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Abstract 

In computational cognitive science, many cognitive processes seem to be successfully modeled as Bayesian computations. Yet, many 
such Bayesian computations have been proven to be computationally intractable (NP-hard) for unconstrained input domains, even if only 
an approximate solution is sought. This computational complexity result seems to be in strong contrast with the ease and speed with 
which humans can typically make the inferences that are modeled by Bayesian models. This contrast—between theory and practice—
poses a considerable theoretical challenge for computational cognitive modelers: How can intractable Bayesian computations be 
transformed into computationally plausible `approximate’ models of human cognition? In this paper, three candidate notions of 
‘approximation’ are discussed, each of which has been suggested in the cognitive science literature. We will sketch how (parameterized) 
computational complexity analyses can yield model variants that are tractable and which can serve as the basis of computationally 
plausible models of cognition. 

Keywords: Bayesian inference; approximation; NP-hard; parameterized complexity theory; algorithms; computational explanation; 
cognitive modeling. 

1. Introduction 
Over the last decade, Bayesian modeling has become more and more important as a modeling framework in cognitive 
science. Many of such Bayesian models postulate that cognitive processes perform some form of Bayesian inference.1 
Examples of such models can be found in several different cognitive domains, including vision (Yuille & Kersten, 2006), 
language (Chater & Manning, 2006), decision making (Sloman & Hagmayer, 2006), motor planning (Wolpert & 
Ghrahamani, 2005), eye movement control (Engbert & Krügel, 2010), and theory of mind (Baker, Saxe, & Tenenbaum, 
2009; Cuijpers et al., 2006). These models often perform well at describing and predicting human behavior on small, well-
structured experimental tasks. For instance, Bayesian models have been able to succesfully model human inferences about an 
agent’s goal in a maze-like structure given the trajectory up so far (Baker et al., 2009) and predicting the most likely next 
action of a co-worker in a joint action task based on observed movements (Cuijpers et al., 2006). When confronted with task 
situations of real-world complexity, however, it is not evident if and how these models could scale up. The reason is that 
Bayesian computations are known to be computationally intractable (i.e., NP-hard) for unconstrained domains (Cooper, 
1990; Shimony, 1994; Park & Darwiche, 2004; Kwisthout, 2009; Kwisthout, 2011). Informally, this means that the 
postulated computations would simply require an unrealistic amount of time for all but small inputs if they are to operate in 
unconstrained domains (van Rooij, 2008). 

The known NP-hardness of (unconstrained) Bayesian models of cognition implies that such models cannot serve as 
computationally and psychologically plausible explanations of the tasks and processes which they model. Cognitive modelers 
using a Bayesian approach are thus confronted with a tractability paradox: humans seem capable of performing well in 
situations of real-world complexity in little time and with apparently little effort; yet, our best computational cognitive 
models consume an unrealistic amount of time or other cognitive resources for all but overly simplified toy domains. This 
paradox has been recognized by both opponents and proponents of Bayesian models, and has led to considerable debate 
about whether or not the human mind/brain performs such (rational) probabilistic computations (Chater, Oaksford, Nakisa, & 
Redington, 2003; Chater, Tenenbaum, & Yuille, 2006; Gigerenzer & Brighton, 2009; Gigerenzer, Hoffrage, & Goldstein, 
2008; Kruschke, 2010; Oaksford & Chater, 2009; Sanborn et al., 2010).  

A common response from proponents of Bayesian models of cognition has been that the tractability paradox is caused by a 
mistaken assumption, viz., the assumption that Bayesian models necessarily aim to be exact models of how human 
minds/brains form explanations. Instead, so these researchers argue, the models postulate computations that humans compute 
approximately.  For instance, the mind may approximate Bayesian computations by employing heuristics, by sampling, or by 
striving for merely satisfactory solutions rather than optimal solutions (Chater et al., 2006; Sanborn et al., 2010). 

Notwithstanding the appeal and apparent plausibility of this perspective, this standard response can at best be only part of 
the solution to the intractability paradox (Kwisthout, Wareham, & van Rooij, 2011). The reason is that most—if not all—
forms of approximating Bayesian inference are for unconstrained input domains as computationally intractable as computing 

                                                           
1 We will use the term ‘Bayesian inference’ to denote all sorts of computations using Bayesian models, like computing posterior 

probabilities and finding most probable explanations, as is common in the literature; we do not restrict this term to refer to the formal 
INFERENCE problem in Bayesian networks. 



