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Abstract

While quantitative probabilistic networks (QPNs) allow experts to state influences
between nodes in the network as influence signs, rather than conditional probabili-
ties, inference in these networks often leads to ambiguous results due to unresolved
trade-offs in the network. Various enhancements have been proposed that incor-
porate a notion of strength of the influence, such as enhanced and rich enhanced
operators. Although inference in standard (i.e., not enhanced) QPNs can be done
in time polynomial to the length of the input, the computational complexity of in-
ference in these enhanced networks has not been determined yet. In this paper, we
introduce relaxation schemes to relate these enhancements to the more general case
where continuous influence intervals are used. We show that inference in networks
with continuous influence intervals is NP-hard, and remains NP-hard when the in-
tervals are discretised and the interval [—1, 1] is divided into blocks with length of
%. We discuss membership of NP, and show how these general complexity results
may be used to determine the complexity of specific enhancements to QPNs. Fur-
thermore, this might give more insight in the particular properties of feasible and
infeasible approaches to enhance QPNs.

1 Introduction

While probabilistic networks [9] are based on an intuitive notion of causality
and uncertainty of knowledge, elicitating the required probabilistic informa-
tion from experts can be a difficult task. Qualitative probabilistic networks
[14], or QPNs, have been proposed as a qualitative abstraction of probabilis-
tic networks to overcome this problem. These QPNs summarise the conditional
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probabilities between the variables in the network into a sign, which denotes
the qualitative influence between these variables, i.e., the direction of the ef-
fect. In contrast to quantitative networks, where inference has been shown to
be NP-hard [2], these networks have efficient (i.e., polynomial-time) inference
algorithms.

Other uses of QPNs include their use as an intermediate step in the con-
struction of a probabilistic network [12], a tool for verifying properties of such
networks [7], and applications where the exact probability distribution is un-
known or irrelevant [14].

Unfortunately, reasoning in a qualitative abstraction fails to give a conclusive
result when influences with contrasting signs are combined. Enhanced QPNs
have been proposed [10] in order to allow for more flexibility in determining
the influences (e.g., weakly or strongly positive) and partially resolve conflicts
when combining influences. Also, mixed networks [12] have been proposed to
facilitate stepwise quantification by allowing both qualitative and quantitative
influences to be modelled in the network.

Although inference in quantitative networks is NP-hard, and polynomial-time
algorithms are known for inference in standard qualitative networks, the com-
putational complexity of inference in enhanced networks has not been deter-
mined yet. In this paper we recall the definition of QPNs in Section 2, and we
introduce a framework to relate various enhancements, such as enhanced, rich
enhanced, and interval-based operators in Section 3. In Section 4 we show that
inference in the general, interval-based case is NP-hard. In Section 5 we show
that it remains NP-hard if we use discrete—rather than continuous—intervals.
Furthermore, we argue that, although hardness proofs might be non-trivial to
obtain, it is unlikely that there exist polynomial algorithms for less general
variants of enhanced networks, such as the enhanced and rich enhanced oper-
ators suggested by Renooij and Van der Gaag [10]. Finally, we conclude our
paper in Section 6.

2  Qualitative Probabilistic Networks

A qualitative probabilistic network @ = (G, A) is defined by associating a set
A of qualitative influences and synergies [14] with a directed acyclic graph
G = (V,A). Such a network can be seen as an abstraction of a family of
‘traditional’ probabilistic networks, where the joint probability distribution
of these networks respects the restrictions imposed by A. The influences and
synergies in A are denoted by signs. For example, a positive influence of a node
A on its successor B, denoted with ST(A, B), expresses that higher values
for A make higher values for B more likely than lower values, regardless of



influences of other nodes on B. In binary cases, with @ > @ and b > b, this
can be summarised as Pr(b|ax) — Pr(b|ax) > 0 for any value of = of other
predecessors of B. Negative influences, denoted by S™, and zero influences,
denoted by S°, are defined analogously.

If an influence is not positive, negative, or zero, it is ambiguous, denoted by
S?. This may be the case when the influence is non-monotone, e.g., Pr(b |
axry) — Pr(b|axy) > 0, but Pr(b|azy) — Pr(b|azy) < 0.In addition, the sign
‘“?” may occur during inference in cases where the actual influence is unknown
(cannot be determined precisely). If this happens, the sign represents our
lack of knowledge about the situation in the network, rather than the actual
situation, and it is therefore desirable to generate as few of these signs as
possible.

