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Abstract. The problem of finding the most probable explanation to
a designated set of variables (the MAP problem) is a notoriously in-
tractable problem in Bayesian networks, both to compute exactly and
to approximate. It is known, both from theoretical considerations and
from practical experiences, that low treewidth is typically an essential
prerequisite to efficient exact computations in Bayesian networks. In this
paper we investigate whether the same holds for approximating MAP.
We define four notions of approximating MAP (by value, structure, rank,
and expectation) and argue that all of them are intractable in general.
We prove that efficient value-, structure-, and rank-approximations of
MAP instances with high treewidth will violate the Exponential Time
Hypothesis. In contrast, we hint that expectation-approximation can be
done efficiently, even in MAP instances with high treewidth, if the most
probable explanation has a high probability.

1 Introduction

One of the most important computational problems in Bayesian networks is
the MAP problem, i.e., the problem of finding the joint value assignment to a
designated set of variables (the MAP variables) with the maximum posterior
probability. The MAP problem is notably intractable; as it is NPPP-hard, it is
strictly harder (given usual assumptions in computational complexity theory)
than the PP-hard inference problem [17]. In a sense, it can be seen as combining
an optimization problem with an inference problem, both of which potentially
contribute to the problem’s complexity [17, p. 113]. Even when all variables
in the network are binary and the network has the (very restricted) polytree
topology, MAP remains NP-hard [5]. Only when both the optimization and the
inference part of the problem can be computed tractably (for example, if both
the treewidth of the network and the cardinality of the variables are small and
the most probable joint value assignment has a high probability) MAP can be
computed tractably [11]. It is known that, for arbitrary probability distributions
and under the assumption of the Exponential Time Hypothesis, a small treewidth
of the moralized graph of a Bayesian network is a necessary condition for the
inference problem to be tractable [13]; this result can easily be extended to MAP.

MAP is also intractable to approximate [1, 11, 12, 17]. While it is obviously
the case that a particular instance to the MAP problem can be approximated ef-
ficiently when it can be efficiently computed exactly, it is as yet unclear whether



approximate MAP computations can be rendered tractable under different con-
ditions than exact MAP computations. Crucial here is the question what we
mean with a statement as ‘algorithm A approximates the MAP problem’. Typi-
cally, in computer science, approximation algorithms guarantee that the output
of the algorithm has a value that is within some bound of the value of the optimal
solution. For example, the canonical approximation algorithm to the Vertex
Cover problem selects an edge at random, puts both endpoints in the vertex
cover, and removes these nodes from the instance. This algorithm is guaranteed
to get a solution that has at most twice the number of nodes in the vertex cover
as the optimal vertex set. However, typical Bayesian approximation algorithms
have no such guarantee; in contrast, they may converge to the optimal value
given enough time (such as the Metropolis-Hastings algorithm), or they may
find an optimal solution with a high probability of success (such as repeated
local search strategies).

In this paper we assess different notions of approximation as relevant for
the MAP problem; in particular value-approximation, structure-approximation,
rank-approximation, and expectation-approximation of MAP. After introducing
notation and providing some preliminaries (Section 2), we show that each of these
approximations is intractable under the assumption that P 6= NP, respectively
NP 6⊆ BPP (Section 3). Building on the result in [13] we show in Section 4 that
bounded treewidth is indeed a necessary condition for efficient value-, structure-,
and rank-approximation of MAP; however, we show that MAP can sometimes
be efficiently expectation-approximated, even on networks where the moralized
graph has a high treewidth, if the most probable joint value assignment to the
MAP variables has a high probability. We conclude the paper in Section 5.

2 Preliminaries

In this section, we introduce our notational conventions and provide some pre-
liminaries on Bayesian networks, graph theory, and complexity theory; in par-
ticular definitions of the MAP problem, treewidth, parameterized complexity
theory, and the Exponential Time Hypothesis. For a more thorough discussion
of these concepts, the reader is referred to textbooks such as [4], [3], and [6].

2.1 Bayesian Networks

A Bayesian network B = (GB,Pr) is a graphical structure that models a joint
probability distribution over a set of stochastic variables. B includes a directed
acyclic graph GB = (V,A), where V models the variables and A models the
conditional (in)dependences between them, and a set of parameter probabilities
Pr in the form of conditional probability tables (CPTs), capturing the strengths
of the relationships between the variables. The network models a joint probability
distribution Pr(V) =

∏n
i=1 Pr(Vi | π(Vi)) over its variables; here, π(Vi) denotes

the parents of Vi in GB. We will use upper case letters to denote individual nodes
in the network, upper case bold letters to denote sets of nodes, lower case letters



to denote value assignments to nodes, and lower case bold letters to denote joint
value assignments to sets of nodes.

