem is in FPT for some parameter k? One way of finding out is
by designing an algorithm that solves the problem and establish that its running time can be expressed as
a polynomial function of the input size, n, and a superpolynomial function of k (i.e., time O(nαf(k)),
where α is some constant and f(.) is a function depending only on k). Designing such an algorithm can
be technically quite challenging, however, especially if the relevant parameter is yet to be discovered. It
is for this reason that we investigate here the utility of genetic programming (GP) as a general method for
developing or discovering fpt-algorithms for NP-hard problems.

Genetic programming (GP) is an evolutionary computation technique used to evolve computer programs
[6, 13]. Populations of programs are evaluated and the fittest individuals are ‘bred’ to form new populations.
Breeding is performed by applying genetic operations such as crossover, which creates new programs by
recombining random parts of two selected programs, and mutation, where a random part of a program is
randomly altered to form a new program. We used GP to evolve an algorithm that solves instances of the
2-dimensional Euclidean Traveling Salesman problem (TSP): given a set of points (‘cities’) in the plane, find
the shortest tour visiting all points and returning to its starting point. This problem is known to be NP-hard
and in FPT if the number of inner points is taken as a parameter [1]. The inner points of a TSP instance are
the points that are in the interior of the convex hull. GP has often been applied to finding heuristic algorithms
for TSP (see for example [12]), but to our knowledge no attempts to use GP to find fpt-algorithms exist to
this date.

The aim of this research is to test whether or not an fpt-algorithm for TSP can be evolved using GP.
Also of interest is whether GP can be used to discover potentially interesting input parameters for use in

developing new fpt-algorithms for NP-hard problems in general. The rest of this paper is organized as
follows. Section 2 describes our method, Section 3 provides our results and Section 4 concludes.

2 Method
In GP, when evaluating an evolved program, called an individual, it is executed within a context of predefined
supporting code, referred to as the environment. As this environment does not evolve, its functionality
remains constant over all evaluations. The environment combined with the individual forms the algorithm.
The primitive set is the set of functions, variables and constants available to the GP process for generating
programs. As tree-based GP [13] was used, functions are referred to as function nodes (forming internal
nodes in a program’s tree), while variables and constants are terminal nodes (forming the leaves). Lastly,
where the primitive set and environment define the search space, it is the fitness function that defines the
goal of the search process [13], with individuals assigned a higher fitness value having a higher chance of
being selected for breeding.

2.1 The environment
For the environment a structure was chosen similar to the one used in [12]. In this environment, a tour is
built step by step, with the evolved individual forming a function that determines for each step what the
next city in the tour should be. Algorithm 1 contains a pseudocode version of the environment. For each
TSP instance used to evaluate a given individual, the environment loops through all cities in the problem
instance that have not yet been ‘visited’ (i.e., that are not yet part of the tour). For each city, the evolved
function calculates a score. When all unvisited cities have been scored, the city with the lowest score is
selected. This city is added to the tour, and is therefore considered ‘visited’. This process repeats itself until
the tour includes all cities in the problem instance. In effect the algorithm ‘travels’ from city to city until it
has visited them all and the tour is complete. If at each step the evolved function has given the best score to
the correct city, the algorithm has found an optimal tour. In case of a Nearest Neighbor heuristic, it would
score each city according to its distance from the ‘current’ city (i.e., the distance from the city last added to
the tour to the city being evaluated), which will not yield an optimal tour for many problem instances.

Algorithm 1 The environment represented in pseudocode.
city-start = random city
city-current = city-start
while not visited all cities do

selected = None
bestscore =∞
for all unvisited cities do

city-eval = next unvisited city to evaluate
score = result of evolved function
if score < bestscore then

bestscore = score
selected = city-eval

end if
end for
add selected city to tour
city-current = selected

end while
return length of tour

This structure was chosen because it constrains the evolved function to the specific task of solving TSP. The
structure allows for a wide range of solvers, from purely heuristic (e.g., Nearest Neighbor) variations, to
optimal exhaustive searchers. Which exact algorithms can be constructed is constrained by the primitive set.

Name distance

Return type Number
Child nodes 2 of type city
Description Returns the distance between the two given cities.
Name if-on-convex

Return type Number
Child nodes 1 of type city, 2 of type number
Description If the given city is on the convex hull, returns the result of evaluating the first numeric

child node. Else it returns the result of the second.
Name for-loop-X

Return type Number
Child nodes 1 of type number
Description Loops through unvisited cities, evaluating the child node for each one and adding up the

result to a running total. This total is returned. X is a number referring to the associated
variable-node, see Table 2.

