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Abstract. Computing posterior and marginal probabilities constitutes
the backbone of almost all inferences in Bayesian networks. These com-
putations are known to be intractable in general [2]; moreover, it is known
that approximating these computations is also NP-hard [3]. In the origi-
nal paper we use fixed-error randomized tractability analysis [4], a recent
randomized analogue of parameterized complexity analysis [5], to sys-
tematically address the complexity of (randomized) approximate infer-
ence in Bayesian networks. In this extended abstract we will give a brief
introduction of the key concepts and results in this paper.

1 Approximate inference in Bayesian networks

As computing posterior probabilities in Bayesian networks is an NP-hard prob-
lem [2], one often resorts to approximate inferences. For example, rather than
computing the exact value of a posterior probability distribution P = Pr(H | E),
one might settle for a distribution Q that is easier to compute and that is close
to the target distribution P. One such approximation approach is to sample from
the distribution, yielding a randomized algorithm that (given sufficient samples)
approximates the distribution. In the full paper [1] we investigated the proper-
ties of such randomized approximation problems. Given that Bayesian inference
is NP-hard, an efficient general randomized algorithm can be ruled out, unless
BPP = NP; we are thus focusing on parameterizing the problem [5] such that the
expected running time of the algorithm is exponential only in the parameter, yet
polynomial in the input. Formally, (parameterized) complexity theory is built
on decision problems, hence, we are interested in parameters k for which the
following1 decision problem becomes feasible:

Additive-approximated Conditional Probability (aa-CProb)
Input: A Bayesian network B with designated non-overlapping subsets
of variables H and E and corresponding joint value assignments h to H
and e to E; in addition, error bound ε and rational number r.
Question: Is Pr(h | e)± ε > r?

? This is an extended abstract of [1].
1 Among other variants such as relative approximations and marginal inferences.



2

2 Fixed-error randomized tractability

The complexity classes PP and BPP are defined as classes of decision problems
that are decidable by a randomized algorithm in polynomial time with a par-
ticular probability of error; the difference between these two classes is in the
bound on the error probability. In particular, a decision problem Π ∈ PP if
and only if there exists a randomized algorithm accepting Yes-instances and re-
jecting No-instances of Π with probability strictly larger than 1/2. In contrast,
for BPP these probabilities are polynomially bounded away from 1/2, allowing
for effectively ‘boosting up’ the probability of acceptance while still taking only
polynomial time. In order to parameterize the probability of acceptance—and
thus making the time needed to boost the probability of acceptance close to 1
relative to a parameter—we introduce the fixed-error randomized tractability
class FERT; informally, a problem in FERT is tractable if the parameter is small
and intractable otherwise. This is formalized as follows:

Definition 1 (FERT). Let Π be a decision problem and let k-Π be a param-
eterization of Π. We have that k-Π ∈ FERT if and only if there exists a ran-
domized algorithm that accepts Yes-instances x of Π with probability at least
1/2 + min(f(k), 1/|x|c) for a constant c and arbitrary function f : R → 〈0, 1/2];
No-instances are accepted with probability at most 1/2−min(f(k), 1/|x|c).

3 Highlighted results

Due to space constraints we just briefly list some interesting results as a teaser to
the full paper, where d denotes the in-degree of the network, and De formalizes
the maximal range of the parameters in the CPTs relative to the evidence:

{Pr(h | e), ε}-aa-CProb ∈ FERT but {d, ε}-aa-CProb 6∈ FERT and also
{Pr(h | e), d}-aa-CProb 6∈ FERT

{De}-aa-CProb 6∈ FERT but {De, ε}-aa-CProb ∈ FERT

In general, this approach allows us to explicate what does and what doesn’t
make approximate inference feasible in Bayesian networks. The full paper has a
complete overview of known and new results cast into this complexity framework.
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