

The Computational Complexity of Probabilistic Networks

Research Seminar Logic and Automata RWTH Aachen March 12th 2009

> Johan Kwisthout Algorithmic Systems Utrecht University

Our group: Algorithmic Systems

- New Models of Computing
 - Interactive Turing Machines (van Leeuwen)
 - Evolving Systems (van Leeuwen, Verbaan)
- · Network Algorithms
 - · Treewidth (Bodlaender)
 - Fixed Parameter Tractability (Bodlaender)
 - · Kernelization (Penninckx, Bodlaender)
 - · Network Flow in Sensor Networks (van Dijk)
- Exact algorithms for NP-complete graph problems
 - · Inclusion-Exclusion (Nederlof, van Rooij)
- Measure-and-Conquer (van Rooij)
- Operations Research
 - · Column Generation (Hoogeveen, Diepen)
 - · Scheduling and Timetabling (van den Akker)

ersiteit Utrecht

Take home - message

- Probabilistic Networks are an interesting subject to study in a complexity-theoretical sense: many problems related to these networks are complete for complexity classes that have few "real world" complete problems
 - Tunable Monotonicity: NP^{NPPP}-complete
 Enumerating MAP: P^{PPPPP}-complete
- This gives us insight in general in problems that combine selecting, verifying properties, enumeration, and stochastic reasoning
- Determining the exact complexity (rather than 'NPhard') of such problems is important to know which restrictions are needed to obtain feasible algorithms

iteit Utrecht

- · Probabilistic Networks usage and definitions
- · Complexity of Inference
 - · The Inference problem
 - Probabilistic Turing Machines and the class PP
 - · Inference is in PP (proof)
 - · Inference is PP-hard (proof)
- · Lower bound on inference running time
- · Oracles and the Counting Hierarchy
- Interesting Problems in PNs and their complexity
 - Partial MAP, Monotonicity, Parameter Tuning, Tunable Monotonicity, Enumeration
- · How about other formalisms like games?

Universiteit Utrocht

Dealing with uncertainty

- In real life, we are forced to reason with imperfect knowledge and bounded resources
 - We do not know all the relevant facts
 - Which facts are relevant, anyway?
 - We haven't got time to take everything into account
 - Our information is inconsistent, vague, or imprecise
- To be helpful, computer programs that assist us in decision making need to deal with uncertainty
 - Determining the probability of a patient having a particular disease, given observations and clinical evidence
 - · Finding a plan or schedule even when not all facts are known Determining a weather forecast
 - · Dealing with inconsistent sensor input in robots

siteit Utrecht

Probabilistic Turing Machines

- A Probabilistic Turing Machine is a Non-Deterministic Turing Machine that branches according to a particular probability distribution
- Complexity classes are defined based on a particular notion of acceptance on a Probabilistic Turing Machine
- Interesting classes are e.g.:
 - ZPP (zero error, on average polynomial running time)
 - BPP (polynomial running time, bounded error)
 - PP (polynomial running time, unbounded error)
- Also NP can be defined in such a way by forgetting about the probability distribution in each branch

Probabilistic Inference is PP-Complete

- 1. Show that there exists a probabilistic Turing Machine accepting INFERENCE instances in polynomial time
- 2. Reduce MAJSAT to INFERENCE

(1) is often taken for granted in complexity proofs, most proofs actually prove PP-hardness

In some cases completeness proofs are wanted (e.g. to separate PP-problems to NP^PP problems)

rsiteit Utrecht

Complexity of Inference

- Formal definition Let ${\bf B}$ be a probabilistic network, with C as a variable of interest and c as a particular value of C, and let E denote a set of evidence variables with instantiation e. Is Pr(C=c|E=e) = q?
- · Conjectured complexity class is PP
- Intuitively: if we randomly guess assignments to all variables with respect to their conditional probabilities: is the probability of ending in an assignment consistent with C=c and E=e=q?
- eg. $Pr(a_1b_2c_3d_1) = Pr(a_1|b_2c_3) \cdot Pr(b_2|c_3d_1) \cdot Pr(c_3|d_1) \cdot Pr(d_1)$

siteit Utrecht

Construct a probabilistic Turing Machine accepting an INFERENCE instance in polynomial time

Example: $Pr(A = a_1) = Pr(a_1|BC) \cdot Pr(B|CD) \cdot Pr(C|D) \cdot Pr(D)$ (summing over all configurations of B, C and D)

- Compute products backwards
- Choose an instantiation at random given the probability
- If the configuration is consistent with $A = a_1$, then output YES, else output NO
- The probability of arriving at an accepting output is exactly $Pr(A = a_1)$

Iniversiteit Utrecht

Conclusions, looking back and forth

- Take home-message: finding the exact complexity of a problem (vs 'NP-hardness') is relevant to pinpoint which restrictions are needed to arrive at feasible algorithms
- We have discussed the inference problem and its PPcompleteness proof and sketched a proof of its lower bound complexity using treewidth preserving reductions
- We have discussed some other problems that combine selecting, verifying, enumeration and stochastic reasoning
- We suggested some further work to 'export' the take home-message to other applications like stochastic games with a reference to the GAMES program

Universiteit Utrecht