Bayesian inference exactly.  For instance, even though empirical results suggest that in certain specific situations a few 
samples are sufficient to draw reasonable conclusions from a probability distribution (Vul, Goodman, Griffiths, & 
Tenenbaum, 2009); making decisions based on a ‘majority vote’ using samples remains provably intractable for general input 
domains (Kwisthout, 2010). Similarly, while approximate inference algorithms sometimes can perform well in practice (Park, 
2002), approximating or “satisficing” Bayesian inference remains intractable for general domains (Abdelbar & Hedetniemi, 
1998; Kwisthout, 2011; Park et al., 2004; Dagum & Luby, 1993). 

The upshot of such negative computational complexity results for approximating Bayesian inference is that the assumption 
of ‘approximation’ by itself is insufficient to explain how Bayesian models can scale to situations of real-world complexity; 
and in effect, such models cannot yet claim computational plausibility as explanations of how humans make (Bayesian) 
inferences in everyday life  (Kwisthout et al., 2011). Furthermore, by overlooking and not explicating the intrinsic 
complexity of approximating Bayesian inferences for certain situations, one may actually miss an opportunity to predict and 
explain under which circumstances humans inference can and does approximate optimal Bayesian inference and under which 
conditions it cannot and does not. 

An alternative approach to tackle this intractability paradox is to study how the complexity of computations depends 
specifically on situational constraints. This approach draws among other things on the concepts and techniques from the 
mathematical theory of parameterized complexity theory (Downey & Fellows, 1999). Here, situational constraints are 
modeled by parameters k1, k2 … km, where each k is a property of the input. For instance, a Bayesian network may have many 
parameters, such as the number of cycles in the network, the maximum number of parents for any given node, the maximum 
length of a path between any two given nodes, the treewidth2 of the network, etc.  

 It is known that certain NP-hard computations can be tractable for bounded ranges of such parameters. This is the case, for 
instance, if inferences can be computed in a time that grows non-polynomially only in the parameters and polynomial in the 
rest of the input size. In such situations the computations can be performed fast, even for very large inputs, provided only that 
the parameters take on small values in those large inputs. If similar parameterized tractability results can be obtained for 
Bayesian models of cognition, this means that the models predict that humans can make fast inferences in situations that are 
modeled by inputs with the same bounded parameter ranges.  

This approach has previously been used to successfully identify situational constraints (modeled by parameter ranges) that 
yield tractability for both Bayesian and non-Bayesian models of cognition in a variety of domains, such as: analogy (van 
Rooij, Evans, Müller, Gedge, & Wareham, 2008), problem solving (Wareham, Evans, & van Rooij, 2011), similarity (Müller, 
van Rooij, & Wareham, 2009), action understanding (Blokpoel, Kwisthout, van der Weide, & van Rooij, 2010), and 
communication (van Rooij, Kwisthout, Blokpoel, Szymanik, Wareham, & Toni, 2011). For example, based on known 
parameterized complexity results on abduction in Bayesian networks (Bodlaender, van den Eijkhof, & Van der Gaag, 2002), 
van Rooij et al. (2011) derived that the inference made by an addressee to understand a communicator’s intention—as 
modeled by a Bayesian model—is tractable when the probability of the most probable goal is relatively high and the sender 
has few (instrumental) goals other than her communicative goals.  

Until now, the parameterized complexity approach to dealing with intractability of cognitive models has focused on exact 
computations. Little research has been done, for instance, on the parameterized complexity of approximate Bayesian 
computations. Even the term ‘approximation’ appears to be often ill-defined. Take, for instance, again Bayesian abduction 
(computing the most probable explanation h out of a set of candidate explanations H, given a number of observations e, i.e., 
computing h such that Pr(H = h | e) is maximum). In the context of such a model ‘approximation’ could refer to finding 
explanations that are ‘almost as likely as’, ‘are similar to’, or ‘are likely to be’ the most probable explanation. Such ambiguity 
of the meaning of ‘approximation’ can lead to confusion and misunderstanding, as well as unsubstantiated claims of tractable 
approximability (see also van Rooij & Wareham (2012) for an extensive treatment of this issue for computational models of 
cognition in general). In this paper, we aim to explicate various notions of approximate Bayesian inference in an attempt to 
support a more thorough study of the approximability of Bayesian computations as featured in models of cognition. 
Additionally, we illustrate how an approximation approach and the parameterized complexity approach can be combined to 
identify the situational constraints that render Bayesian models tractably approximable.  

