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Take home -message

• Probabilistic Networks are an interesting subject to 
study in a complexity-theoretical sense: many problems 
related to these networks are complete for complexity 
classes that have few “ real world” complete problems

• Tunable Monotonicity: NPNPPP
-complete

• Enumerating MAP: PPPPP
-complete

• This gives us insight in general in problems that 
combine selecting, verifying properties, enumeration, 
and stochastic reasoning

• Determining the exact complexity (rather than ‘NP-
hard’) of such problems is important to know which 
restrictions are needed to obtain feasible algorithms

Overview

• Probabilistic Networks – usage and definitions

• Complexity of Inference
• The Inference problem

• Probabilistic Turing Machines and the class PP

• Inference is in PP (proof)

• Inference is PP-hard (proof)

• Lower bound on inference running time 

• Oracles and the Counting Hierarchy

• Interesting Problems in PNs and their complexity
• Partial MAP, Monotonicity, Parameter Tuning, Tunable 

Monotonicity, Enumeration

• How about other formalisms like games?

Dealing with uncertainty

• In real life, we are forced to reason with imperfect 
knowledge and bounded resources

• We do not know all the relevant facts

• Which facts are relevant, anyway?

• We haven’t got time to take everything into account

• Our information is inconsistent, vague, or imprecise

• To be helpful, computer programs that assist us in 
decision making need to deal with uncertainty

• Determining the probability of a patient having a particular 
disease, given observations and clinical evidence

• Finding a plan or schedule even when not all facts are known

• Determining a weather forecast

• Dealing with inconsistent sensor input in robots
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Probabilistic Networks

• Often, probabilistic networks are used to represent 
stochastic variables in a particular domain, 
probabilities and independencies between variables 
using directed acyclic graphs

• Used in decision support systems, diagnosis, expert 
systems etc.

• Using network structure, conditional probabilities and 
reasoning rules, all sort of computations can be done:

• Likeliness of variable having a particular value given evidence

• Finding the most likely values of a set of variables

• Determining whether relations are monotone

• Determining whether variables are sensitive to small changes

Probabilistic Networks

• Formal definition: B = ( G, G), where G = ( V, A) is an 
directed acyclic graph, and G denotes the set of 
conditional probability distributions.

• Each V in V is a stochastic variable; arcs in A denote 
dependencies between variables

• For each V a conditional probability table is defined, 
giving the probability distribution of a variable, given a 
value assignment to its parents in the network

• All probabilities of interest can be calculated from this 
structure using well-known properties of probability 
theory

Probability Theory

• Conditioning
Pr(A=a1) = Pr(A=a1|B=b1) x Pr(B=b1) +

Pr(A=a1|B=b2) x Pr(B=b2) + 
...

• Marginalizing
Pr(A=a1) = Pr(A=a1 ∧ B=b1) +

Pr(A=a1 ∧ B=b2) + 
...

• Chain Rule
Pr(x1,…,xn) = Pr(xn|x1,…,xn-1) x … x Pr(x2|x1) x Pr(x1)

Probabilistic Networks

Probabilistic networks 
denote (in-)dependencies 
between variables

Probabilistic Networks

Variables V have values 
(v1, v2, ..., vn) denoting 
particular states

Probabilistic Networks

Arcs (V,W) denote 
dependencies between 
variables V and W
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Probabilistic Networks

With each variable, a 
conditional probability 
table is associated

Oesophageal Cancer Network

Classical Swine Fever Network Overview

• Probabilistic Networks – usage and definitions

• Complexity of Inference
• The Inference problem

• Probabilistic Turing Machines and the class PP 

• Inference is in PP (proof)

• Inference is PP-hard (proof)

• Lower bound on inference running time 

• Oracles and the Counting Hierarchy

• Interesting Problems in PNs and their complexity
• Partial MAP, Monotonicity, Parameter Tuning, Tunable 

Monotonicity, Enumeration

• How about other formalisms like games?

Probabilistic Inference

• x is a configuration of all variables 
(e.g., A = a1, B = b2, C = c3, D= d1)

• Pr( x) = ∏A∈V(G) Pr(A| π(A))

• In this example, 
Pr(a1b2c3d1) = Pr(a1|b2c3)·Pr(b2|c3d1)·Pr(c3|d1)·Pr(d1)

A

B

D

C

Likewise:

• Pr(a1) = ∑m Pr(a1 ∧xm)

• Pr(a1|e) = ∑m Pr(a1 ∧e ∧xm) 
∑m Pr(e ∧xm)        

Probabilistic Inference

• In general, inference takes exponential time in the 
network size

• Known algorithms often use some form of clustering
and are exponential only in the treewidth of the 
(moralised) graph

• Known results (Roth, 1998; Littman, 2001): Inference is 
#P-complete and has a PP- complete decision variant