Influences can be direct (causal influence or influence along arcs) or induced
(inter-causal influence or product synergy). In the latter case, the value of one
node influences the probabilities of values of another (not directly connected)
node, given a third node [4]. Furthermore, the notion of additive synergy is
used to capture the joint effect of two variables on a third, rather than the
effect of each variable separately. Both product and additive synergy are par-
ticularly useful when a QPN is used as an intermediate step in construction of
a probabilistic network. They can model constraints in the probability distri-
bution, without the need to specify the exact probabilities. Since they are not
used for inference in QPNs, we will not discuss these synergies in this paper;
the interested reader can refer to [4] or [14].

Example 1 (from [11]) We consider a fragment of the Radiotherapy net-
work which models the effect of radiotherapy on life expectancy (Figure 1). All
variables are binary. Node L models a life-expectancy of at least six weeks,
T models the presence or absence of radiotherapy, R models a reduction of
the tumour, and S models the development of scar tissue. If a patient receives
therapy, the tumour is likely to be reduced. On the other hand, scar tissue may
develop. The associated conditional probabilities in the probabilistic network
are summarised by “+’ signs in the corresponding QPN. The tumour reduc-
tion increases the life expectancy of the patient; in contrast, the development
of scar tissue decreases the life expectancy. These effects are summarised by
the +’ respectively ‘—’ signs.

Various properties hold for these qualitative influences, namely symmetry,
transitivity, composition, associativity and distribution properties, introduced
in [14] and [10]. We define a trail t from A to B in a directed graph as a
simple path from A to B in the underlying undirected graph, i.e., a list of arcs
connecting A to B, regardless of the direction of the arcs. We define S° (A, B,t)
as the influence S°, with § € {+,—,0,?}, from a node A on a node B along
the trail t. The symmetry property indicates that influences along a trail are



Pr(t) =  0.65

Pr(s|t) = 0.10 Pr(r|t)= 0.85
Pr(s|t) = 0.01 Pr(r|t)= 0.35
Pr(l|sr) = 0.70 Pr(l|sT) = 0.15
Pr(l|sr) = 0.75 Pr(l|s7) = 0.17

Fig. 1. The Radiotherapy network

independent of the direction of the arcs in the trail. In the example network,
Pr(s|t) — Pr(s|t) = 0.10 — 0.01 > 0. Likewise, using Bayes’ rule we can
calculate that Pr(t|s) — Pr(¢|s) = 0.11 — 0.05 > 0, so the influence of S on T’
has the same sign as the influence of 7" on S. This property holds in general.

The transitivity property defines the resulting sign of the chained effect be-
tween two variables along a trail using the ®-operator; the composition prop-
erty defines the combined effect of a variable to another along multiple trails
using the @-operator. These properties are formalised as shown in Figure
2. The ®- and @-operators that follow from the transitivity and composi-
tion properties are defined in Figure 3. In our example, we can infer from
these properties that the positive effect of therapy on scar tissue also im-
plies a positive effect in the opposite direction (symmetry); that the positive
effects of therapy on tumour reduction, and of tumour reduction on life ex-
pectancy imply a positive effect of therapy on life expectancy along the trail
{(T,R), (R, L)} (transitivity); and that the opposite signs of the effects of
therapy on life expectancy along the trails {(7}, S), (S, L)} and {(T, R), (R, L)}
imply an overall unknown effect (composition). The latter example illustrates
the limited usefulness of QPNs when dealing with trade-offs in the network.
The effect of therapy on life expectancy can be calculated to be positive, using
the probabilities in the network, yet this effect is lost in the abstraction.

Using these properties, an efficient (polynomial time) inference algorithm can
be constructed [3] that propagates observed node values to other neighbouring
nodes, thus determining (As much as possible) the effect of the observation
to the other nodes in the network. The basic idea of the algorithm, given
in pseudo-code in Figure 4, is as follows. Initially, when no value has been
observed, all node signs are 0. When entering the procedure, the observed
node (say I) is instantiated with a ‘+’ (for the observed value true) or a ‘-’
(for the observed value false). Initially trail = 0, from = to = I and msign =
‘+7 or ‘—’". This node sign is propagated through the network to every active
neighbour (i.e., every neighbour that is not independent of the observed node),
combining the propagated node sign with already established node signs that
stem from other trails from I. Observe from Figure 3 that a node sign can



Symmetry: S%(A,B,t;) e A = S*(B, At e A
Transitivity: S(A, B,t;) A SY(B,C,t;) = S (A, C,t;ot;)
Composition: ~ S%(A, B, ;) A SY(A, B, t;) = S (A, B, t; || t;)

@-Associativity: G6®8)@s" . GoB(s'®6”)
®-Associativity: GOR8H®" _ qsa(8'®s")
Distribution: SO®dNR" _ g(6&6")e(6'®8")

Fig. 2. Properties of qualitative influences
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Fig. 3. The ®- and @-operator for combining signs

procedure PropagateSign(Trail ¢rail, Node from, Node to, Sign msign):
to.sign «— to.sign & msign;
trail «— trail U { to };
for each active neighbour V; of to
do [sign < sign of influence between to and V;;
msign «— to.sign ® [lsign;
if V; & trail and V;.sign # V,.sign & msign
then PropagateSign(trail, to, V;, msign).