One of the key computational problems in Bayesian networks is the problem
to find the most probable explanation for a set of observations, i.e., the joint value
assignment to a designated set of variables (the explanation set) that has highest
posterior probability given the observed variables (the joint value assignment to
the evidence set) in the network. If the network is bi-partitioned into explanation
variables and evidence variables this problem is known as Most Probable Ex-
planation (MPE). The more general problem, where the network also includes
variables that are neither observed nor to be explained is known as (Partial or
Marginal) MAP. This problem is typically defined formally as follows:

MAP
Instance: A Bayesian network B = (GB,Pr), where V is partitioned into a set
of evidence nodes E with a joint value assignment e, a set of intermediate
nodes I, and an explanation set H.
Output: A joint value assignment h to H such that for all joint value
assignments h′ to H, Pr(h | e) ≥ Pr(h′ | e).

In the remainder, we use the following definitions. For an arbitrary MAP
instance {B,H,E, e}, let cansolB denote a function returning candidate solutions
to {B,H,E, e}, with optsolB denoting a function returning the optimal solution
(or, in case of a draw, one of the optimal solutions) to the MAP instance.

2.2 Treewidth

An important structural property of a Bayesian network B is its treewidth, which
can be defined as the minimum width over all tree-decompositions of triangula-
tions of the moralization GM

B of the network. Treewidth plays an important role
in the complexity analysis of Bayesian networks, as many otherwise intractable
computational problems can be rendered tractable, provided that the treewidth
of the network is small. The moralization (or ‘moralized graph’) GM

B is the undi-
rected graph that is obtained from GB by adding arcs so as to connect all pairs
of parents of a variable, and then dropping all directions. A triangulation of GM

B
is any chordal graph GT that embeds GM

B as a subgraph. A chordal graph is a
graph that does not include loops of more than three variables without any pair
being adjacent.

A tree-decomposition [18] of a triangulation GT now is a tree TG such that
each node Xi in TG is a bag of nodes which constitute a clique in GT; and for
every i, j, k, if Xj lies on the path from Xi to Xk in TG, then Xi∩Xk ⊆ Xj. The
width of the tree-decomposition TG of the graph GT is defined as the size of the
largest bag in TG minus 1, i.e., maxi(|Xi| − 1). The treewidth tw of a Bayesian
network B now is the minimum width over all possible tree-decompositions of
triangulations of GM

B .



2.3 Complexity Theory

We assume that the reader is familiar with basic notions from complexity theory,
such as intractability proofs, the computational complexity classes P, NP, and
polynomial-time reductions. In this section we shortly review some additional
concepts that we use throughout the paper, namely the complexity classes PP
and BPP, the Exponential Time Hypothesis and some basic principles from
parameterized complexity theory.

The complexity classes PP and BPP are defined as classes of decision prob-
lems that are decidable by a probabilistic Turing machine (i.e., a Turing machine
that makes stochastic state transitions) in polynomial time with a particular
(two-sided) probability of error. The difference between these two classes is in
the bound on the error probability. Yes-instances for problems in PP are ac-
cepted with probability 1/2 + ε, where ε may depend exponentially on the input
size (i.e., ε = 1/cn). Yes-instances for problems in BPP are accepted with a
probability that is polynomially bounded away from 1/2, i.e., (i.e., ε = 1/nc).
PP-complete problems, such as the problem of determining whether the ma-
jority of truth assignments to a Boolean formula φ satisfies φ, are considered
to be intractable; indeed, it can be shown that NP ⊆ PP. In contrast, prob-
lems in BPP are considered to be tractable. Informally, a decision problem Π is
in BPP if there exists an efficient randomized (Monte Carlo) algorithm that de-
cides Π with high probability of correctness; given that the error is polynomially
bounded away from 1/2, the probability of answering correctly can be boosted
to be arbitrarily close to 1. While obviously BPP ⊆ PP, the reverse is unlikely;
in particular, it is conjectured that BPP = P.