• New result (Kwisthout, yet unpublished): no general 
algorithm can solve arbitrary instances with high 
treewidth in subexponential time unless the ETH fails
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Probabilistic Turing Machines

• A Probabilistic Turing Machine is a Non-Deterministic 
Turing Machine that branches according to a particular 
probability distribution

• Complexity classes are defined based on a particular 
notion of acceptance on a Probabilistic Turing Machine 

• Interesting classes are e.g.: 
• ZPP (zero error, on average polynomial running time)

• BPP (polynomial running time, bounded error)

• PP (polynomial running time, unbounded error)

• Also NP can be defined in such a way by forgetting 
about the probability distribution in each branch

PP – probabilistic polynomial-time

• PP contains languages that are accepted by any 
majority on a Probabilistic Turing Machine M

• This majority may depend on the input and may be 
exponentially small, hence BPP ⊆ PP. This ‘trivial ’
distinction between BPP and PP makes PP a very 
powerful class, including NP

• Let f be a SATISFIABILIY instance with variables x1 to xn. Define 
? = f ∨ xn+1. The majority of the instantiations to x1...n+1 accept 

? iff f is satisfiable. Thus, NP ⊆ PP. 

• PP has complete problems (BPP and ZPP have not), the 
canonical complete problem is MAJSAT: given a Boolean 
formula f , does the majority of the truth assignments 
to its variables accept f ?

Probabilistic Inference is PP-Complete

To prove: 

1. Show that there exists a probabilistic Turing Machine 
accepting INFERENCE instances in polynomial time

2. Reduce MAJSAT to INFERENCE

Note: 
(1) is often taken for granted in complexity proofs, 
most proofs actually prove PP-hardness

In some cases completeness proofs are wanted (e.g. to 
separate PP-problems to NPPP problems)

Complexity of Inference

• Formal definition
Let B be a probabilistic network, with C as a variable of 
interest and c as a particular value of C, and let E 
denote a set of evidence variables with instantiation e. 
Is Pr(C=c|E=e) = q?

• Conjectured complexity class is PP

• Intuitively: if we randomly guess assignments to all 
variables with respect to their conditional probabilities: 
is the probability of ending in an assignment consistent 
with C=c and E=e = q?

• eg. Pr(a1b2c3d1) = Pr(a1|b2c3)·Pr(b2|c3d1)·Pr(c3|d1)·Pr(d1)

Membership proof INFERENCE

• Construct a probabilistic Turing Machine accepting an 
INFERENCE instance in polynomial time

Example: Pr(A = a1) = Pr(a1|BC)·Pr(B|CD) ·Pr(C|D) ·Pr(D)
(summing over all configurations of B, C and D)

• Compute products backwards

• Choose an instantiation at random given the probability 

distribution

• If the configuration is consistent with A = a1, then 

output YES, else output NO

• The probability of arriving at an accepting output is 

exactly Pr(A = a1) 

Membership proof INFERENCE
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PP-Hardness proof of INFERENCE

• Transform a MAJSAT instance to INFERENCE

F = ¬(X1 ∨ X2) ∨ ¬X3

• Does the majority of the possible instantiations to X 
satisfy F ?

• This is a YES- instance, actually (5 out of 8 instances 
satisfy F )

• We construct a network BF from an instance F

• Variables in F are nodes with values T, F 
(uniform probability)

• Operators in F are nodes with values T, F 
(probability table = truth value of logical component

Hardness proof constructs

X Pr(X = T) = 0.5
Pr(X = F) = 0.5

X

∨

Y

Pr(∨ = T| X = T and Y = T) = 1

Pr(∨ = T| X = T and Y = F) = 1

Pr(∨ = T| X = F and Y = T) = 1

Pr(∨ = T| X = F and Y = F) = 0

Hardness proof constructs

F = ¬(X1 ∨ X2) ∨ ¬X3

Pr(VF = T| X1 ∧ X2 ∧ X3) = 0
Pr(VF = T| X1 ∧ X2 ∧ ¬X3) = 1
Pr(VF = T| X1 ∧ ¬X2 ∧ X3) = 0

:
Pr(VF = T| ¬X1 ∧ ¬X2 ∧ ¬X3) = 1

Is Pr( VΦ=T) = 0.5? Only 
if the majority of truth 
assignments satisfies F ! 

Ref: Littman, Majercik, 
& Pitassi (2001)

Overview

• Probabilistic Networks – usage and definitions

• Complexity of Inference
• The Inference problem

• Probabilistic Turing Machines and the class PP

• Inference is in PP (proof)

• Inference is PP-hard (proof)

• Lower bound on inference running time

• Oracles and the Counting Hierarchy

• Interesting Problems in PNs and their complexity
• Partial MAP, Monotonicity, Parameter Tuning, Tunable 

Monotonicity, Enumeration

• How about other formalisms?

