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In this supplementary material we provide proofs of the complexity-theoretic results we claim in the
main paper. First we provide an overview of the concepts and definitions from Bayesian modeling
(Section 1) and complexity theory (Section 2). Secondly we introduce a general form of the original
Bayesian Inverse Planning model (Section 3). And finally we verify the statements we made in our
text about the complexity of the models (Section 4).

1 Preliminaries from Bayesian modeling

For readers unfamiliar with basic notations from Bayesian modeling we review some of the basics
relevant for our purpose. For details we refer the reader to the sources in the text.

A Bayesian network (BN) (Pearl, 1988; Ghahramani, 1998; Jensen & Nielsen, 2007) is a tuple
denoted by B = (G, I"), where G is a directed acyclic graph G = (V, A) that models the stochastic
variables and their dependencies and I' = {Px|X € V} is the set of conditional probability distri-
butions P (X | y) for each joint value assignment y to the parents of X € G. For clarity a BN is
usualy depicted by a graph, where directed edges (X,Y) € A represent dependencies P (Y | X).

Let W be a set of variables. In a BN a joint value assignment w for W is an adjustment to the prior
probabilities for each variable V; € V and each associated value w; € w such that P(W; = w;) =1
and P(W; # w;) = 0. When a joint value assignment is observed or known, it is often called
evidence e for a particular set of variables E C V.

A joint probability distribution for a set of variables W defines all the probabilities of all combinations
of values for the variables in W. Formally let £ denote a Boolean algebra of propositions spanned
by V. The function P : £ — [0, 1] is a joint probability distribution on V if the following conditions
hold:

e 0 < P(a) <1, forall acf;

e P(TRUE) = 1;

o P(FALSE) = 0;

o foralla,be ¢, ifanb= FALSE then P(aVb) = P(a) + P(b).
Dynamic BNs (dBN) (Ghahramani, 1998) are BNs that represent sequences of variables (called a
slice), often related to time. Each slice is a BN B; = (G,I') with an index ¢ € N. Let I C V be the

set of input variables and O C 'V be the set of output variables such that V, y[I; = Iy A Oy = Oy]
and Yy ier3oeo [P (it+1 | 0of) € T

A common problem in Bayesian modeling is finding the MosT PROBABLE EXPLANATION (MPE)
for certain variables, denoted as the evidence set, given certain evidence. In fact, inverse Bayesian
planning is a special case of MPE.



MosT PROBABLE EXPLANATION

Input: A probabilistic network B = (G, I"), where V is partitioned into a set of evidence
nodes E with a joint value assignment e and an explanation set M, such that EUM = V.
Output: What is the most probable joint value assignment m to the nodes in M given
evidence e?

The tree-decomposition (Robertson & Seymour, 1986) of any graph G = (V,E) is a pair < T, X’ >,
where T' = (I, F) is a tree and X = {X|i € I} is a family of subsets (called bags) of V, one for
each node of T, such that:

e Uier Xi=V,
e for every edge (V, W) € E there exists an i € I with V € X; and W € X,

e for every 4,7,k € I: if j is on the path from i to k in T', then X; N Xy C Xj.

Treewidth (Robertson & Seymour, 1986) of a BN B is defined as the minimum width over all tree-
decompositions of the moralized graph of B. The width of a tree-decomposition ((I, F'), {Xj|i € I})

is max |X;| — 1.
el

2 Preliminaries from Complexity theory

We also assume the reader is familiar with basic notations from complexity theory (Garey & Johnson,
1979) but review some basics of parameterized complexity theory (Downey, Fellows, & Langston,
2008) relevant for our purpose. For details we refer the reader to textbooks by Garey and Johnson
and Downey et al..

Let P : I — O be a problem with input parameters ki,ko,...,k,. Then P is fized-parameter
tractable for parameter set K = {ki, ka, ..., kn} if there exists at least one algorithm that computes
P for any input of size n in time O(f(k1, k2, . .., km)n®), where f is an arbitrary computable function
and c is a constant. If no such algorithm exists then P is said to be fized-parameter (fp-) intractable
for K.

