The Computational Complexity
of Probabilistic Networks

Research Seminar Logic and Automata
RWTH Aachen

March 12th 2009

Johan Kwisthout
Algorithmic Systems
Utrecht University

Unbrerabicki Lirecks

= MScin Computer Science, 2005 (Open University,
Heerlen)

= MScin Artificial Intelligence, 2006 (Nijmegen University)

- PhD in Computer Science, defense July 15t 2009
15t promotor. Jan van Leeuwen (algorithms &
complexity); 2" promotor: Linda van der Gaag
(probabilistic networks)

= My work: cooperative project between Algorithmic
Systems Group and Decision Support Systems Group

Unbrerabicki Lirecks

= New Models of Computing
= Interactive Turing Machines (van Leeuwen)
= Evolving Systems (van Leeuwen, Verbaan)
= Network Algorithms
« Treewidth (Bodlaender)
= Fixed Parameter Tractability (Bodlaender)
« Kernelization (Penninckx, Bodlaender)
= Network Flow in Sensor Networks (van Dijk)
= Exact algorithms for NP-complete graph problems
= Inclusion-Exclusion (Nederlof, van Rooij)
= Measure-and-Conquer (van Rooij)
= Operations Research
= Column Generation (Hoogeveen, Diepen)
« Scheduling and Timetabling (van den Akker)

Unbrerabicki Lirecks

= Probabilistic Networks are an interesting subject to
study in a complexity-theoretical sense: many problems
related to these networks are complete for complexity
classes that have few “real world” complete problems

PP
« Tunable Monotonicity: NP -complete
« Enumerating MAP: pPP -complete

= This gives us insight in general in problems that
combine selecting, verifying properties, enumeration,
and stochastic reasoning

« Determining the exact complexity (rather than ‘NP-
hard’) of such problems is important to know which
restrictions are needed to obtain feasible algorithms

Unbrerabicki Lirecks

= Probabilistic Networks — usage and definitions

= Complexity of Inference
« The Inference problem
= Probabilistic Turing Machines and the class PP
« Inference is in PP (proof)
= Inference is PP-hard (proof)
= Lower bound on inference running time
= Oracles and the Counting Hierarchy
« Interesting Problems in PNs and their complexity
= Partial MAP, Monotonicity, Parameter Tuning, Tunable
Monotonicity, Enumeration

= How about other formalisms like games?

Unbrerabicki Lirecks

= In real life, we are forced to reason with imperfect
knowledge and bounded resources
= We do not know all the relevant facts
= Which facts are relevant, anyway?
« We haven't got time to take everything into account
= Our information is inconsistent, vague, or imprecise

= To be helpful, computer programs that assist us in
decision making need to deal with uncertainty
« Determining the probability of a patient having a particular
disease, given observations and clinical evidence
= Finding a plan or schedule even when not all facts are known
« Determining a weather forecast
= Dealing with inconsistent sensor input in robots

Unbrerabicki Lirecks

= Often, probabilistic networks are used to represent
stochastic variables in a particular domain,
probabilities and independencies between variables
using directed acyclic graphs

= Used in decision support systems, diagnosis, expert
systems etc.

= Using network structure, conditional probabilities and
reasoning rules, all sort of computations can be done:

= Likeliness of variable having a particular value given evidence
= Finding the most likely values of a set of variables

« Determining whether relations are monotone

= Determining whether variables are sensitive to small changes

Unbrerabicki Lirecks

« Formal definition: B = (G, G), where G = (V, A) is an
directed acyclic graph, and G denotes the set of
conditional probability distributions.