Fig. 4. The sign-propagation algorithm

)

change at most two times: from ‘0’ to ‘+’, ‘=’, or ‘?’, and then only to ‘7’
This algorithm visits each node at most two times, and therefore halts after a
polynomial amount of time.

3 Enhanced QPNs

While these qualitative influences are useful to model influences between nodes
in the network, a lot of information is lost in the abstraction. For example,
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Fig. 5. The enhanced ®-operator

trade-offs in the network can not be modelled. In the Radiotherapy network,
the administration of radio therapy increases life expectancy because of the tu-
mour reduction, but decreases life expectancy due to the development of scar
tissue. The positive effect of tumour reduction, however, is much larger than
the negative effect of the scar tissue as the conditional probability table in Fig-
ure 1 shows. Therefore, extensions to the QPN model, like the enhanced model
in [10], have been suggested that preserve a larger amount of information in
the abstraction than the traditional QPN model. For example, given a certain
cut-off value «, an influence can be strongly positive (Pr(b|az)—Pr(b|ax) > «)
or weakly negative (—a < Pr(b|az) — Pr(b|az) < 0). The basic ‘4’ and ‘—’
signs are enhanced with signs for strong influences (‘++’ and ‘——") and aug-
mented with multiplication indices to handle complex dependencies on « as
a result of transitive and compositional combinations. In addition, the signs
‘+,” and ‘—;’ are used to denote positive or negative influences of unknown
strength. This uncertainty may arise when combining effects during inference.
For example, combining a strong positive with a weak negative effect leads
to a positive effect of unknown strength. Multiplication indices occur when
the influence of one node to another along a particular trail is calculated.
For example, if Pr(b|a) — Pr(b|a) > a and Pr(c|b) — Pr(c|b) > «, then
Pr(c|a) — Pr(c|a) > o?. Using this notion of strength, trade-offs in the net-
work can be modelled by compositions of weak and strong opposite signs. The
@ and ® operators associated with transitivity and composition properties in
so-called enhanced QPNs are shown in Figures 5 and 6.

Furthermore, an interval network can be constructed [12], where each arc
has an associated influence interval rather than a sign. Such an influence
is denoted as FP4(A, B), meaning that Pr(b|az) — Pr(b|ax) € [p, q|, for ev-
ery combination x of auxiliary parents of b. Note that, given this definition,
S*t(A, B) —= FIU(A B), and similar observations hold for S, S° and S”.
We will denote the intervals [—1, 0], [0, 1], [0, 0] and [—1, 1] as unit intervals, be-
ing special cases that correspond to the traditional qualitative networks. The
®- and @-operator, denoting transitivity and composition in interval networks
are defined in Figure 7. Note that it is possible that a result of a combination
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Fig. 6. The enhanced @-operator
®; 7, ] ®; [r, s]
[p,q] | [min X, max X], [p.g] |[p+r.q+sN[-1,1]

where X = {p-r,p-s,q-r,q-s}

Fig. 7. The ®;- and @;-operators for interval multiplication and addition

of two trails leads to an empty set, for example when combining [%, 1] with
[%, 1], which would denote that the total influence of a node on another node,
along multiple trails, would be greater than one, which is impossible. Since
the individual intervals might be estimated by experts, this situation is not
unthinkable, especially in large networks. This property can be used to detect

design errors in the network.

Note that the symmetry, associativity, and distribution property of qualitative
networks no longer apply in these enhancements. For example, although a
positive influence from a node A to B along the direction of the arc also has
a positive influence in the opposite direction, the strength of this influence
can not be determined. Also, the outcome of the combination of a strongly
positive, weakly positive and weakly negative sign may be either unknown
(‘?”) or positive, unknown strength (‘+-’) depending on the evaluation order
of the operators.