The remainder of the paper is organized as follows. We will start by defining three distinct notions of approximation. Next, 
we will present a case study to illustrate the utility of the proposed combined approach for one of these three notions of 
approximation. The conclusion of our illustration will be that approximation is neither panacea nor placebo: it is not a 
‘magical ingredient’ that makes intractable computations tractable by default. Yet, it may be a ‘necessary ingredient’ for 
achieving tractability under certain constraints. Finally, we conclude by discussing the broader implications of our case study 
and observations for dealing with the tractability paradox in Bayesian modeling in general.   

                                                           
2 Treewidth is a graph-theoretical concept that can loosely be described as a measure on the “localness” of connections in a graph. We 

refer the reader to, for instance, Bodlaender (2006) for a formal definition and more details. 



2. Notions of approximation 
In everyday language, the concept ‘roughly’ is widely used: The ratio between the circumference and diameter of a circle is 
roughly 3.14; the Sun is roughly 100 times as large (and also 100 times as distant from the Earth) as the Moon; there is a 
mountain range on Mars that looks roughly like a human face; roughly speaking, height determines shoe size. We save a lot 
of effort if we don’t compute 98 times 102 exactly, but compute it as ‘roughly 100 times 100 = 10,000.’ When we come to 
see approximation as a synonym to roughly computed, in the above-sketched informal sense, the term has a pleasant 
association with ‘fast’, ‘easy’, and ‘without much effort’. 

In computer science, however, there is a great variety on how fast and how well approximation algorithms perform for 
problems that are intractable to compute exactly. For example, the knapsack problem—in which one is to select a subset of 
numbers from a set of numbers so that the subset adds up to some pre-specified value—can be approximated within any 
desired guaranteed error margin in an amount of time that is polynomially bounded both in the input size and the error 
(Kellerer & Pferschy, 1999). In contrast, the maximum clique problem cannot be approximated at all in polynomial time, 
under the common assumption that P  NP (Zuckerman, 2006). In these classic results in computer science, approximations 
are defined as solutions that have a value that is close to the optimal solution, i.e., the approximated value is within a given 
ratio of the value of the optimal solution. However, an approximation may also be defined as a solution that has a structure 
that is similar to the structure of the optimal solution, regardless of its value (Kwisthout, 2012; van Rooij & Wareham, 2012). 
The important difference between these forms of approximation can be understood as follows: a value-approximation of the 
Bayesian abduction problem is an explanation (i.e., a value assignment to H) that is only slightly less probable than the most 
probable solution, but need not resemble that optimal solution. Conversely, a structure-approximation is an explanation that 
looks a lot like the most probable explanation, but its probability may be much lower and need not even be close to optimal. 
Lastly, we may see approximations as solutions that are likely to be the optimal solution, but allow for a small margin of 
expected error. This type of approximation is common for probabilistic algorithms that are very useful for solving a certain 
class of problems (e.g., primality testing), as they are much faster than deterministic algorithms yet allow the possibility of 
error (Motwani & Raghavan, 1995). We will denote the latter notion of approximation as expectation-approximation. Note 
that a ‘good’ value-approximation does not imply a ‘good’ structure- or expectation-approximation, or vice versa (see Figure 
1). 
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When invoking approximation as an explanatory tool, cognitive modelers may utilize many (combinations) of these 

notions of approximation. For example, models may postulate that cognitive processes compute an approximation that 
resembles the optimal solution for a Bayesian inference problem as well as have an almost-as-high probability value (Chater 
& Oaksford, 1999). Combinations of value-approximation and expectation-approximation are also common in, e.g., the well-
known PAC-learning framework for machine learning (Valiant, 1984). Consistent with the positions argued by Kwisthout et 
al. (2011, p. 780) and van Rooij and Wareham (2012), we submit that any claim that Bayesian models are tractable due to 
approximation should be supported by: (a) a precise definition of the notion of approximation the modeler assumes to be 
used; (b) in the case that the (formal) approximation problem in itself is NP-hard, a set of problem parameters that the 
modeler believes to be constrained in real-world situations (where humans perform the task well); (c) a formal proof that the 
chosen formal definition of the assumed approximation becomes tractable when the values of these parameters are so 
constrained; and (d) arguments or evidence that support the assumption in (b). 

We will next illustrate with a case study how (a), (b), (c) and (d) can be implemented for Bayesian models using formal 
theoretical methods.  