Table 1: Function set, domain-specific functions

2.2 The primitive set
Tree-based GP was used, so an evolved algorithm forms a tree structure consisting of any valid combination
of function nodes and terminal nodes. Strong typing was used to enforce type requirements of certain nodes
[11]. At its root, the tree returns a real number: the calculated score. All function nodes and many terminal
nodes return this type, meaning they can form the root of the tree, allowing for a wide variety of possible
programs.

The basic concept behind the primitive set was also inspired by the research of [12], in that the primary
tool for scoring a city to be used in the evolved function was distance. However, unlike their research, in our
experiment we required the primitive set to be sufficient for specific types of algorithms other than heuristics
such as Nearest Neighbor. The first type is exhaustive algorithms, the second is fpt-algorithms.

2.2.1 Iteration and recursion

Some form of iteration or recursion is needed in order for an evolved program to implement something more
complex than a heuristic of a complexity that is linear to the size of its tree. Therefore, both iteration and
recursion were implemented and added to the primitive set.

Traditional implementations of iteration in GP [8, 9] do not allow for nested loops, nor do they allow for
a loop counter or element reference to be used by other nodes in the tree when iterating over a vector. In this
research, complex nested loop structures are of interest, as they allow for more advanced calculations, and
more emergent computational complexity. Therefore, a simplified version of the iteration implementation
described in [4, 5] was used. A for-loop node was implemented which iterates over all unvisited cities
when called. On each iteration, it sets a variable to reference the current unvisited city in the iteration, and
evaluates its child node. The result is added to a running total, which is returned at the end of the loop. The
variable can be accessed through a special terminal node that can only be generated inside the subtree of a
given for-loop node, as it will be linked to that specific loop node and only has a value inside its ‘scope’.

Recursion was implemented in the form of a terminal node. When this node is called while calculating
the score for the city under evaluation, it adds the evaluated city to the tour and recursively calls the function
holding the algorithm. By doing this, it causes the calculation of the rest of the tour as the algorithm would
find it, if the given city were to be added to the tour. The length of this tour is returned, and the node returns
this in turn as its result, after removing the evaluated city from the tour.

2.2.2 Primitive set contents

With the evolved program calculating a score using real numbers, it seemed useful to include basic math-
ematical operations for calculating and combining results from other nodes. The function set contained
function nodes for addition, subtraction, multiplication and division, and for min and max operations. All
these nodes require two children returning numbers, and return a single number themselves after perform-
ing their mathematical operation on the results of the child nodes. Besides these basic operations, certain

Name city-current

Type City
Description The current city, i.e., the city last added to the tour.
Name city-eval

Type City
Description The city currently being evaluated, i.e., the city that is being scored.
Name city-start

Type City
Description The starting city of the tour (static).
Name var-X

Type City
Description Associated with a for-loop node further up the tree (identifiable by identical X , see Ta-

ble 1). Refers to the city that the loop has assigned to the variable before evaluating the
subtree this node is in.

Name recursion

Type Number
Description Returns the distance of the tour that the algorithm would travel if the city that is being

evaluated were selected and traveled to by the algorithm.

Table 2: Terminal set

domain-specific functions were necessary, listed in Table 1. The distance node is used to find the dis-
tance between two cities. As arguments for this function, several terminal nodes exist that return a given
city, listed in Table 2. The relevant nodes for iteration and recursion are also included, and are as defined
earlier. Lastly, a node was added that represents the knowledge of the convex hull of a given TSP instance.
This if-on-convex node checks if a given city is on the convex hull. If so, then it evaluates the first of
its subtrees; if not, then it evaluates the other. Therefore, an evolved program using this node can alter its
method of calculating a score (and its result) depending on whether the evaluated city is on the convex hull
or not.

2.3 Fitness function
Traditionally, GP experiments use a single value to determine the fitness, such as the difference between the
length of a shortest tour (i.e., the optimal solution for TSP) and the length of the tour that was found by an
individual. In this experiment, however, there are two relevant values: speed and accuracy.