= Each V in V is a stochastic variable; arcs in A denote
dependencies between variables

= For each V a conditional probability table is defined,
giving the probability distribution of a variable, given a
value assignment to its parents in the network

= All probabilities of interest can be calculated from this
structure using well-known properties of probability
theory

Unbrerabicki Lirecks

< Conditioning
Pr(A=a;) = Pr(A=a,|B=b,) x Pr(B=b;) +
Pr(A=a;|B=b,) x Pr(B=b,) +

= Marginalizing
Pr(A=a,) = Pr(A=a, UB=b,) +
Pr(A=a; UB=b,) +

= Chain Rule
Pr(Xq,....Xpn) = Pr(XplXq,....Xp-1) X ... X Pr(xa|xq) x Pr(xy)

Unbrerabicki Lirecks

Probabilistic networks
denote (in-)dependencies
between variables

A Variables V have values
(v, Vy, ..., V,) denoting
particular states
Ie [
D E

/

[] i)

Unbrerabicki Lirecks

Arcs (V,W) denote

/."I "'\ dependencies between
.-". variables V and W
i
I
f
f

A With each variable, a
conditional probability
table is associated

B (5
n E F

————— = ==us
— T
-
S— st
— o
R
-k
-:‘-ul' -
r L e e
I.;u. 4
Tk s P
o - * -
i e e
- . =
i | g 4
"-i-_' -F 1
I.._-H____ S| e —
e g e
-«

(i H
Unbrrratich Uirecks
i — e =T
[gre—— Tim r—a—
|. =.
oy
e} i 5 ;
L ol
_ i i
s A
o] R gt
o Tk x B .-'_
e 3 184 g
4 a o i e o =
- 2 .
PR, . 7
. o e il
- - (] 1.‘"., gt [i
el -]
-gh WF,a g S ‘-'_'1""— g
P T o . L
e R T | — e . L

= Probabilistic Networks — usage and definitions

The Inference problem

Probabilistic Turing Machines and the class PP
Inference is in PP (proof)
= Inference is PP-hard (proof)

= Lower bound on inference running time
= Oracles and the Counting Hierarchy

« Interesting Problems in PNs and their complexity
= Partial MAP, Monotonicity, Parameter Tuning, Tunable
Monotonicity, Enumeration

How about other formalisms like games?

Unbrrratich Uirecks

« xis a configuration of all variables
(e.g., A=a;, B=by, C=c3 D=d;)

= Pr(x) = Opf y(g) Pr(AIH(A))

| E « In this example,
Pr(a;bycad;) = Pr(a;|bscs)-Pr(bylcsdy)-Pr(cs|dy)-Pr(d;)

Likewise:
- Pr(a;) = &, Pr(a; ()

- Pr(ajle) = ém Pr(a, Ue Wk ,)
a, Pr(e)

= In general, inference takes exponential time in the
network size

= Known algorithms often use some form of clustering
and are exponential only in the treewidth of the
(moralised) graph

= Known results (Roth, 1998; Littman, 2001): Inference is
#P-complete and has a PP-complete decision variant

New result (Kwisthout, yet unpublished): no general
algorithm can solve arbitrary instances with high
treewidth in subexponential time unless the ETH fails

« A Probabilistic Turing Machine is a Non-Deterministic
Turing Machine that branches according to a particular
probability distribution

= Complexity classes are defined based on a particular
notion of acceptance on a Probabilistic Turing Machine

= Interesting classes are e.g.:
= ZPP (zero error, on average polynomial running time)
« BPP (polynomial running time, bounded error)
« PP (polynomial running time, unbounded error)

= Also NP can be defined in such a way by forgetting
about the probability distribution in each branch

Unbrerabicki Lirecks

= PP contains languages that are accepted by any
majority on a Probabilistic Turing Machine M

= This majority may depend on the input and may be
exponentially small, hence BPP | PP. This ‘trivial’
distinction between BPP and PP makes PP a very
powerful class, including NP

= Letf bea SATISFIABILIY instance with variables x, to x,. Define
? =f Ux,,,. The majority of the instantiations to x, ,, accept
? ifff is satisfiable. Thus, NP [PP.

= PP has complete problems (BPP and ZPP have not), the
canonical complete problem is MAJSAT: given a Boolean
formula f, does the majority of the truth assignments
to its variables accept f ?