The Exponential Time Hypothesis (ETH), introduced by [8], states that there
exists a constant c > 1 such that deciding any 3Sat instance with n variables
takes at least Ω(cn) time. Note that the ETH is a stronger assumption than the
assumption that P 6= NP. A sub-exponential but not polynomial-time algorithm
for 3Sat, such as an algorithm running in O(2

3
√
n), would contradict the ETH

but would not imply that P = NP. We will assume the ETH in our proofs that
show the necessity of low treewidth for efficient approximation of MAP.

Sometimes problems are intractable (i.e., NP-hard) in general, but become
tractable if some parameters of the problem can be assumed to be small. In-
formally, a problem is called fixed-parameter tractable for a parameter k (or a
set {k1, . . . , kn} of parameters) if it can be solved in time, exponential (or even
worse) only in k and polynomial in the input size |x|, i.e., in time O(f(k)·|x|c) for
a constant c and an arbitrary function f . In practice, this means that problem
instances can be solved efficiently, even when the problem is NP-hard in general,
if k is known to be small. In contrast, if a problem is NP-hard even when k is
small, the problem is denoted as para-NP-hard for k.

3 Approximating MAP

It is widely known, both from practical experiences and from theoretical results,
that ‘small treewidth’ is often a necessary constraint to render exact Bayesian



inferences tractable.1 However, it is often assumed that such intractable compu-
tations can be efficiently approximated using inexact algorithms; this assumption
appears to be warranted by the observation that in many cases approximation al-
gorithms seem to do a reasonable job in, e.g., estimating posterior distributions.
Whether this observation has a firm theoretical basis, i.e., whether approxima-
tion algorithms can or cannot in principle perform well even in situations where
treewidth can grow large, is to date not known.

Crucial in answering this question is to make precise what efficiently ap-
proximated actually pertains to. The on-line Merriam-Webster dictionary lists
as one of its entries for approximate ‘to be very similar to but not exactly like
(something)’. In computer science, this similarity is typically defined in terms of
value: ‘approximate solution A has a value that is close to the value of the opti-
mal solution’. However, other notions of approximation can be relevant. One can
think of approximating not the value of the optimal solution, but the appearance:
‘approximate solution A′ closely resembles the optimal solution’. Also, one can
define an approximate solution as one that ranks close to the optimal solution:
‘approximate solution A′′ ranks within the top-k solutions’. Note that these no-
tions can refer to completely different solutions. One can have situations where
the second-best solution does not resemble at all the optimal solution, whereas
solutions that look almost the same have a very low value as compared to the
optimal solution [12]. Similarly, the second-best solution may either have a value
that is almost as good as the optimal solution, or much worse.

In many practical applications, in particular of Bayesian inferences, these
definitions of ‘approximation’ do not (fully) capture the actual notion we are in-
terested in. For example, when trying to approximate a distribution using some
sampling method we have no guarantee on how well the approximate distri-
bution matches the original distribution (e.g., in terms of the Kullback-Leibler
divergence); likely, we will (need to) settle for ‘probably approximately correct’
(PAC) approximations [19]. The added notion of approximation here, induced
by the use of randomized computations, is the allowance of a bounded amount
of error.

In the remainder of this section we will elaborate on these notions of approx-
imation when applied to the MAP problem. We will give formal definitions of
these approximate problems and show why all of them are intractable in general.
For MAP-approximation by value and by structure we will interpret known re-
sults in the literature. For MAP-approximation by rank we give a formal proof
of intractability; for MAP-approximation using randomized algorithms we give
an argument from complexity theory.

3.1 Value-approximation

Value-approximating MAP is the problem of finding an explanation that has a
value, close to the value of the optimal solution. This problem is intractable in

1 An exception to this general observation might be algorithms that employ specific
local structures, such as context-specific dependences, in the network, as one of the
anonymous reviewers noted.



general, even if the variables of the network are bi-partitioned into explanation
and evidence variables (i.e., when we approximate an MPE problem). Abdelbar
and Hedetniemi proved that it is NP-hard in general to find an explanation

h ∈ cansolB with a constant ratio bound Pr(optsolB | e)
Pr(h | e) ≤ ρ for any constant

ρ ≥ 1 [1]. In addition, it can be shown that it is NP-hard in general to find an
explanation h ∈ cansolB with Pr(h, e) > ε for any constant ε > 0 [11]. The
latter result holds even for networks with only binary variables and at most two
incoming arcs per variable.