Further more let P and () be problems where @ is a special case of P. Then if P is fp-tractable, @
is also fp-tractable.

If a problem P is fp-intractable for a parameter set K, than P is fp-intractable for any subset
K' CK.

3 Preliminaries from Inverse Bayesian Planning

Finally we assume the reader is familiar with the inverse Baysian planning (BIP) theory by Baker,
Saxe, and Tenenbaum (2009). However we introduce a general framework of the theory and we
define other special-cases based on this framework.



A BIP-Bayesian network (BIPBN) is a BN framework that we can use to define special cases
such as M1, M2 and M3 by Baker et al. A BIPBN is a dBN D where each slice consists of a
state variable Sy € S and action variable Ay € A. Furthermore G can contain an arbitrary BN
that encodes the goal(s). In this framework P(A¢) = P (A¢|St) P(St), I = St¢, O = A and
P(St+1) = P (St+1 | St, A¢). All actions Ay are dependent on (at least one) goal in G. Note that
we did not include the world variable w and the noise variable § in our framework. These variables
are constants and they are left out because any complexity results for this framework hold for the
framework including w and (5.

Figure 1: The BIPBN framework.

4 Complexity proofs

For all our proofs we assume that each variable X in a BN has a discrete and bounded set of values

Q(X), i.e. |[QUX)| <k, for a fixed k > 0.

4.1 M1, M2 and M3 are tractable

First we define M1, M2 and M3 as an input/output-problem. In this definition we assume the
model’s output is the most likely joint value assignment to G in the BIPBN (This makes M1, M2
and M3 special cases of MPE). Figure 2 contain graphical representations of M1, M2 and M3.
We removed the variables x and 7 for reasons similair to why we leave out w and (3 (see Section 3).



Figure 2: BIP models M1, M2 and M3 and their tree-decompositions.
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M1, M2 AND M3

Input: A BIPBN B = (G, D) and a joint value assignment (observations) s for S and a
for A. For M1, G contains one goal variable G and all actions are dependent on G; in
M2 G contains a series of dependent goals G1, ..., Gr_1 where G; is dependent on G;_1
and each action Ay is dependent on Gy; in M3 G contains a series of dependent sub-goals
G1,...,Gr_1 and a super-goal G where each sub-goal G} is dependent on G and on Gy_1
and each action A; is dependent on Gy.

Output: The most likely joint value assignment to G given the evidence s and a.

There are several algorithms (e.g. by Sy (1992) and Seroussi and Golmard (1994); see Kwisthout
(2010) for an overview) that solve MPE in polynomial time when the treewidth of the moralized
graph of B is bounded. More in particular, the runtime is O(f(tw)g(p)), where f is an exponential
function based on the treewidth of B (tw) and g is a polynomial based on the number of cliques
in B (p <|V]). M1, M2 and M3 are special cases of MPE where the topology is restricted and
treewidth is bounded.

The following results of treewidth are known, based on the tree-decompositions in Figure 2. These
are not minimal but they are bounded by small numbers and thus suffice to prove M1, M2 and M3
tractable. Note that including the removed parameters 3, 7y, x and w would increase the tree-width,
but it would still be constant so the tractability result is also valid for the original model.

BIP model treewidth

M1 4
M2 5
M3 6




Corollary 1. Because M1, M2 and M3 have treewidth < 6, M1, M2 and M3 are tractable.

4.2 Proof multiple goals BIP is N'P-hard

Shimony (1994) proved finding MPE is N'P-hard in general BNs. We show that, even with its
restricted topology, MULTIPLE GOALS BIP (MGBIP) is also N'P-hard. To prove MGBIP is N'P-
hard, we provide a polynomial time reduction from DECISION-3SAT to DECISION-MGBIP and we
argue that because DECISION-MGBIP is A'P-hard, MGBIP is also NP-hard. First we need to define
the decision variants of 3SAT and MGBIP.

DECISION 3SAT (D-3SAT)

Input: A tuple (U, C), where C' is a set of clauses on Boolean variables U. Each clause is
a disjunction of at most three variables.

Output: Does there exists a truth assignment to the variables in U that satisfies the
conjunction of all clauses in C?

