
1

The Computational Complexity
of Probabilistic Networks

Research Seminar Logic and Automata
RWTH Aachen

March 12th 2009

Johan Kwisthout
Algorithmic Systems
Utrecht University

About me

• MSc in Computer Science, 2005 (Open University,
Heerlen)

• MSc in Artificial Intelligence, 2006 (Nijmegen University)
• PhD in Computer Science, defense July 1st 2009

1st promotor: Jan van Leeuwen (algorithms &
complexity); 2nd promotor: Linda van der Gaag
(probabilistic networks)

• My work: cooperative project between Algorithmic
Systems Group and Decision Support Systems Group

Our group: Algorithmic Systems

• New Models of Computing
• Interactive Turing Machines (van Leeuwen)

• Evolving Systems (van Leeuwen, Verbaan)

• Network Algorithms
• Treewidth(Bodlaender)

• Fixed Parameter Tractability (Bodlaender)

• Kernelization (Penninckx, Bodlaender)

• Network Flow in Sensor Networks (van Dijk)

• Exact algorithms for NP-complete graph problems
• Inclusion-Exclusion (Nederlof, van Rooij)

• Measure-and-Conquer (van Rooij)

• Operations Research
• Column Generation (Hoogeveen, Diepen)

• Scheduling and Timetabling (van den Akker)

Take home -message

• Probabilistic Networks are an interesting subject to
study in a complexity-theoretical sense: many problems
related to these networks are complete for complexity
classes that have few “ real world” complete problems

• Tunable Monotonicity: NPNPPP
-complete

• Enumerating MAP: PPPPP
-complete

• This gives us insight in general in problems that
combine selecting, verifying properties, enumeration,
and stochastic reasoning

• Determining the exact complexity (rather than ‘NP-
hard’) of such problems is important to know which
restrictions are needed to obtain feasible algorithms

Overview

• Probabilistic Networks – usage and definitions

• Complexity of Inference
• The Inference problem

• Probabilistic Turing Machines and the class PP

• Inference is in PP (proof)

• Inference is PP-hard (proof)

• Lower bound on inference running time

• Oracles and the Counting Hierarchy

• Interesting Problems in PNs and their complexity
• Partial MAP, Monotonicity, Parameter Tuning, Tunable

Monotonicity, Enumeration

• How about other formalisms like games?

Dealing with uncertainty

• In real life, we are forced to reason with imperfect
knowledge and bounded resources

• We do not know all the relevant facts

• Which facts are relevant, anyway?

• We haven’t got time to take everything into account

• Our information is inconsistent, vague, or imprecise

• To be helpful, computer programs that assist us in
decision making need to deal with uncertainty

• Determining the probability of a patient having a particular
disease, given observations and clinical evidence

• Finding a plan or schedule even when not all facts are known

• Determining a weather forecast

• Dealing with inconsistent sensor input in robots

2

Probabilistic Networks

• Often, probabilistic networks are used to represent
stochastic variables in a particular domain,
probabilities and independencies between variables
using directed acyclic graphs

• Used in decision support systems, diagnosis, expert
systems etc.

• Using network structure, conditional probabilities and
reasoning rules, all sort of computations can be done:

• Likeliness of variable having a particular value given evidence

• Finding the most likely values of a set of variables

• Determining whether relations are monotone

• Determining whether variables are sensitive to small changes

Probabilistic Networks

• Formal definition: B = (G, G), where G = (V, A) is an
directed acyclic graph, and G denotes the set of
conditional probability distributions.

• Each V in V is a stochastic variable; arcs in A denote
dependencies between variables

• For each V a conditional probability table is defined,
giving the probability distribution of a variable, given a
value assignment to its parents in the network

• All probabilities of interest can be calculated from this
structure using well-known properties of probability
theory

Probability Theory

• Conditioning
Pr(A=a1) = Pr(A=a1|B=b1) x Pr(B=b1) +

Pr(A=a1|B=b2) x Pr(B=b2) +
...