3.2 Structure-approximation

Structure-approximating MAP is the problem of finding an explanation that
structurally resembles the optimal solution. This is captured using a solution
distance function, a metric associated with each optimization problem relating
candidate solutions with the optimal solution [7]. For MAP, the typical structure
distance function dH(h ∈ cansolB, optsolB) is the Hamming distance between
explanation h ∈ cansolB and the most probable explanation optsolB. It has been
shown in [12] that no algorithm can calculate the value of even a single variable
in the most probable explanation in polynomial time, unless P = NP; that is, it
is NP-hard to find an explanation with dH(h ∈ cansolB, optsolB) ≤ |optsolB| −
1, even if the variables of the network are bi-partitioned into explanation and
evidence variables.

3.3 Rank-approximation

Apart from allowing an explanation that resembles, or has a probability close
to, the most probable explanation, we can also define an approximate solution
as an explanation which is one of the k best explanations, for a constant k.
Note that this explanation may not resemble the most probable explanation nor
needs to have a relatively high probability, only that it is ranked within the
k most probable explanations. We will denote this approximation as a rank-
approximation, and we will prove that it is NP-hard to approximate MAP using
a rank-approximation for any constant k. We do so by a reduction from a variant
of LexSat, based on the reduction in [14]. LexSat is defined as follows:

LexSAT
Instance: A Boolean formula φ with n variables X1, . . . , Xn.
Output: The lexicographically largest truth assignment x to
X = {X1, . . . , Xn} that satisfies φ; the output is ⊥ if φ is not satisfiable.

Here, the lexicographical order of truth assignments maps a truth assignment
x = x1, . . . , xn to a string {0, 1}n, with {0}n (all variables set to false) is
the lexicographically smallest, and {1}n (all variables set to true) is the lexico-
graphically largest truth assignment. LexSat is NP-hard; in particular, LexSat
has been proven to be complete for the class FPNP [9]. In our proofs we will use
the following variant that always returns a truth assignment (rather than ⊥, in
case φ is unsatisfiable):
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Fig. 1. Example construction of Bφex from LexSat’ instance φex

LexSAT’
Instance: A Boolean formula φ with n variables X1, . . . , Xn.
Output: The lexicographically largest satisfying truth assignment x to
ψ = (¬X0) ∨ φ that satisfies ψ.

Note that if φ is satisfiable, then X0 is never set to false in the lexicographi-
cally largest satisfying truth assignment to ψ, yet X0 is necessarily set to false
if φ is not satisfiable; hence, unsatisfying truth assignments to φ are always or-
dered after satisfying truth assignments in the lexicographical ordering. Note
that LexSat trivially reduces to LexSat’ using a simple transformation. We
claim the following.

Theorem 1. No algorithm can k-rank-approximate MAP, for any constant k,
in polynomial time, unless P = NP.

In our proof we describe a polynomial-time Turing reduction from LexSat’ to
k-rank-approximated-MAP for an arbitrary constant k. The reduction largely
follows the reduction as presented in [14] with some additions. We will take the
following LexSat’-instance as running example in the proof: φex = ¬X1∧ (X2∨
¬X3); correspondingly, ψex = (¬X0)∨ (¬X1 ∧ (X2 ∨¬X3)) in this example. We
set k = 3 in the example construct. We now construct a Bayesian network Bφ
from ψ as follows (Figure 1).

For each variable Xi in ψ, we introduce a binary root variable Xi in Bφ
with possible values true and false. We set the prior probability distribution

of these variables to Pr(Xi = true) = 1/2 − 2i+1−1
2n+2 . In addition, we include a

uniformly distributed variable Xn+1 in Bφ with k values x1n+1, . . . , x
k
n+1. The

variables X0, . . . , Xn together form the set X. Note that the prior probability of
a joint value assignment x to X is higher than the prior probability of a different
joint value assignment x′ to X, if and only if the corresponding truth assignment
x to the LexSat’ instance has a lexicographically larger truth assignment than
x′. In the running example, we have that Pr(X0 = true) = 15/32, Pr(X1 =
true) = 13/32, Pr(X2 = true) = 9/32, and Pr(X3 = true) = 1/32, and Pr(X4 =



x14) = Pr(X4 = x24) = Pr(X4 = x34) = 1/3. Observe that we have that Pr(X1) ·
. . . · Pr(Xi−1) · Pr(Xi) > Pr(X1) · · · · · Pr(Xi−1) · Pr(Xi) for every i, i.e., the
ordering property such as stated above is attained.