3. Case study: Most Simple Explanations 
A common computational problem in Bayesian networks is inferring the best explanation out of a set of possible hypotheses, 
given some observations that are entered as evidence into the network. In such a network, the set of variables is typically 
partitioned into explanation variables (for which a value assignment is sought), evidence variables (whose value is observed), 
and intermediate variables (which are variables whose values are neither observed, nor part of the explanation set). This 
partition corresponds to the assumption that there are (many) variables that influence the resulting most probable hypothesis, 
but are not themselves observed. One way of dealing with such intermediate variables was proposed by Kwisthout (2010). 
Therein, the MOST SIMPLE EXPLANATION problem was defined as follows:  

 
MOST SIMPLE EXPLANATION (informal) 
Input: A probabilistic network, partitioned into a set of observed evidence nodes, an explanation set, and a set of 
intermediate variables. 



Output: The joint value assignment to the explanation set that is the most probable explanation for the maximal number 
of instantiations of the intermediate variables. 
 

Or more formally stated: 
 
MOST SIMPLE EXPLANATION (formal) 
Input: A probabilistic network B, partitioned into a set of evidence nodes E with a joint value assignment e, an 
explanation set H, and intermediate variables I. 
Output: The joint value assignment h for which argmaxH Pr(H, I = i, e) = h holds for the largest number of joint value i 
assignments to I. 

 
Intuitively, one can think of MSE as the computational problem of finding the explanation that is most probable in the 
majority of possible worlds. Solving the MSE problem is, like many other computational problems defined over Bayesian 
networks, known to be intractable.3 Given this unfavorable complexity result, can MSE still serve as an adequate 
approximate model of abduction by humans in real-world situations? Using the four requirements introduced in the previous 
section we will show that the answer is yes: one can define an expectation-approximation algorithm for MSE that is tractable 
under conditions that seem to be met for human abduction. 

a) Give a precise definition of the notion of approximation that is used. We use the following expectation-approximation to 
MSE, i.e., rather than exactly computing the solution to MSE, we want a solution that is very likely to be the MSE, but 
allows for a (guaranteed to be) small probability of error. In principle, such an expectation-approximation could be computed 
for MSE using a sampling algorithm that samples N random joint value assignments to the set of intermediate variables I and 
casts a majority vote over the samples.  Moreover, using the so-called Chernoff bound (Chernoff, 1952) it can be exactly 
computed how many samples are required to expectation-approximate MSE to a given threshold probability. However, it is 
not possible to tractably expectation-approximate MSE, because the number of samples that are needed for a given degree of 
expectation-approximation can be exponential in the size of I.  

b) As the chosen approximation is intractable in general, we define problem parameters that we hypothesize to be 
constrained in the ‘real world’ situations that the model should capture. A closer look at the MSE problem will reveal many 
problem parameters on the probability distribution and on the structure of the network. We consider three such parameters 
more closely:  

 
1. The treewidth of a Bayesian network is a measure on the network structure. A formal definition of treewidth is 
mathematically non-trivial (see, e.g., Bodlaender, 2006, for details), but for our purposes it suffices to say that typically, if 
treewidth is low, the connections tend to be fairly local in the network. See Figure 2 for an illustrative example of this 
property.  
 
2. The cardinality of a Bayesian network indicates the maximum number of values any variable can take; in binary 
variables the cardinality is two, but in principle variables can take many values. 
 
3. The relevancy of the set of intermediate variables is a measure on the probability distribution associated with the 
network, and is defined as the probability that two random samples i1 and i2 would yield different most probable 
explanations. Informally, the intermediate variables have a low relevancy when there are only few possible worlds in which 
the most probable explanation deviates from the most probable explanation in the majority of worlds.  
 

--------------------------------- 
FIGURE 2 ABOUT HERE 
--------------------------------- 

 
c) Give a formal proof that expectation-approximation of MSE becomes tractable when the values of these parameters 

are constrained. It can be shown that if both the cardinality and the treewidth of the network are small, and in addition the 
intermediate variables have a low relevancy, then having only a few samples already suffices to solve the MSE with a low 
margin of error. Consider the following algorithm from Kwisthout (2010): 

 
for n = 1 to N do 
 Choose i at random 
 Determine h = argmaxH Pr(H, i, e) 
                                                           
3 In fact, it is NPPP-hard and thus resides in the same complexity class as, e.g., the MAP (Park & Darwiche, 2004) and Parameter Tuning 

(Kwisthout & van der Gaag, 2008) problems for Bayesian Networks. 