• Marginalizing
Pr(A=a1) = Pr(A=a1 ∧ B=b1) +

Pr(A=a1 ∧ B=b2) +
...

• Chain Rule
Pr(x1,…,xn) = Pr(xn|x1,…,xn-1) x … x Pr(x2|x1) x Pr(x1)

Probabilistic Networks

Probabilistic networks
denote (in-)dependencies
between variables

Probabilistic Networks

Variables V have values
(v1, v2, ..., vn) denoting
particular states

Probabilistic Networks

Arcs (V,W) denote
dependencies between
variables V and W

3

Probabilistic Networks

With each variable, a
conditional probability
table is associated

Oesophageal Cancer Network

Classical Swine Fever Network Overview

• Probabilistic Networks – usage and definitions

• Complexity of Inference
• The Inference problem

• Probabilistic Turing Machines and the class PP

• Inference is in PP (proof)

• Inference is PP-hard (proof)

• Lower bound on inference running time

• Oracles and the Counting Hierarchy

• Interesting Problems in PNs and their complexity
• Partial MAP, Monotonicity, Parameter Tuning, Tunable

Monotonicity, Enumeration

• How about other formalisms like games?

Probabilistic Inference

• x is a configuration of all variables
(e.g., A = a1, B = b2, C = c3, D= d1)

• Pr(x) = ∏A∈V(G) Pr(A| π(A))

• In this example,
Pr(a1b2c3d1) = Pr(a1|b2c3)·Pr(b2|c3d1)·Pr(c3|d1)·Pr(d1)

A

B

D

C

Likewise:

• Pr(a1) = ∑m Pr(a1 ∧xm)

• Pr(a1|e) = ∑m Pr(a1 ∧e ∧xm)
∑m Pr(e ∧xm)

Probabilistic Inference

• In general, inference takes exponential time in the
network size

• Known algorithms often use some form of clustering
and are exponential only in the treewidth of the
(moralised) graph

• Known results (Roth, 1998; Littman, 2001): Inference is
#P-complete and has a PP- complete decision variant

• New result (Kwisthout, yet unpublished): no general
algorithm can solve arbitrary instances with high
treewidth in subexponential time unless the ETH fails

4

Probabilistic Turing Machines

• A Probabilistic Turing Machine is a Non-Deterministic
Turing Machine that branches according to a particular
probability distribution

• Complexity classes are defined based on a particular
notion of acceptance on a Probabilistic Turing Machine

• Interesting classes are e.g.:
• ZPP (zero error, on average polynomial running time)

• BPP (polynomial running time, bounded error)

• PP (polynomial running time, unbounded error)

• Also NP can be defined in such a way by forgetting
about the probability distribution in each branch

PP – probabilistic polynomial-time

• PP contains languages that are accepted by any
majority on a Probabilistic Turing Machine M

• This majority may depend on the input and may be
exponentially small, hence BPP ⊆ PP. This ‘trivial ’
distinction between BPP and PP makes PP a very
powerful class, including NP

• Let f be a SATISFIABILIY instance with variables x1 to xn. Define
? = f ∨ xn+1. The majority of the instantiations to x1...n+1 accept

? iff f is satisfiable. Thus, NP ⊆ PP.

• PP has complete problems (BPP and ZPP have not), the
canonical complete problem is MAJSAT: given a Boolean
formula f , does the majority of the truth assignments
to its variables accept f ?

Probabilistic Inference is PP-Complete

To prove:

1. Show that there exists a probabilistic Turing Machine
accepting INFERENCE instances in polynomial time

2. Reduce MAJSAT to INFERENCE

Note:
(1) is often taken for granted in complexity proofs,
most proofs actually prove PP-hardness

In some cases completeness proofs are wanted (e.g. to
separate PP-problems to NPPP problems)

Complexity of Inference

• Formal definition
Let B be a probabilistic network, with C as a variable of
interest and c as a particular value of C, and let E
denote a set of evidence variables with instantiation e.
Is Pr(C=c|E=e) = q?