For each logical operator T in ψ, we introduce an additional binary variable in
Bφ with possible values true and false, and with as parents the sub-formulas
(or single sub-formula, in case of a negation operator) that are bound by the
operator. The conditional probability distribution of that variable matches the
truth table of the operator, i.e., Pr(T = true | π(T )) = 1 if and only if the
operator evaluates to true for that particular truth value of the sub-formulas
bound by T . The top-level operator is denoted by Vψ. It is readily seen that
Pr(Vψ = true | x) = 1 if and only if the truth assignment to the variables in
ψ that matches x satisfies ψ. Observe that the k-valued variable Xn+1 is inde-
pendent of every other variable in Bφ. Further note that the network, including
all prior and conditional probabilities, can be described using a number of bits
which is polynomial in the size of φ. In the MAP instance constructed from φ,
we set Vψ as evidence set with Vψ = true as observation and we set X∪{Xn+1}
as explanation set.

Proof. Let φ be an instance of LexSat’, and let Bφ be the network constructed
from φ as described above. We have for any joint value assignment x to X that
Pr(X = x | Vψ = true) = α · Pr(X = x) for a normalization constant α if
x corresponds to a satisfying truth assignment to ψ, and Pr(X = x | Vψ =
true) = 0 if x corresponds to a non-satisfying truth assignment to ψ. Given the
prior probability distribution of the variables in X, we have that all satisfying
joint assignments x to X are ordered by the posterior probability Pr(x | Vψ =
true) > 0, where all non-satisfying joint value assignments have probability
Pr(x | Vψ = true) = 0 and thus are ordered after satisfying assignments. The
joint value assignment that has the highest posterior probability thus is the
lexicographically largest satisfying truth assignment to ψ.

If we take the k-th valued variable Xn+1 into account, we have that for every
x, the k joint value assignments to Pr(x, Xn+1 | Vψ = true) have the same
probability since Pr(x, Xn+1 | Vψ = true) = Pr(x | Vψ = true) · Pr(Xn+1).
But then, the k joint value assignments xk to X ∪ {Xn+1} that correspond to
the lexicographically largest satisfying truth assignment x to ψ all have the same
posterior probability Pr(xk | Vψ = true). Thus, any algorithm that returns one
of the k-th ranked joint value assignments to the explanation set X ∪ {Xn+1}
with evidence Vψ = true can be transformed in polynomial time to an algorithm
that solves LexSat’. We conclude that no algorithm can k-rank-approximate
MAP, for any constant k, in polynomial time, unless P = NP. ut

Note that, technically speaking, our result is even stronger: as LexSat’ is
FPNP-complete and the reduction described above actually is a one-Turing reduc-
tion from LexSat’ to k-rank-approximation-MAP, the latter problem is FPNP-
hard. We can strengthen the result further by observing that all variables (minus
Vψ) that mimic operators deterministically depend on their parents and thus can
be added to the explanation set without substantially changing the proof above.
This implies that k-rank-approximation-MPE is also FPNP-hard.



3.4 Expectation-approximation

The last notion of MAP approximation we will discuss here returns in polynomial
time an explanation that are likely to be the most probable explanation, but
allows for a small margin of error; i.e., there is a small probability that the
answer is not the optimal solution, and then no guarantees are given on the
quality of that solution. These approximations are closely related to randomized
algorithms that run in polynomial time but whose output has a small probability
of error, viz., Monte Carlo algorithms. This notion of approximation–which we
will refer to as expectation-approximation [15]–is particularly relevant for typical
Bayesian approximation methods, such as Monte Carlo sampling and repeated
local search algorithms.

In order to be of practical relevance, we want the error to be small, i.e., when
casted as a decision problem, we want the probability of answering correctly to be
bounded away from 1/2. In that case, we can amplify the probability of answering
correctly arbitrarily close to 1 in polynomial time, by repeated evocation of the
algorithm. Otherwise, e.g., if the error depends exponentially on the size of the
input, we need an exponential number of repetitions to achieve such a result.
Monte Carlo randomized algorithms are in the complexity class BPP; randomized
algorithms that may need exponential time to reduce the probability of error
arbitrarily close to 0 are in the complexity class PP.