3.1 Relazation schemes

If we take a closer look at the &, and ®. operators defined in [10] and compare
them with the interval operators @; and ®;, we can see that the interval
results are sometimes somehow ‘relaxed’. We see that symbols representing
influences correspond to intervals, but after the application of any operation
on these intervals, the result is extended to an interval that can be represented



by one of the available symbols. For example, in the interval model we have
[, 1]®;[—1, 1] = [a—1, 1], but, while [a, 1] corresponds to ++ in the enhanced
model and [—1, 1] corresponds to ?, ++ @, ? = 7 = [—1, 1]. The lower limit
a—1isrelaxed to —1, because the actually resulting interval [a—1, 1] does not
correspond to any symbol. Therefore, to connect the (enhanced) qualitative
and interval models, we will introduce relazation schemes that map the result
of each operation to the minimal interval that can be represented by one of
the available symbols.

Definition 2 (Relazation scheme) R, will be defined as a relaxation scheme,
denoted as R,([a,b]) = [c,d], if R, maps the outcome [a,b] of an & or ®
operation to an interval [c, d], where [a,b] C [e,d].

In standard QPNs, the relaxation scheme (which we will denote R; or the unit
scheme) is defined as:

0,1 fa>0Ab>0

[~1,0]ifa<0Ab<0
Ri(a,b) =
0,00 fa=b=0

[—1, 1] otherwise.

Similarly, the &, and ®. operators can be denoted with the following relax-
ation schemes, in which m equals min(é, j) and « is an arbitrary cut-off value.

[1,1]ifa<O0AD>0

R@e (a’7 b) =
[a,b] otherwise.
[@™ 1] ifa=a'+al <b
[-1,—a™] ifb=—(a'+ ) > a
[0, 1] ifa<b=a'+al
[-1,0] ifa=—(a’'+ad) <D
R@e (a’7 b) -

[0, 1] ifa=(a'—af)and b>0andi<j
[—1,0] ifa=—(a'—a’) and b<0and i < j
[—1,1] ifa<0and b>0

[a, b] otherwise.

The notion of a relaxation scheme allows us to relate various operators (like
@ and ®., but also the traditional (non-enhanced) operators and other en-



hancements like the richly enhanced @ operator defined in [10]) in a uniform
way. In the next section we will prove NP-hardness for the interval-based en-
hancements, and discuss the computational complexity of other enhancements
in Section 5.

3.2 Problem definition

To decide on the complexity of inference of this general, interval-based en-
hancements of QPNs, a decision problem needs to be formulated. We state
this problem, denoted as IPIEQNETD !, as follows.

IPIEQNETD
Instance: Qualitative Probabilistic Network @ = (G, A) with an instanti-
ation for A € V(G) and a node B € V' \ {A4}.
Question: Is there an ordering on the combination of influences such that
the computed influence of A on B is a strict subset of [—1, 17

To avoid problems associated with representing and manipulating real num-
bers, we assume that the probabilities in the network are fractions denoted
by integer pairs rather than by reals. This has the advantage, that the length
of the result of addition and multiplication of fractions is polynomial in the
length of the original numbers [1].

4 Complexity of the problems

We will prove the hardness of the inference problem IPIEQNETD by a transfor-
mation from 3SAT. A 3SAT instance is a logical formula in conjunctive normal
form, that is, a conjunction over clauses, where each clause is a disjunction
over literals (variables or their negation). In a 3SAT instance, each clause has
exactly three literals. The associated decision problem is, whether there exists
an assignment to the variables that makes the formula true. The problem is
known to be NP-complete [6].

We construct a network (), with designated nodes I and Y, from a 3SAT in-
stance, consisting of ternary clauses C' on Boolean variables U. We prove that,
upon instantiation I to [1, 1], an ordering on the combination of influences re-
sulting in an influence on Y that is a true subset of [—1, 1] exists, if and only if
the corresponding 3SAT instance is satisfiable. To improve readability, in the

L An acronym for Interval-based Probabilistic Inference in Enhanced Qualitative
Networks, Decision variant.
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Fig. 8. “Variable gadget” Vg

remainder of this paper the @- and ®-operators, when used without index,
denote operators on intervals as defined in Figure 7.

In the network, the influence of a node A on a node B along the arc (A, B)
is given as an interval, when the interval equals [1,1] (i.e., Pr(b|a) = 1 and
Pr(b|a) = 0) then the interval is omitted for readability.

As a running example, we will construct a network for the following 3SAT
instance, introduced in [2]:

Example 3 (3sAT.,)
U= {ula Uz, u37u4}7 and
C = {(Ul V U9 V Ug), (_|U1 V U9 V Ug), <UQ V —Uus V U4)}

This instance is satisfiable, for example with the truth assignment u; = T,
UQZF, U3:F, andu4:T.