• Conjectured complexity class is PP

• Intuitively: if we randomly guess assignments to all
variables with respect to their conditional probabilities:
is the probability of ending in an assignment consistent
with C=c and E=e = q?

• eg. Pr(a1b2c3d1) = Pr(a1|b2c3)·Pr(b2|c3d1)·Pr(c3|d1)·Pr(d1)

Membership proof INFERENCE

• Construct a probabilistic Turing Machine accepting an
INFERENCE instance in polynomial time

Example: Pr(A = a1) = Pr(a1|BC)·Pr(B|CD) ·Pr(C|D) ·Pr(D)
(summing over all configurations of B, C and D)

• Compute products backwards

• Choose an instantiation at random given the probability

distribution

• If the configuration is consistent with A = a1, then

output YES, else output NO

• The probability of arriving at an accepting output is

exactly Pr(A = a1)

Membership proof INFERENCE

5

PP-Hardness proof of INFERENCE

• Transform a MAJSAT instance to INFERENCE

F = ¬(X1 ∨ X2) ∨ ¬X3

• Does the majority of the possible instantiations to X
satisfy F ?

• This is a YES- instance, actually (5 out of 8 instances
satisfy F)

• We construct a network BF from an instance F

• Variables in F are nodes with values T, F
(uniform probability)

• Operators in F are nodes with values T, F
(probability table = truth value of logical component

Hardness proof constructs

X Pr(X = T) = 0.5
Pr(X = F) = 0.5

X

∨

Y

Pr(∨ = T| X = T and Y = T) = 1

Pr(∨ = T| X = T and Y = F) = 1

Pr(∨ = T| X = F and Y = T) = 1

Pr(∨ = T| X = F and Y = F) = 0

Hardness proof constructs

F = ¬(X1 ∨ X2) ∨ ¬X3

Pr(VF = T| X1 ∧ X2 ∧ X3) = 0
Pr(VF = T| X1 ∧ X2 ∧ ¬X3) = 1
Pr(VF = T| X1 ∧ ¬X2 ∧ X3) = 0

:
Pr(VF = T| ¬X1 ∧ ¬X2 ∧ ¬X3) = 1

Is Pr(VΦ=T) = 0.5? Only
if the majority of truth
assignments satisfies F !

Ref: Littman, Majercik,
& Pitassi (2001)

Overview

• Probabilistic Networks – usage and definitions

• Complexity of Inference
• The Inference problem

• Probabilistic Turing Machines and the class PP

• Inference is in PP (proof)

• Inference is PP-hard (proof)

• Lower bound on inference running time

• Oracles and the Counting Hierarchy

• Interesting Problems in PNs and their complexity
• Partial MAP, Monotonicity, Parameter Tuning, Tunable

Monotonicity, Enumeration

• How about other formalisms?

Lower bound on Inference

• Inference is PP- complete, so polynomial time algorithms
are highly unlikely to exist

• Algorithms are known that are exponential in the
treewidth of the (moralised) graph

• We prove that these algorithms are optimal up to an
logarithmic factor in the exponent, unless the
Exponential Time Hypothesis fails

• ETH (Impagliazzo): there exists a constant c > 1 such
that deciding any 3SAT instance with n variables takes
O(cn) time

Lower bound on Inference

• Marx (2007, STOC) proved lower bound on (binary) CSP
and Graph Homomorphism for any graph with high
treewidth, using novel characterization of treewidth and
embeddedness of graphs

• We introduce treewidth-preserving many-one reductions
to reduce CSP to Inference in polynomial time, where
the inference instance has the same treewidth (up to a
constant) as the CSP instance

• Hence, if we have an algorithm that can solve any
arbitrary Inference instance with high treewidth
efficiently, then we can also solve the CSP instance with
high treewidth efficiently, contradicting the ETH

6

Lower bound on Inference

• Hardness proof with extra constraint:
• A many-one reduces to B, i.e. x ∈ A → f(x) ∈ B

• This reduction takes polynomial time

• AND tw(f(x)) = tw(x) + l(x) for a linear function l

• Sketch of reduction
• Let I = <V, D, C> be a CSP instance with binary constraints