As MAP is NP-hard, an efficient randomized algorithm solving MAP in poly-
nomial time with a bounded probability of error, would imply that NP ⊆ BPP.
This is considered to be highly unlikely, as almost every problem that enjoys an
efficient randomized algorithm has been proven to be in P, i.e., be decidable in
deterministic polynomial time.2 On various grounds it is believed that P = BPP,
and thus an efficient randomized algorithm for MAP would (under that assump-
tion) establish P = NP. Therefore, no algorithm can expectation-approximate
MAP in polynomial time with bounded margin of error unless NP ⊆ BPP. This
result holds also for MPE, which is in itself already NP-hard.

4 The Necessity of Low Treewidth for Efficient
Approximation of MAP

In the previous section we have shown that for four notions of approximating
MAP, no efficient general approximation algorithm can be constructed unless
either P = NP or NP ⊆ BPP. However, MAP is fixed-parameter tractable for a
number of problem parameters; for example, {tw, c, 1 − p}-MAP is in FPT for
parameters treewidth (tw), cardinality of the variables (c), and probability of
the most probable solution 1− p. Surely, if we can compute {k1, . . . , km}-MAP
exactly in FPT time, we can also approximate {k1, . . . , km}-MAP in FPT time.

2 The most dramatic example of such a problem is PRIMES: given a natural number,
decide whether it is prime. While efficient randomized algorithms for PRIMES have
been around quite some time (establishing that PRIMES ∈ BPP), only fairly recently
it has been proven that PRIMES is in P [2].



A question remains, however, whether approximate MAP can be fixed-parameter
tractable for a different set of parameters than exact MAP.

Treewidth has been shown to be a necessary parameter for efficient exact
computation of the Inference problem (and, by a trivial adjustment, also of
MAP), under the assumption that the ETH holds [13]. In this section, we will
show that low treewidth is also a necessary parameter for efficient approximate
computation for value-, structure-, and rank-approximations. We also show that
it is not a necessary parameter for efficient expectation-approximation. In the
next sub-section we will review so-called treewidth-preserving reductions (tw-
reductions), a special kind of polynomial many-one reduction that preserves
treewidth of the instances [13]. In Subsection 4.2 we sketch how this notion
can be used to tw-reduce Constraint Satisfaction to Inference. Together
with the known result that Constraint Satisfaction instances with high
treewidth cannot have sub-exponential algorithms, unless the ETH fails [16], it
was established in [13] that there cannot be a polynomial-time algorithm that
decides Inference on instances with high treewidth in sub-exponential time,
unless the ETH fails; the reader is referred to [13] for the full proof.

Subsequently, we will show how this proof can be augmented to establish
similar results for MAP, value-approximate MAP, structure-approximate MAP,
and rank-approximate MAP (Sub-sections 4.3 and 4.4). In the last sub-section
we will give a small example where a simple forward-sampling algorithm can effi-
ciently expectation-approximate MAP despite high treewidth; we will elaborate
on the constraints needed to render such algorithms provably fixed-parameter
tractable and give pointers for future work.

4.1 Treewidth-preserving Reductions

Treewidth-preserving reductions are defined in [13] as a means to reduce Con-
straint Satisfaction to Inference while ensuring that treewidth is pre-
served between instances in the reduction, modulo a linear factor.

Definition 1 ([13]). Let A and B be computational problems such that treewidth
is defined on instances of both A and B. We say that A is polynomial-time
treewidth-preserving reducible, or tw-reducible, to B if there exists a polynomial-
time computable function g and a linear function l such that x ∈ A if and only
if g(x) ∈ B and tw(g(x)) = l(tw(x)). The pair (g, l) is called a tw-reduction.

We will use this notion to show that Constraint Satisfaction also tw-
reduces to MAP, value-approximate MAP, structure-approximate MAP, and
rank-approximate MAP.

4.2 Proof Sketch

The tw-reduction from (binary) Constraint Satisfaction to Inference,
as presented in [13], constructs a Bayesian network BI from an instance I =
(V,D,C) of Constraint Satisfaction, where V denotes the set of variables
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Fig. 2. Example construction of BI from example CSP instance I

of I, D denotes the set of values of these variables, and C denotes the set of
binary constraints defined over V × V. The constructed network BI includes
uniformly distributed variables Xi, corresponding with the variables in V, and
binary variables Rj , corresponding with the constraints in C. The parents of
the variables Rj are the variables Xi that are bound by the constraints; their
conditional probability distributions match the imposed constraints on the vari-
ables (i.e., Pr(Rj = true | x ∈ Ω(π(Rj))) = 1 if and only if the joint value
assignment x to the variables bound by Rj matches the constraints imposed on
them by Rj . Figure 2, taken from [13], shows the result of the construction so far
for an example Constraint Satisfaction instance with four variables X1 to
X4, where C contains four constraints that bind respectively (X1, X2), (X1, X4),
(X2, X3), and (X3, X4).