Speed was measured using the number of tree nodes evaluated in creating an individual’s tour, where a
lower number of evaluations is faster and therefore better (on this measure). Individuals with many loops
or with a recursion would evaluate a larger number of nodes, and score worse than a Nearest Neighbor-like
individual. Equation 1 shows how the speed measure was calculated, where the number of instances refers
to the instances used in evaluating the individual.

fitnessspeed =
number of instances

nodes evaluated
(1)

Accuracy was measured as the difference between the length of an optimal solution to the TSP instance
the individual just solved, and the length of the tour the individual found. Equation 2 shows the exact
calculation.

fitnessaccuracy =
1

1 + tour length error
(2)

Note that Equations 1 and 2 are chosen such that fitnessspeed is decreasing in the number of evaluated
nodes, and fitnessaccuracy is decreasing in the length of the produced tour.

In exploratory runs it became clear that, if both fitnessspeed and fitnessaccuracy independently con-
tributed to overall fitness, then the Nearest Neighbor (NN) individuals and exhaustive search individuals,
consisting of only three and one nodes respectively, would always be selected for breeding. Apparently their
good speed and good accuracy respectively would always ‘beat’ more complex individuals that were in their
initial stages of development. This made it practically impossible for more complex individuals to exist for

longer than a single generation, and therefore difficult for such individuals to evolve into more ‘fit’ variants.
To prevent the search process from fixating on the two extremes of exhaustive versus NN search, lower
limits were set on both speed and accuracy. These limits would start at a high level in the beginning of the
run, but would become lower with each generation until (i) the accuracy limit would make Nearest Neighbor
search unfeasible and (ii) the speed limit would make exhaustive search unfeasible. It was our expectation
that the introduction of such strict lower limits would enable the evolution process to go beyond the fastest
heuristic approach and the intractable exact approach, and explore instead accurate yet tractable algorithms
such as fpt-algorithms. The fitness functions with the additional lower limits are given in Equation 3.

nodes evaluated > maximum nodes ∨
tour length error > maximum error ⇒
fitnessspeed = fitnessaccuracy = 0

otherwise⇒ fitnessspeed =
number of instances

nodes evaluated
∧ fitnessaccuracy =

1
1 + tour length error

(3)

In comparing two individuals, it is very likely that neither of them may be better in both speed and accuracy,
particularly in the earlier generations of a run, and especially considering the existence of the extreme indi-
viduals mentioned earlier. A simple criterion was introduced to counteract this effect: Whenever individuals
were compared during selection, if neither was better on both speed and accuracy, there would be a chance
they were then compared on either speed or accuracy to find a winner. This probability was set to start at a
high level, and decreased as the process advanced in generations.

2.4 Experiment details
The GP experiment was implemented using the evolutionary computation for Java toolkit, ECJ [10]. Many
GP parameters were left at the defaults used by Koza [7], such as those involving the building of initial trees
in the population. Experiment-specific parameters and their values are listed in Table 3.

Parameter Value
Generations 50
Population size 128
Crossover rate1 0.80
Mutation rate1 0.10
Reproduction rate1 0.10
TSP instance size 7
TSP instances per evaluation 50
Total pool of random instances 500

1The crossover, mutation and reproduction rates determine the probability of said genetic operation being used in breeding a new
individual. See [7, 13] for details on these operations.

Table 3: GP experiment parameters

The TSP instances used in the experiment each consisted of 7 points. This number was kept deliberately
low to ensure that evaluation progressed at a reasonable rate. Larger instances meant that individuals using
(exhaustive) recursion would spend a large amount of time per instance, making the evaluation of a large
number of individuals take an impractical amount of time. Population size was limited to 128 for the same
reason. The instances were generated beforehand, as a set of 7 random coordinates in an area of 500 by
500 points. Every possible number of inner points (0 to 4, as a minimum of 3 points form the convex hull)
was equally represented in the pool of instances. This was achieved by randomly generating point sets and
disregarding instances that did not match the required number of inner points. For each generated instance
both the optimal solution and the points on the convex hull were calculated. Each individual was evaluated
on 50 TSP instances randomly selected from a pool of 500 available instances.