Lower bound on Inference

• Inference is PP- complete, so polynomial time algorithms 
are highly unlikely to exist

• Algorithms are known that are exponential in the 
treewidth of the (moralised) graph

• We prove that these algorithms are optimal up to an 
logarithmic factor in the exponent, unless the 
Exponential Time Hypothesis fails

• ETH ( Impagliazzo): there exists a constant c > 1 such 
that deciding any 3SAT instance with n variables takes 
O(cn) time

Lower bound on Inference

• Marx (2007, STOC) proved lower bound on (binary) CSP 
and Graph Homomorphism for any graph with high 
treewidth, using novel characterization of treewidth and 
embeddedness of graphs

• We introduce treewidth-preserving many-one reductions 
to reduce CSP to Inference in polynomial time, where 
the inference instance has the same treewidth (up to a 
constant) as the CSP instance

• Hence, if we have an algorithm that can solve any
arbitrary Inference instance with high treewidth
efficiently, then we can also solve the CSP instance with 
high treewidth efficiently, contradicting the ETH
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Lower bound on Inference

• Hardness proof with extra constraint:
• A many-one reduces to B, i.e. x ∈ A  → f(x) ∈ B

• This reduction takes polynomial time

• AND tw(f(x)) = tw(x) + l(x) for a linear function l

• Sketch of reduction
• Let I = <V, D, C> be a CSP instance with binary constraints

• Construct B: every variable in I is a node X in B; every relation in 
I is a node R in B with as parents the two variables involved;

• Conditional Probability Pr(R=true|Xi,Xj) = 1 for a particular value 
of X i, Xj if that combination is in C(I)

• Pr(all Rs=true) > 0 iff. CSP is solvable

• ‘AND’-construction to connect all R nodes in single S-node

• Here we must take care to guarantee treewidth

Lower bound on Inference

• We have shown that no generic algorithm can solve
arbitrary Inference instances with high treewidth in 
subexponential time

• However, algorithms may exist that work only on a 
particular class of instances – for example, using a 
particular direction of the arcs – that may run fast

• Yet, the known algorithms are all generic ones that work
on all possible networks and have a guarenteed running 
time that is exponential in the treewidth of the graph.

• Thus, these algorithms are essentially optimal (up to a 
logarithmic factor in the exponent)

Overview

• Probabilistic Networks – usage and definitions

• Complexity of Inference
• The Inference problem

• Probabilistic Turing Machines and the class PP

• Inference is in PP (proof)

• Inference is PP-hard (proof)

• Lower bound on inference running time 

• Oracles and the Counting Hierarchy

• Interesting Problems in PNs and their complexity
• Partial MAP, Monotonicity, Parameter Tuning, Tunable 

Monotonicity, Enumeration

• How about other formalisms like games?

Oracle Turing Machine

• A Turing Machine M has oracle access to a set A if
membership queries of A can be decided in constant 
time

• M puts a string x on its oracle tape, enters the oracle
state qO and in the next timestep, M is in state qO+ if x 
is in A, else M is in state qO-

• If A corresponds to a complete problem for a class C, 
then we will write e.g. NPPP to denote the class of 
problems decidable by a nondeterministic Turing 
Machine with oracle access to a  Probabilistic Turing 
Machine

Oracles and the Counting Hierarchy

• Recall the polynomial hierarchy

• This hierarchy can be characterized using existential and 
universal operators (at least the NP and co-NP tracks)

• When adding PP, PPP, NPPP, co-NPPP and PPPP (and 
further on) we get the Counting Hierarchy CH

• PP ⊆ PPP ⊆ co-NPPP/NPPP ⊆ PPPP ⊆ ... ⊆ PSPACE

P

NP

co-NP co-NPNP

NPNP

PNP PNPNP
NPNPNP

co-NPNPNP

Complete problems in the Counting Hierarchy

Take F = X1..Xn partitioned in subsets XA, XB, XC of variables:

NPPP - E-MAJSAT: “Is there an instantiation to XA, such that the majority
of the instantiations to XB satisfy F ?”

co-NPPP - A-MAJSAT : “For all instantiations to XA, does the majority of 
the instantiations to XB satisfy F ?”

NPNPPP
- EA-MAJSAT: “Is there an instantiation to XA, such that, for all

instantiations to XB, the majority of the instantiations to XC satisfy F ?”

PPP - Kth-SAT: “What is the lexicographical kth instantiation to X that 
satisfies F ?”

PPPPP
- Kth-MAJSAT: “What is the lexicographical kth instantiation to XA, 

such that the majority of the instantiations to XB satisfy F ?”
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Overview

• Probabilistic Networks – usage and definitions

• Complexity of Inference
• The Inference problem

• Probabilistic Turing Machines and the class PP

• Inference is in PP (proof)

• Inference is PP-hard (proof)

• Lower bound on inference running time 

• Oracles and the Counting Hierarchy

• Interesting Problems in PNs and their complexity
• Partial MAP, Monotonicity, Parameter Tuning, Tunable 

Monotonicity, Enumeration

• How about other formalisms like games?