The treewidth of the thus obtained network equals max(2, tw(GI)), where
GI is the primal graph of I; note that the treewidth of BI at most increases the
treewidth of GI by 1. In order to enforce that all constraints are simultaneously
enforced, the constraint nodes Rj need to be connected by extra nodes mimicking
‘and’ operators. A crucial aspect of the tw-reduction is the topography of this
connection of the nodes Rj : care most be taken not to blow up treewidth by
arbitrarily connecting the nodes, e.g., by a log-deep binary tree. The original
proof uses a minimal tree-decomposition of the moralization of BI and describes
a procedure to select which nodes need to be connected such that the treewidth
of the resulting graph is at most the treewidth of GI plus 3. The conditional
probability distribution of the nodes Ak is defined as follows.

Pr(Ak = true | x) =

{
1 if x =

∧
V ∈π(Ak)

(V = true)

0 otherwise

For a node Ak without any parents, Pr(Ak = true) = 1. The graph that results
from applying this procedure to the example is given in Figure 3 (also taken
from [13]). Now, Pr(A1 = true | x) = 1 if x corresponds to a satisfying value
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Fig. 3. Resulting graph BI after adding nodes Ak and appropriate arcs

assignment to V and 0 otherwise; correspondingly, Pr(A1 = true) > 0 if and
only if the Constraint Satisfaction instance is satisfiable.

4.3 MAP Result

The tw-reduction described in the previous sub-section can be easily be modified
to a tw-reduction from Constraint Satisfaction to MAP. We do this by
adding a binary node VI to the thus obtained graph, with A1 as its only parent
and with conditional probability Pr(VI = true | A1 = true) = 1 and Pr(VI =
true | A1 = false) = 1/2 − ε, where ε is a number, smaller than 1/|D||V|.
Consequently, we have that Pr(VI = true) > 1/2 if I is satisfiable, and Pr(VI =
true) < 1/2 if I is not satisfiable; hence, a MAP query with explanation set
H = VI will return VI = true if and only if I is satisfiable. We added a single
node to BI , with A1 as only parent, thus increasing the treewidth of BI by at
most 1. Hence, Constraint Satisfaction tw-reduces to MAP.

4.4 Approximation Intractability Results

In a similar way we can modify the reduction from Sub-section 4.2 to show
that value-, structure-, and rank-approximations can be tw-reduced from Con-
straint Satisfaction, as sketched below.

Value-approximation We add a binary node VI , with A1 as its only par-
ent, and with conditional probability Pr(VI = true | A1 = true) = 1 and



Pr(VI = true | A1 = false) = 0. We observe this variable to be set to true.
This enforces that Pr(A1 = true | VI = true) has a non-zero probability (i.e., I
is solvable) since otherwise there is conflicting evidence in the thus constructed
network. Thus, any value-approximation algorithm with with explanation set
H = A1 and evidence e = VI = true that can return a solution h ∈ cansolB
with Pr(h, e) > ε for any constant ε > 0, effectively solves Constraint Satis-
faction. Given that we added a single node to BI , with A1 as only parent, this
increases the treewidth of BI by at most 1. Hence, Constraint Satisfaction
tw-reduces to value-approximate MAP.

Structure-approximation Observe from the tw-reduction to MAP in Sub-
section 4.3 that, since H consists of a singleton binary variable, we trivially have
that no algorithm can find an explanation with dH(h ∈ cansolB, optsolB) ≤
|optsolB| − 1 = 0 since that would solve the MAP query. We can extend this
result to hold for explanation sets with size k for any constant k, i.e., no structure-
approximation algorithm can guarantee to return the correct value of one of the
k variables in H in polynomial time in instances of high treewidth, unless the
ETH fails.