• Construct B: every variable in I is a node X in B; every relation in
I is a node R in B with as parents the two variables involved;

• Conditional Probability Pr(R=true|Xi,Xj) = 1 for a particular value
of X i, Xj if that combination is in C(I)

• Pr(all Rs=true) > 0 iff. CSP is solvable

• ‘AND’-construction to connect all R nodes in single S-node

• Here we must take care to guarantee treewidth

Lower bound on Inference

• We have shown that no generic algorithm can solve
arbitrary Inference instances with high treewidth in
subexponential time

• However, algorithms may exist that work only on a
particular class of instances – for example, using a
particular direction of the arcs – that may run fast

• Yet, the known algorithms are all generic ones that work
on all possible networks and have a guarenteed running
time that is exponential in the treewidth of the graph.

• Thus, these algorithms are essentially optimal (up to a
logarithmic factor in the exponent)

Overview

• Probabilistic Networks – usage and definitions

• Complexity of Inference
• The Inference problem

• Probabilistic Turing Machines and the class PP

• Inference is in PP (proof)

• Inference is PP-hard (proof)

• Lower bound on inference running time

• Oracles and the Counting Hierarchy

• Interesting Problems in PNs and their complexity
• Partial MAP, Monotonicity, Parameter Tuning, Tunable

Monotonicity, Enumeration

• How about other formalisms like games?

Oracle Turing Machine

• A Turing Machine M has oracle access to a set A if
membership queries of A can be decided in constant
time

• M puts a string x on its oracle tape, enters the oracle
state qO and in the next timestep, M is in state qO+ if x
is in A, else M is in state qO-

• If A corresponds to a complete problem for a class C,
then we will write e.g. NPPP to denote the class of
problems decidable by a nondeterministic Turing
Machine with oracle access to a Probabilistic Turing
Machine

Oracles and the Counting Hierarchy

• Recall the polynomial hierarchy

• This hierarchy can be characterized using existential and
universal operators (at least the NP and co-NP tracks)

• When adding PP, PPP, NPPP, co-NPPP and PPPP (and
further on) we get the Counting Hierarchy CH

• PP ⊆ PPP ⊆ co-NPPP/NPPP ⊆ PPPP ⊆ ... ⊆ PSPACE

P

NP

co-NP co-NPNP

NPNP

PNP PNPNP
NPNPNP

co-NPNPNP

Complete problems in the Counting Hierarchy

Take F = X1..Xn partitioned in subsets XA, XB, XC of variables:

NPPP - E-MAJSAT: “Is there an instantiation to XA, such that the majority
of the instantiations to XB satisfy F ?”

co-NPPP - A-MAJSAT : “For all instantiations to XA, does the majority of
the instantiations to XB satisfy F ?”

NPNPPP
- EA-MAJSAT: “Is there an instantiation to XA, such that, for all

instantiations to XB, the majority of the instantiations to XC satisfy F ?”

PPP - Kth-SAT: “What is the lexicographical kth instantiation to X that
satisfies F ?”

PPPPP
- Kth-MAJSAT: “What is the lexicographical kth instantiation to XA,

such that the majority of the instantiations to XB satisfy F ?”

7

Overview

• Probabilistic Networks – usage and definitions

• Complexity of Inference
• The Inference problem

• Probabilistic Turing Machines and the class PP

• Inference is in PP (proof)

• Inference is PP-hard (proof)

• Lower bound on inference running time

• Oracles and the Counting Hierarchy

• Interesting Problems in PNs and their complexity
• Partial MAP, Monotonicity, Parameter Tuning, Tunable

Monotonicity, Enumeration

• How about other formalisms like games?

Partial MAP

Given an instantiation to
G and H, what is the most
likely value of {A,B,C} ?

NPPP-complete
(Park & Darwiche,2004)

Monotonicity

Is C monotone in {G,H},
i.e. do higher values for
{G,H} make higher values
for C more likely?

co-NPPP-complete
(van der Gaag et al, 2004)

Parameter Tuning

Can we adjust a set X of
conditional probabilities
in the network such that
Pr(C=c) > q?