DECISION-MULTIPLE GOALS BIP (D-MGBIP)

Input: A BIPBN (see Figure 3) B = (G1,..., Gk, D) where , £ > 0, and two sets of a
joint value assignments (observations) s for S and a for A. Furthermore, let ¢ € [0, 1].
Output: Does there exist a joint value assignment g for G given evidence s and a such
that P(G =g) > ¢?

Figure 3: The dynamic Bayesian Network that underlies MGBIP.

To rewrite a 3SAT instance to a D-MGBIP instance we represent a clause as an action variable in
the BN. The conditional probability of the clause variable is constructed as:

Definition 1. Clause variable probability distribution. A clause variable is a node, that can model
any clause of a 3SAT formula. A clause in 3SAT is the disjunction of at most three variables from



the set {X1,..., X}, where each of the variables can be negated. The negations are encoded in the
conditional probability of the clause. Let —, be true iff the p'" position of the clause is negated.
We define the conditional probability of the clause variable as:

1 Xh®—|1\/X'®_‘2\/X'®_‘3
P(C’Xh’Xi’Xj):{ 0 (()therwise) (l PV )

Clause variable probability distribution for clauses with less variables can be defined analagous.

Lemma 1. D-MGBIP is N'P-hard.

The proof degrades dependencies in the BIPBN. Let C' be dependend on A and B. Suppose we
have to provide the conditional probabilities for the BN and each node can assume either true or
false. Then we need to provide the following conditional probabilities:

(C =true | A=true, B =true) =«

(C =true | A = true, B = false) = f
(C =true | A= false, B =true) =~
(C =true| A= false, B = false) =§

If we set a = 3 and v = 4, then it does not matter what evidence we have for B. The conditional
probability of P (C' | B) is the same, regardless of the value of B. In other words, C' is not dependent
on B. We will use this construction in the proof to degrade dependencies. Degraded dependencies
will be denoted by dotted arrows in figures.

Proof. To reduce an instance of 3SAT ¢ to an instance of MGBIP B, we create a multiple goal G;
containing one node G; for each variable in ¢. For each clause in ¢ an action with the corresponding
clause probability distribution is created in B and for each conjunction in ¢ we create a conjunction
node at state Sy;1, its conditional probability P (Si+1 | St, Ay) = 1 if Sy = true and Ay = true and
0 otherwise. Furthermore we define Sy = true in B.

We degrade excess dependencies such that if there exists a valid truth assignment for the 3SAT-
formula then there exists a joint value assignment g for Gq,..., Gk for which P(g) > ¢. All
dependencies between a goal node and a action node for which the variable the goal node represents
is not present in the clause the action node represents are degraded. Furthermore, all dependen-
cies between A; and S; are degraded. Figure 4 displays an example reduction with the degraded
dependencies denoted as dotted arrows.

In B all state variables and actions variables are observed to be true and the prior probability
distribution for each goal variable is normal.

The following conditions are met:

1. If ¢ is a yes-instance, then B is a yes-instance: For a 3SAT-formula to be satisfied, each
clause must be satisfied. Per Definition 1 each action variable in B is true if and only if its
corresponding clause is true. The probability of any joint value assignment g for Gq,..., Gy
is 0 if it does not satisfy all clauses, or 1 if it does.



2. If B is a yes-instance, then ¢ is a yes-instance: Given the conditional probability P (Si11 | S¢, A),
G1, ..., Gy need to be consistent with each clause variable in the BN. If B is a yes-instance
then P(g) = 1 and the joint value assignment g for Gy, ..., Gk is consistent with each clause
variable. Per definition of the clause variable’s conditional probability distribution value as-
signment g satisfies each clause in .

3. The reduction runs in polynomial time: For each element in the 3S AT-formula only one node
is created and a number of dependencies linear to the number of operators.

Lemma 2. If D-MGBIP is NP-hard then McBIP is also AP-hard.