3 Results

3.1 Best evolved individual
In the GP experiment, one type of individual was consistently selected as the best individual of a run. The
individual’s code is shown in Program 1. This individual would generally develop fairly early in the run,
between generations 10 and 25 (of 50), and due to its relatively high fitness it would immediately form
the best individual of the generation and remain so until the end of the run. The early development is
not surprising given the structure of the individual. It is a small tree consisting of only a few nodes, and
substantial parts of the tree are formed by nodes that make up two common individuals in the population.
The subtree (distance city-current city-eval) is equal to the tree of a Nearest Neighbor (NN)
individual, shown in Program 2. Similarly, the (recursion) node would on its own form the entirety of
an exhaustive search individual, shown in Program 3.

Program 1 The program of the best evolved individual.

(if-on-convex city-current
(distance city-current city-eval)
(recursion))

Program 2 The program of the common Nearest Neighbor individual.

(distance city-current city-eval)

Program 3 The program of the common exhaustive search individual.

(recursion)

The behavior of the best evolved individual (Program 1) is straightforward: If the current city is part of the
convex hull, it travels to the nearest neighboring city. Otherwise, it recursively builds possible extensions
of the tour resulting from travelling to any of the unvisited cities. This recursive process repeats until the
program encounters again a point on the convex hull, in which case it will extend each of the partial tours
constructed so far by traveling to the nearest unvisited neighbor. From all tours constructed in the process,
the program determines which is the shortest, and travels to the unvisited city that has that tour as a result.
Note that if the instance the algorithm is solving happens to have few inner points, say only 1, it will do
much less recursion than an exhaustive solver. At the same time, it will give more accurate results than NN
when solving more complex instances with multiple inner points, as the ‘look ahead’ in the recursion allows
it to avoid certain bad choices that NN would make. If tours with such bad choices occur after a recursion
has been entered, they will most likely be discarded due to their higher length.

3.2 Fpt-characteristics
Is the best evolved individual an fpt-algorithm for TSP? To address this question, we first consider the
algorithm’s time behavior: The worst-case2 time-complexity of the best individual is O(k! (n − k)2) =
O(k! n2), where n is the total number of points and k is the number of inner points. For instances with zero
inner points, the program behaves as an NN individual (with time-complexity O(n2)), and for instances
with a very large number of inner points, performance is nearer an exhaustive search (with time-complexity
O(n!)). We also investigated the algorithm’s average-case time-complexity by running the algorithm on the
500 random instances in the pool. The results, depicted in Figure 1a, show that the average time required
for Program 1 to find a tour grows speedily with the number of inner points, with its running time being
close to that of the NN heuristic for few inner points and growing closer to the exhaustive algorithm as the
number of inner points increase. In sum, the evolved program indeed exploits the number of inner points for

2Due to the nature of both the environment and the evolved program itself, an individual’s time-complexity depends on the point
selected as starting point (which is a random selection). If this point is an inner point, for example, more recursion will be performed
than if that city is not visited until later on in the computation.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 1 2 3 4

N
od

es
 e

va
lu

at
ed

Inner points

Evolved
NN

Exh.

(a) Average number of nodes evaluated

 0

 20

 40

 60

 80

 100

 120

 0 1 2 3 4

T
ou

r
le

ng
th

 e
rr

or

Inner points

(b) Average tour length error

Figure 1: Speed (a) and accuracy (b) as a function of number of inner points, for the evolved program, NN,
and exhaustive search, averaged over all 500 random instances and all possible starting cities.

the efficient computation of instances for which that parameter is small, and the running-time behavior is as
one expects of an fpt-algorithm (i.e., the running time can be expressed as a polynomial function of input
size, n, and a superpolynomial function of only the parameter k).

As it turns out, the best evolved individual does not meet the second criterion for being an fpt-algorithm,
viz., exactness. Due to its reliance on NN to select the optimal tour when travelling over the convex hull,
it inherits some of NN’s flaws. Figure 2 shows an example of a trivial instance (i.e., one without any inner
points) where, for a certain starting point, NN fails to find an optimal tour. Such instances are not rare: For
only 4 of the 100 generated instances with no inner points, NN is able to find an optimal tour regardless of the
starting point, with on average 3.32 out of 7 starting points per instance resulting in a less than optimal tour.
Be that as it may, the performance of the best evolved individual is much better than NN for all instances
with at least one inner point (see Figure 1b). Hence, even if the best evolved individual is not an exact
algorithm for TSP, it clearly outperforms a polynomial-time heuristic, like NN.

(a) Optimal tour (convex hull) (b) NN tour

Figure 2: Example instance with no inner points where NN does not find an optimal tour when starting from
a certain city (starting city shown in black).