NPPP-complete
(Kwisthout and Van der
Gaag, 2008)

Tunable Monotonicity

Can we adjust a set X of
conditional probabilities
in the network such that C
is monotone in {G, H}

NPNPPP
-complete

(Kwisthout , unpublished)

Enumerating Partial MAP

Given an instantiation to
G and H and an integer k,
what is the kth most likely
value of {A,B,C} ?

PPPPP
-complete

(Kwisthout , 2008)

8

Generic hardness proof structure

F = ¬(X1 ∨ X2) ∨ ¬X3

Reduction from a class
in the Counting
Hierarchy (E-Majsat etc)

Quantification over
subsets of variables X

e.g. Partial MAP: IS
there a variable
instantiation to XE such
that Pr(VF) > 0.5?

Marginalize over all
instantiations of XM

XE

XM

Problems on Probabilistic Networks

• These problems all combine selecting, verifying and/or
enumeration with stochastic reasoning

• Typically, many interesting problems from various areas
have such properties

• E.g. stochastical planning (Littman et al, 1998); Partially
Observable MDPs (Goldsmith et al, 1996); stochastic
scheduling (van den Akker and Hoogeveen, 2008)

• However, often only NP-hardness is shown, without
further examining the exact complexity

• Nevertheless, this is interesting to determine which
restricted variants are feasible vs. remain hard, and to
make use of approximation strategies for such classes

On finding the exact complexity

• For example, Parameter Tuning:
• Is NPPP-complete in general
• Remains NP-complete when inference is easy
• Remains PP-complete for a bounded number of parameters
• Thus, polynomial algorithms are unlikely except when both

constraints are met

• Thus, studying the exact complexity and characteristics
of such problems gives us more insight about why some
things are hard to compute

• Also, it can help to determine whether efforts should be
placed in improving existing algorithms

• Known Parameter Tuning algorithm is exponential in both the
treewidthof the graph and the number of parameters

Overview

• Probabilistic Networks – usage and definitions

• Complexity of Inference
• The Inference problem

• Probabilistic Turing Machines and the class PP

• Inference is in PP (proof)

• Inference is PP-hard (proof)

• Lower bound on inference running time

• Oracles and the Counting Hierarchy

• Interesting Problems in PNs and their complexity
• Partial MAP, Monotonicity, Parameter Tuning, Tunable

Monotonicity, Enumeration

• How about other formalisms like games?

Stochastic games

• Stochastic games (Shapley, 1953) introduce a Random
player, next to deterministic players Even and Odd

• In Simple Stochastic Games, the complexity of finding
the likely winner of a SSG is in NP ∩ co-NP (Condon,
1992)

• Can we formulate a stochastic game, including winning
conditions, such that the complexity of finding the likely
winner is:

PP-complete? PPP-complete? NPPP-complete?

• How do the properties of such stochastic games relate
to the properties of these classes?

Stochastic games

• (Infinite) games have a strong application in
specification and verification of interactive systems

• From the GAMES Programme:
• specifying a module amounts to formally describing a game

• synthesizing a module amounts to computing a winning strategy

• verifying a module against a specification amounts to checking
that a strategy is indeed a winning strategy

• What if finding such a strategy turns out to be infeasible
in the game?

• Maybe we can pinpoint its exact complexity in order to show
‘where the hardness comes from’ and how we can restrict the
problem to reduce its complexity

9

Conclusions, looking back and forth

• Take home-message: finding the exact complexity of a
problem (vs ‘NP-hardness’) is relevant to pinpoint which
restrictions are needed to arrive at feasible algorithms

• We have discussed the inference problem and its PP-
completeness proof and sketched a proof of its lower
bound complexity using treewidth preserving reductions

• We have discussed some other problems that combine
selecting, verifying, enumeration and stochastic
reasoning

• We suggested some further work to ‘export’ the take
home-message to other applications like stochastic
games with a reference to the GAMES program