Proof. Assume there exists a polynomial time algorithm that solves MGBIP (viz. it returns the
most probable explanation g for Gi,...,Gg). Then together with the observations s for S and a
for A we can compute P (g |s,a) in polynomial time, and check if it is > ¢q. With a polynomial
time algorithm for mgBIP we can solve d-mgBIP in polynomial time. We proved that d-mgBIP
is NP-hard, thus we have an inconsistency and we reject that mgBIP is solvable in polynomial
time. O

Corollary 2. MGBIP is N'P-hard, because D-MGBIP is N'P-hard.
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Figure 4: An example reduction from 3SAT to D-MGBIP. The clause (G; V =Ga V =G3) A
(Gs V G4 V —Gs5) is rewritten as a BN in mBIP. The conditional probabilities of clauseg
and clause; are: P (Cy=true |Gy =trueV Gy = falseV G3 = false) = 1 and 0 otherwise,
P (Cy =true | Gy = trueV G2 = true V G = false) = 1 and 0 otherwise.

4.3 Fixed-parameter tractability results for multiple goals BIP

Parameters s, a and g are, respectively, the maximum number of values per state, action and goal
variable.



Corollary 3. MGBIP is not fixed-parameter tractable for {s,a,g}.

Proof. The N'P-hardness proof of MGBIP only uses a maximum of two values per variable (true or
false), thus MGBIP is fp-intractable even when the number of values per variable is small. ]

Parameter T is the maximum available observations.

Corollary 4. MGBIP is fp-intractable for {T'}.

Proof. Even when the length of the observation is 1, with any number of multiple goals we can
encode the entire 3SAT-formula in one action variable and a reduction from D-3SAT to D-MGBIP
would be possible. Thus MGBIP is fp-intractable even when the maximum number of available
observations is either small. O

Parameter 1/7 is the maximum poverty of observations.

Corollary 5. MGBIP is fp-intractable for {1/7T'}.

Proof. If the reduction from 3SAT to D-MGBIP does not produce an instance with a large number
of states such that 1/7" is small, then we can add dummy state S; and action A; nodes. The
conditional probability P (S] | Si—1 = true, A;_1 = true) = 1 or 0 otherwise and the conditional
probability P (A} | Gi = ¢i,...,Gj = gj,St—1 =true) = 1 or 0 otherwise, where g;...g; can be
any value (i.e. A} is independent of all goals). This means we can reduce any 3SAT instance to
D-MGBIP while 1/7 is small. O

Corollary 6. MGBIP is fp-intractable for {T',1/T'}.

Proof. Assume there exists an algorithm A that solves MGBIP in polynomial time, given 7" and 1/T
are constant. This means we can solve MGBIP in polynomial time, given either T or 1/T is constant.
This contradicts Corrolary 4 and Corrolary 5, thus we can conclude that such an algorithm does
not exist. O

Because the above proofs do not assume more than two values for each variable we observe:
Result 1. MGBIP is fp-intractable for every subset of parameters K C {T,1/T,g}.

Parameter £ is the maximum number of multiple goals.

Proposition 1. MGBIP is fp-tractable for {k}.

Proof. We know that MPE is fixed-parameter tractable for treewidth (Kwisthout, 2010) and MG-
BIP is a special case of MPE. Thus MGBIP is fixed-parameter tractable for treewidth. The
treewidth of the BN underlying MGBIP grows as the number of goals increase (i.e. as the size of
the input increases). Because treewidth is the only source of intractability for MGBIP and the num-
ber of goals is the only source that increases the treewidth we postulate MGBIP is fixed-parameter
tractable for the number of multiple goals. O



Result 2. MGBIP is fp-tractable for parameter {k}.

Parameter 1 — p is the distance from complete certainty. Here p is the probability of the most
probable explanation in MGBIP.

Proposition 2. MGBIP is fp-tractable {1 — p}.

Proof. Tt is known that MPE is fixed-parameter tractable for probability (Bodlaender, van den Ei-
jkhof, & van der Gaag, 2002), in the sense that MPE can be solved efficiently if the probability
of the most probable explanation is high. Given that MGBIP is a special case of MPE, MGBIP is
fixed-parameter tractable for probability. ]

Result 3. MGBIP is fp-tractable for parameter {1 — p}.
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