 Count the joint value assignments (h, i) 
end for 
Decide upon the majority and output hmaj 

 
Computing argmaxH Pr(H, i, e) can be done in time O(ctw n), where c denotes the cardinality of the network, tw the 
treewidth of the network, and n the number of variables of the network (Shimony, 1994). Also, according to the Chernoff 
bound, the number of samples N depends—for a fixed error rate—only on the probability that a randomly chosen sample 
actually is one of these possible worlds for which hmaj is the most probable explanation (i.e., depends only on the relevancy 
measure R) such that fewer samples are needed if this probability is high. We conclude that, for small c, small tw, and R close 
to 0, this algorithm tractably expectation-approximates the MSE problem. 

d) Support the hypothesized constraints in b) with arguments or empirical findings. The dominant factor in the running time 
of computing argmaxH Pr(H, i, e)  is the treewidth of the network, as it is in the exponent. There is evidence in the machine 
learning literature that bounding treewidth while learning Bayesian networks from data prevents overfitting of the network 
(see e.g. Koller & Friedman, 2009). As there is reason to believe human learning tends to prevent overfitting as well 
(Gigerenzer & Brighton, 2009; Chater & Vitányi, 2003), the same principles may yield bounded treewidth for human belief 
networks.  A second important factor in the running time is the relevancy of intermediate variables, i.e., the number of 
samples required to compute the MSE with low probability of error. While we are unaware of studies that empirically 
confirm that relevancy for human belief networks is low (i.e., number of required samples is small), there is independent 
theoretical research (e.g., Druzdzel, 1994; Stewart, Chater, & Brown, 2006; Vul et al., 2009) pointing in this direction.  

4. Conclusion 
Bayesian models of cognition are evidently successful in describing and predicting many cognitive phenomena. Despite this 
success, one important theoretical challenge remains to date: The tractability paradox, i.e., the apparent conflict between the 
computational intractability of Bayesian models for general input domains on the one hand, and the ease and speed with 
which humans perform the modeled tasks in situations of real-world complexity on the other. A common attempt at solving 
this paradox is to claim that minds/brains approximate, rather than exactly compute, the modeled inference problems. While 
we agree that approximation may be part of a solution, claims of ‘approximability’ alone are in the end explanatorily 
unsatisfactory as they are typically too ill-defined and sometimes even provably contradicted by known complexity results 
(Kwisthout et al., 2011). 

In this paper we presented a method for solving the tractability paradox. Importantly, our method does not solve in one go 
the paradox for all Bayesian models. This is currently not possible, and may even be impossible in principle. Instead, our 
method describes how conditions for tractability can be studied and identified for different Bayesian models case by case. 
Crucial steps in our method are the following. First, one needs to decide on a relevant formal notion of approximation for the 
respective model. Here, we have discussed three such possible formal notions—viz., value-, structure-, and expectation-
approximation—but altogether different notions or any combination of these are possible to adopt in our methodology as 
well. Second, using techniques from computational complexity theory one investigates under which conditions the respective 
model can be tractably approximated in the respective sense. Last, if there are good reasons to believe that the identified 
tractability conditions are met in those situations where humans can perform the modeled inferences quickly, the analysis has 
solved the tractability paradox for this specific Bayesian model. 

We illustrated the use of our methodology for a specific Bayesian model: MSE (which stands for ‘Most Simple 
Explanation’). We found that MSE is intractable to expectation-approximate for unconstrained Bayesian networks, but is 
tractable to expectation-approximate for networks of bounded treewidth and with few relevant intermediate variables. 
Importantly, MSE is intractable to compute exactly under those same conditions. This set of results underscores our idea that 
approximation is not a panacea (approximation is not enough to yield tractability for all domains), but it is not a placebo 
either (it plays a necessary role in yielding tractability in certain conditions). We believe that by systematically studying this 
interplay between approximation and constraints on input domains for more Bayesian models, these models can achieve 
higher levels of computational plausibility, and at the same time serve as computational-level explanations of when and why 
humans are (and are not) good at making the rational inferences postulated by these models.  
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Figure 1: (left) The most probable value assignment for V1 to V4 (denoted by the light- middle- and dark-grey colors); 
(middle) an approximation that resembles the most probable value assignment but may have a much lower probability; (right) 
an approximation that may have an almost-as-high probability as, but does not resemble, the most probable value assignment 
 

A

B C D

E

F

A

B C D

E

F
 

Figure 2: A network with low (left) and high (right) treewidth. Note that there is only a single connection between the 
clusters A,B,C and D,E,F in the left picture, whereas the connections in the right picture are much more scattered over the 
whole network. 
 