Instead of adding a single binary node VI as in the tw-reduction to MAP,
we add k binary nodes V 1

I . . . V
k
I , all with A1 as their only parent and with

Pr(V jI = true | A1 = true) = 1 and Pr(V jI = true | A1 = false) = 1/2 − ε
for 1 ≤ j ≤ k and with ε as described in Sub-section 4.3. A MAP query with
explanation set H =

⋃
1≤j≤k V

j
I will then return ∀1≤j≤kV kI = true if and only if

I is satisfiable; if I is not satisfiable, a MAP query will return ∀1≤j≤kV kI = false
as most probable explanation. Hence, any structure-approximation algorithm
that can correctly return the value of one of the variables in H, effectively solves
Constraint Satisfaction. As we added k nodes to BI , with A1 as their
only parent, the treewidth of BI increases by at most k. Hence, Constraint
Satisfaction tw-reduces to structure-approximate MAP.

Rank-approximation We modify the proof of Sub-section 4.3 as follows. In
addition to adding a binary node VI as specified in that section, we also add
a uniformly distributed unconnected node KI with k values to H; a k-rank-
approximate MAP query with explanation set H = {VI ,KI} will return VI =
true (and KI set to an arbitrary value) if and only if I is satisfiable. The
addition of KI does not increase treewidth, hence, Constraint Satisfaction
tw-reduces to k-rank-approximate MAP.

4.5 Expectation-approximation

In the previous section we showed that we cannot value-, structure-, or rank-
approximate MAP on instances with high treewith, unless the ETH fails. Now
what about expectation-approximation? We will argue that there are MAP in-
stances with high treewidth that can be efficiently expectation-approximated,



provided that the probability Pr(optsolB | e) is high. Note that it remains NP-
hard (to be precise: para-PP-hard) to decide Inference, even if the probability
of interest is arbitrarily close to 1 [10]; as Inference is a degenerate special
case of MAP, it follows that computing MAP exactly is also NP-hard in this
case. While this sketchy argument is not a fully worked-out proof, it hints that
efficient expectation-approximation of MAP indeed depends on a different set of
parameters than the other notions of approximation discussed above.

The argument goes as follows. In order to generate MAP instances with high
treewidth, we construct them from SAT instances in a similar way as described
in Section 3.3. We can generate SAT instances with high treewidth by, e.g.,
picking an arbitrary formula φ and then boosting the treewidth by “inserting”
tautologies ∧(xi ∨ ¬xi) at strategic places in φ. We then construct a Bayesian
network Bφ from φ by including binary root truth-setting variables Xi for all
variables Xi in φ, and adding binary operator variables Tj for all logical opera-
tors in φ, and connecting them as described in Section 3.3. We again denote the
top-level operator as Vφ and we observe that Pr(Vφ = true) = #SAT/2n, i.e.,
the probability distribution over Pr(Vφ) corresponds to the number of satisfying
truth assignments to φ. If a majority of truth assignments satisfy φ, a MAP
query with H = Vφ will return true, if a minority of truth assignments satisfy
φ, the same MAP query will return false. Now, if the probability p of the most
probable joint value assignment is bounded away from 1/2, i.e., is guaranteed
to be 1/2 + 1/nc for a constant c, a simple forward sampling strategy (assigning
random joint value assignments to the variables Xi and propagating the assign-
ments according to the CPTs of the operator variables Tj) can decide this MAP
query with a bounded degree of error. To be precise, using the Chernoff bound
we can compute than the number of samples needed to have a degree of error
lower than δ is 1/(p− 1/2)2 ln 1/

√
δ = nc

2

ln 1/
√
δ.

5 Conclusion

In this paper we analysed whether low treewidth is a prerequisite for approxi-
mating MAP in Bayesian networks. We formalized four distinct notions of ap-
proximating MAP (by value, structure, rank, or expectation) and argued that
approximate MAP is intractable in general using either of these notions. In case
of value-, structure-, and rank-approximation we showed that MAP cannot be
approximated using these notions in instances with high treewidth, if the ETH
holds. We argued that expectation-approximation, in contrast, may be rendered
fixed-parameter tractable, even in instances with high treewidth, if the proba-
bility q of the most probable explanation is high (and the cardinality c of the
variables is bounded). As Inference (and thus also MAP) is intractable even
when the probability of the most probable explanation is high, this result may
indeed lead to a {q, c}-fixed parameter tractable expectation-approximation al-
gorithm for MAP. We leave the proof of existence and the actual development
and analysis of such an algorithm for future work.
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