Unbrerabicki Lirecks

To prove:

1. Show that there exists a probabilistic Turing Machine
accepting INFERENCE instances in polynomial time

" H{ 2. Reduce MAJSAT to INFERENCE
i

Note:
(1) is often taken for granted in complexity proofs,
most proofs actually prove PP-hardness

In some cases completeness proofs are wanted (e.g. to
separate PP-problems to NPPP problems)

Unbrerabicki Lirecks

« Formal definition
Let B be a probabilistic network, with C as a variable of
interest and ¢ as a particular value of C, and let E
denote a set of evidence variables with instantiation e.
Is Pr(C=c|E=e) = g?

« Conjectured complexity class is PP

Intuitively: if we randomly guess assignments to all
variables with respect to their conditional probabilities:
is the probability of ending in an assignment consistent
with C=c and E=e = g?

= eg. Pr(a;byczd;) = Pr(a;|b,ycz)-Pr(bylcsdy)-Pr(cz|dy)-Pr(d;)

Unbrerabicki Lirecks

= Construct a probabilistic Turing Machine accepting an
INFERENCE instance in polynomial time

Example: Pr(A= a;) = Pr(a;|BC)-Pr(B|CD) -Pr(C|D) - Pr(D)
(summing over all configurations of B, C and D)

= Compute products backwards

= Choose an instantiation at random given the probability
distribution

= If the configuration is consistent with A = a,, then
output YES, else output NO

= The probability of arriving at an accepting output is
exactly Pr(A = a;)

Unbrerabicki Lirecks

Fi) |: 5y ' |._

YE= ik

Unbrerabicki Lirecks

« Transform a MAJSAT instance to INFERENCE

F =a(X, UX,) UgXs

Does the majority of the possible instantiations to X
satisfy F ?

= This is a YES-instance, actually (5 out of 8 instances
satisfy F)

= We construct a network B: from an instance F

« Variables in F are nodes with values T, F
(uniform probability)

Pr(X=T)=0.5
Pr(X=F)=0.5
« Operators in F are nodes with values T, F
(probability table = truth value of logical component

@ prlU=T|X=TandY=T)=1
prlU=T|X=TandY=F) =1
pr(U=T|X=FandY=T)=1

Q ° Pr(U=T|X=FandY=F)=0

Pr(Ve =T| X, UX,UX5) =0
Pr(Ve =T| X, UX, U@Xg) =1
Pr(Vg =T] X, U@X, UX3) =0

Pr(Ve =T]| dxl UoX, UaXy) =1
Is Pr(Ve=T) = 0.5? Only
if the majority of truth

assignments satisfies F !

Ref: Littman, Majercik,
& Pitassi (2001)

= Probabilistic Networks — usage and definitions
= Complexity of Inference
= The Inference problem

= Probabilistic Turing Machines and the class PP
= Inference is in PP (proof)
= Inference is PP-hard (proof)

= Oracles and the Counting Hierarchy

= Interesting Problems in PNs and their complexity

= Partial MAP, Monotonicity, Parameter Tuning, Tunable
Monotonicity, Enumeration

= How about other formalisms?

Unbrerabicki Lirecks

« Inference is PP-complete, so polynomial time algorithms
are highly unlikely to exist

« Algorithms are known that are exponential in the
treewidth of the (moralised) graph

= We prove that these algorithms are optimal up to an
logarithmic factor in the exponent, unless the
Exponential Time Hypothesis fails

= ETH (Impagliazzo): there exists a constant ¢ > 1 such
that deciding any 3SAT instance with n variables takes
o(cM time

= Marx (2007, STOC) proved lower bound on (binary) CSP
and Graph Homomorphism for any graph with high
treewidth, using novel characterization of treewidth and
embeddedness of graphs

. = We introduce treewidth-preserving many-one reductions
n'“ to reduce CSP to Inference in polynomial time, where
the inference instance has the same treewidth (up to a
constant) as the CSP instance