4 Conclusion
The program evolved in our GP experiment shows clear characteristics of an fpt-algorithm, even though
strictly speaking it is not: The program does not solve all TSP instances optimally, though it is much more
accurate than its polynomial-time competitor, the NN heuristic. Also, the program is characterized by an
fpt running time of O(k! n2). This result is promising with regards to the utility of GP for developing fpt-
algorithms for NP-hard problems in general and discovering relevant parameters that can be used in such
algorithms. We think that the fact that the best individual in our experiment was not an exact algorithm for
TSP does not detract from this point, because an evolved fpt-heuristic can give a clear suggestion as to the
direction in which an fpt-algorithm can be sought. After all, TSP is known to be in FPT if the parameter
is the number of inner points [1], and the fpt-heuristic evolved in our experiment used this same parameter
to bound its superpolynomial running time. Besides the important step of discovering the parameter, it is
conceivable that fpt-like inexact individuals themselves can be transformed into fpt-algorithms; and even if
they cannot, an evolved (inexact) fpt-heuristic may still strike a better balance between speed and accuracy
for instances of practical interest, than do available polynomial-time heuristics.

References
[1] V.G. Deineko, M. Hoffman, Y. Okamoto, and G.J. Woeginger. The traveling salesman problem with

few inner points. In K.-Y. Chwa and J.O. Munro, editors, Computing and Combinatorics: 10th An-
nual International Conference, COCOON 2004, volume 3106 of LNCS, pages 268–277, Berlin, 2004.
Springer-Verlag.

[2] M.R. Fellows and R.G. Downey. Parameterized complexity after (almost) 10 years: review and open
questions. In C.S. Calude et al., editors, Proceedings of Combinatorics, Computation and Logic,
DMTCS’99 and CATS’99, volume 21 of Australian Computer Science Communications, pages 1–33,
Singapore, 1999. Springer-Verlag.

[3] M.R. Garey and D.S. Johnson. Computers and intractability: a guide to the theory of NP-completeness.
W.H. Freeman, New York, NY, 1979.

[4] E. Kirshenbaum. Genetic programming with statically scoped local variables. In D. Whitley et al.,
editors, GECCO 2000: Proceedings of the Genetic and Evolutionary Computation Conference, July
10-12, 2000, Las Vegas, Nevada, pages 459–468, San Francisco, CA, 2000. Morgan Kaufman.

[5] E. Kirshenbaum. Iteration over vectors in genetic programming. Technical Report HPL-2001-327, HP
Laboratories Palo Alto, 2001.

[6] J.R. Koza. Genetic Programming: a paradigm for genetically breeding populations of computer pro-
grams to solve problems. Technical Report CS-TR-90-1314, Stanford University, Stanford, CA, 1990.

[7] J.R. Koza. Genetic Programming II: automatic discovery of reusable programs. MIT Press, Cam-
bridge, MA, 1994.

[8] J.R. Koza and D. Andre. Evolution of iteration in genetic programming. In L.J. Fogel, P.J. Angeline,
and T. Baeck, editors, Evolutionary Programming V: proceedings of the fifth annual conference on
evolutionary programming, Cambridge, MA, 1996. MIT Press.

[9] J.R. Koza, D. Andre, F.H. Bennett III, and M. Keane. Genetic Programming 3: Darwinian invention
and problem solving. Morgan Kaufman, 1999.

[10] S. Luke et al. ECJ 17 - A Java-based evolutionary computation system, 2008. Retrieved from
http://www.cs.gmu.edu/ eclab/projects/ecj/.

[11] D.J. Montana. Strongly typed genetic programming. Evolutionary Computation, 3(2):199–230, 1995.

[12] M. Oltean and D. Dumitrescu. Evolving TSP heuristics using multi expression programming. In
M. Bubak et al., editors, Computational Science - ICCS 2004: 4th International Conference, Proceed-
ings, Part II, volume 3037 of LNCS, pages 670–673, Berlin, 2004. Springer-Verlag.

[13] R. Poli, W.B. Langdon, N.F. McPhee, and J.R. Koza. Genetic Programming: an introductory tuto-
rial and a survey of techniques and applications. Technical Report CES-475, University of Essex,
Computing and Electronic Systems, United Kingdom, 2007.

[14] I. van Rooij. The tractable cognition thesis. Cognitive Science, 32:939–984, 2008.