Partial MAP

Given an instantiation to 
G and H, what is the most 
likely value of {A,B,C} ?

NPPP-complete
(Park & Darwiche,2004)

Monotonicity

Is C monotone in {G,H}, 
i.e. do higher values for 
{G,H} make higher values 
for C more likely?

co-NPPP-complete 
(van der Gaag et al, 2004)

Parameter Tuning

Can we adjust a set X of 
conditional probabilities 
in the network such that 
Pr(C=c) > q?

NPPP-complete 
(Kwisthout and Van der
Gaag, 2008)

Tunable Monotonicity

Can we adjust a set X of 
conditional probabilities 
in the network such that C 
is monotone in {G, H}

NPNPPP
-complete 

(Kwisthout , unpublished)

Enumerating Partial MAP

Given an instantiation to 
G and H and an integer k, 
what is the kth most likely 
value of {A,B,C} ?

PPPPP
-complete 

(Kwisthout , 2008)
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Generic hardness proof structure

F = ¬(X1 ∨ X2) ∨ ¬X3

Reduction from a class 
in the Counting 
Hierarchy (E-Majsat etc)

Quantification over 
subsets of variables X

e.g. Partial MAP: IS 
there a variable 
instantiation to XE such 
that Pr(VF ) > 0.5?

Marginalize over all 
instantiations of XM

XE

XM

Problems on Probabilistic Networks

• These problems all combine selecting, verifying and/or 
enumeration with stochastic reasoning

• Typically, many interesting problems from various areas 
have such properties

• E.g. stochastical planning (Littman et al, 1998); Partially 
Observable MDPs (Goldsmith et al, 1996); stochastic 
scheduling (van den Akker and Hoogeveen, 2008)

• However, often only NP-hardness is shown, without 
further examining the exact complexity

• Nevertheless, this is interesting to determine which 
restricted variants are feasible vs. remain hard, and to 
make use of approximation strategies for such classes 

On finding the exact complexity

• For example, Parameter Tuning:
• Is NPPP-complete in general
• Remains NP-complete when inference is easy
• Remains PP-complete for a bounded number of parameters
• Thus, polynomial algorithms are unlikely except when both

constraints are met

• Thus, studying the exact complexity and characteristics 
of such problems gives us more insight about why some 
things are hard to compute

• Also, it can help to determine whether efforts should be 
placed in improving existing algorithms

• Known Parameter Tuning algorithm is exponential in both the 
treewidthof the graph and the number of parameters

Overview

• Probabilistic Networks – usage and definitions

• Complexity of Inference
• The Inference problem

• Probabilistic Turing Machines and the class PP

• Inference is in PP (proof)

• Inference is PP-hard (proof)

• Lower bound on inference running time 

• Oracles and the Counting Hierarchy

• Interesting Problems in PNs and their complexity
• Partial MAP, Monotonicity, Parameter Tuning, Tunable 

Monotonicity, Enumeration

• How about other formalisms like games?

Stochastic games

• Stochastic games (Shapley, 1953) introduce a Random 
player, next to deterministic players Even and Odd

• In Simple Stochastic Games, the complexity of finding 
the likely winner of a SSG is in NP ∩ co-NP (Condon, 
1992)

• Can we formulate a stochastic game, including winning 
conditions, such that the complexity of finding the likely 
winner is:

PP-complete? PPP-complete? NPPP-complete?

• How do the properties of such stochastic games relate 
to the properties of these classes?

Stochastic games

• (Infinite) games have a strong application in 
specification and verification of interactive systems

• From the GAMES Programme:
• specifying a module amounts to formally describing a game

• synthesizing a module amounts to computing a winning strategy

• verifying a module against a specification amounts to checking 
that a strategy is indeed a winning strategy 

• What if finding such a strategy turns out to be infeasible 
in the game?

• Maybe we can pinpoint its exact complexity in order to show 
‘where the hardness comes from’ and how we can restrict the 
problem to reduce its complexity
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Conclusions, looking back and forth

• Take home-message: finding the exact complexity of a 
problem (vs ‘NP-hardness’) is relevant to pinpoint which 
restrictions are needed to arrive at feasible algorithms

• We have discussed the inference problem and its PP-
completeness proof and sketched a proof of its lower 
bound complexity using treewidth preserving reductions

• We have discussed some other problems that combine 
selecting, verifying, enumeration and stochastic 
reasoning

• We suggested some further work to ‘export’ the take 
home-message to other applications like stochastic 
games with a reference to the GAMES program