= Hence, if we have an algorithm that can solve any
arbitrary Inference instance with high treewidth
efficiently, then we can also solve the CSP instance with
high treewidth efficiently, contradicting the ETH

« Hardness proof with extra constraint:
- Amany-one reduces to B, i.e. xT A ® f(x)1 B
= This reduction takes polynomial time
« AND tw(f(x)) =tw(x) + I(x) for a linear function |

= Sketch of reduction

* Letl =<V, D, C> be a CSP instance with binary constraints

= Construct B: every variable in | is a node X in B; every relation in
I is a node R in B with as parents the two variables involved;

= Conditional Probability Pr(R=true|X;,X;) = 1 for a particular value
of X;, X; if that combination is in C(I)

« Pr(all Rs=true) > 0 iff. CSP is solvable

= ‘AND’-construction to connect all R nodes in single S-node

= Here we must take care to guarantee treewidth

Unbrerabicki Lirecks

= We have shown that no generic algorithm can solve
arbitrary Inference instances with high treewidth in
subexponential time

= However, algorithms may exist that work only on a
particular class of instances — for example, using a
particulardirection of the arcs — that may run fast

= Yet, the known algorithms are all generic ones that work
on all possible networks and have a guarenteed running

time thatis exponential in the treewidth of the graph.

= Thus, these algorithms are essentially optimal (up to a
logarithmic factor in the exponent)

Unbrerabicki Lirecks

= Probabilistic Networks — usage and definitions
= Complexity of Inference

= The Inference problem

= Probabilistic Turing Machines and the class PP

= Inference is in PP (proof)

= Inference is PP-hard (proof)

= Lower bound on inference running time

Interesting Problems in PNs and their complexity
= Partial MAP, Monotonicity, Parameter Tuning, Tunable
Monotonicity, Enumeration

= How about other formalisms like games?

Unbrerabicki Lirecks

« A Turing Machine M has oracle access to a set A if
membership queries of A can be decided in constant

+
1 time
= M puts a string x on its oracle tape, enters the oracle

state gp and in the next timestep, M is in state qg. if x
isin A, else M is in state qg_

« If Acorresponds to a comglete problem fora class C,
then we will write e.g. NP P to denote the class of
problems decidable by a nondeterministic Turing
Machine with oracle access to a Probabilistic Turing
Machine

Unbrerabicki Lirecks

« Recall the polynomial hierarchy

« This hierarchy can be characterized using existential and
universal operators (at least the NP and co-NP tracks)

« When adding PP, PPP, NPPP, co-NPPP and PPPP (and
further on) we get the Counting Hierarchy CH

« PPi PPPi co-NPPP/NPPP | PPPP| ... | PSPACE

Unbrerabicki Lirecks

Take F = X;..X,, partitioned in subsets X ,, Xg, X of variables:

NPPP - E-MAJSAT: « an instantiation to X ,, such that the majority
of the instantiations to X satisfy F ?”

co-NPPP - A-MAJSAT : “For all instantiations to X does the majority of
the instantiations to X satisfy F ?”

PP
NPNP™" _ EA-MAJSAT: « an instantiation to X, such that, for all
instantiations to X, the majority of the instantiations to X satisfy F ?”

PPP _ Kth-SAT: “What is the lexicographical kth instantiation to X that
satisfies F ?”

PP
PPP™" - Kth-MAJSAT: “What is the lexicographical kth instantiation to X ,,
such that the majority of the instantiations to X satisfy F ?”

Unbrerabicki Lirecks

= Probabilistic Networks — usage and definitions

= Complexity of Inference
« The Inference problem
« Probabilistic Turing Machines and the class PP
= Inference is in PP (proof)
= Inference is PP-hard (proof)

= Lower bound on inference running time

= Oracles and the Counting Hierarchy

= Partial MAP, Monotonicity, Parameter Tuning, Tunable
Monotonicity, Enumeration

= How about other formalisms like games?

Unbrrratich Uirecks

Given an instantiation to
G and H, what is the most
likely value of {A,B,C} ?

Is C monotone in {G,H},
i.e. do higher values for
{G,H} make higher values
for C more likely?

Can we adjust a set X of
conditional probabilities
in the network such that
Pr(C=c

NPPPfCDmpIete
(K hout and Van der
Gaag, 2008)

Can we adjust a set X of
conditional probabilities
in the network such that g
is monotone in {G, H}

Given an instantiation to
G and H and an integer Kk,
what is the kth most likel
value of {A,B,C} ?

g Vv Reduction from a class
f y v in the Counting
INLE Hierarchy (E-Majsat etc
PN | y (E-Maj)

Quantification over
subsets of variables X

" e.g. Partial MAP: IS
o there a variable
instantiation to X such
that Pr(\:) > 0.5?

Marginalize over all

Uribrerbiedi Ueecks instantiations of X,

* For example, Parameter Tuning:
e Is NPPP-compIete in general
= Remains NP-complete when inference is easy
= Remains PP-complete for a bounded number of parameters
* Thus, polynomial algorithms are unlikely except when both
constraints are met

= Thus, studying the exact complexity and characteristics
of such problems gives us more insight about why some
things are hard to compute

« Also, it can help to determine whether efforts should be
placed in improving existing algorithms
= Known Parameter Tuning algorithm is exponential in both the
treewidth of the graph and the number of parameters

Unbrerabicki Lirecks

« Stochastic games (Shapley, 1953) introduce a Random
player, next to deterministic players Even and Odd

« In Simple Stochastic Games, the complexity of finding
the likely winner of a SSG is in NP C co-NP (Condon,
1992)

= Can we formulate a stochastic game, including winning
conditions, such that the complexity of finding the likely
winner is:
PP-complete? Ppp-complete? NPPP-compIete?
= How do the properties of such stochastic games relate
to the properties of these classes?

Unbrerabicki Lirecks

These problems all combine selecting, verifying and/or
enumeration with stochastic reasoning

Typically, many interesting problems from various areas
have such properties

E.g. stochastical planning (Littman et al, 1998); Partially
Observable MDPs (Goldsmith et al, 1996); stochastic
scheduling (van den Akker and Hoogeveen, 2008)

However, often only NP-hardness is shown, without
further examining the exact complexity

Nevertheless, this is interesting to determine which
restricted variants are feasible vs. remain hard, and to
make use of approximation strategies for such classes

Unbrerabicki Lirecks

= Probabilistic Networks — usage and definitions
= Complexity of Inference
= The Inference problem
= Probabilistic Turing Machines and the class PP
= Inference is in PP (proof)
= Inference is PP-hard (proof)
= Lower bound on inference running time
= Oracles and the Counting Hierarchy
= Interesting Problems in PNs and their complexity

= Partial MAP, Monotonicity, Parameter Tuning, Tunable
Monotonicity, Enumeration

Unbrerabicki Lirecks

= (Infinite) games have a strong application in
specification and verification of interactive systems

« From the GAMES Programme:
= specifying a module amounts to formally describing a game
= synthesizing a module amounts to computing a winning strategy
« verifying a module against a specification amounts to checking
that a strategy is indeed a winning strategy

= What if finding such a strategy turns out to be infeasible
in the game?
= Maybe we can pinpoint its exact complexity in order to show
‘where the hardness comes from’ and how we can restrict the
problem to reduce its complexity

Unbrerabicki Lirecks

= Take home-message: finding the exact complexity of a
problem (vs ‘NP-hardness’) is relevant to pinpoint which
restrictions are needed to arrive at feasible algorithms

= We have discussed the inference problem and its PP-
completeness proof and sketched a proof of its lower
bound complexity using treewidth preserving reductions

= We have discussed some other problems that combine
selecting, verifying, enumeration and stochastic
reasoning

= We suggested some further work to ‘export’ the take

home-message to other applications like stochastic
games with a reference to the GAMES program

Unbrerabicki Lirecks