4.1 Construction for our proofs

4

For each variable u; in the 3SAT instance, the network contains a “variable
gadget” as shown in Figure 8. After the instantiation of node I with [1, 1], the
influence at node D equals [3,1] ® [—3, 5] ® [—1, —3], which is either [—1, }],
[—3,1] or [~1,1], depending on the order of evaluation. We will use the non-
associativity of the @-operator in this network as a non-deterministic choice
of assignment of truth values to variables. As we will see later, an evaluation
order that leads to [—1, 1] can be safely dismissed (it will act as a ‘falsum’
in all the clauses, making both u; and —wu; false), so we will concentrate on
[—3,1] (which will be our T' assignment) and [—1, 3] (F assignment) as the
two possible choices.

10



Vg Vgo Vg3 Vg

Fig. 9. The literal-clause construction

We construct subnetworks u; from our 3SAT instance, each with a variable
gadget Vg as input. Therefore, each variable can have a value of [—1,1] or

12
[—3,1] as influence, non-deterministically.

For each clause C}, we add a clause-network Cl; and connect the variable
gadget of u; to Cl; if u; occurs in C;. The influence associated with this arc
(ui, Cl;) is defined as FP4(u;, Cl;), where [p, q] equals [—1,0] if —u; is in C},
and [0, 1] if u; is in C; (Figure 9). Note that an ®-operation with [—1, 0] will
transform a value of [—1, 3] to [—1, 1] and vice versa, and [0, 1] will not change
them. We can therefore regard an influence FI=5 as a negation of the truth
assignment for that influence. Note, that the resulting influence [—1, 1], not
representing 1" or F', will stay the same in both cases. The clause-network is in
Figure 10. The three ‘incoming’ variables in a clause (each of which has a value
of either [—1, 3], [—3,1], or [~1,1]) are multiplied with the arc influence F;;,
and then combined with the instantiation node (with a value of [1, 1]), forming
literal nodes w;. Note that for a false literal, the value is [—1, 1] @1, 1] = [0, 1].
For a true literal, the value is [—3,1]@[1,1] = [1, 1]. Since the [—1, 1] outcome
of the variable gadget does not change by multiplication with the F; ; influence,
the influence of the literal w; would become [—1,1] @ [1,1] = [0, 1], which is
the same value as an F' literal. In such an assignment to variable u;, both the
literal u; and —u; will contribute the value F' to any clause, and fail to satisfy
it. If such an assignment can satisfy the 3SAT instance, the instance will also
be satisfied with the assignment that gives u; an arbitrary T" or F' value; hence
the occurrence of these values can further be ignored.

The influences associated with these nodes w; are multiplied by [%, 1] and

11



Fig. 10. The clause construction

added together in the clause intermediate result node O; (Figure 10). At this
point, O; has a value of [%, 1], where k equals the number of literals which
are true in this clause. The consecutive addition of [—i, 1], multiplication by
0, 1] and addition of [1, 1] mimics the function of a logical or-operator. Adding
[—1,1] to [£,1] will lead to a positive interval if kleql and the interval [—1,1]
if £ = 0. As a result of the multiplication by [0, 1], the positive interval will be
‘stretched’ to [0, 1] for any k < 1 but remain [—1, 1] if £ = 0. Finally, adding
[1,1] results in a value for the result node C; of [2, 1] if no literal in the clause
was true, and [1, 1] if one or more were true.

We then combine the separate clauses C; into a variable D,,, by adding edges
from each clause to D,, using intermediate variables D; to D,,_;. The use of
these intermediate variables allows us later to generalise these results to more
restricted cases. The interval of these edges is [}, 1], leading to a value of [1, 1]
in D, if and only if all clauses C; have a value of [1,1] (see Figure 11). If
one or more clause result nodes have a value of [%, 1] (i.e., the clause is not
satisfied by the variable instantiation), the influence interval in D,, has a value
between [3,1] and [%, 1] (where k is the number of clauses). Finally, we
construct the output node Y by consecutively adding the influence in D,, to
[—1,1] and [~1 4 5, 1] (Figure 12). This would result in a true subset of
[—1,1] (namely, [~1 4 557, 1]) if and only if the influence in D, is equal to

12



[_1 + 216%? 1]

Fig. 12. Constructing the output node Y

[1,1], i.e, if all clauses are satisfied. If one or more clauses are not satisfied, then
the influence in D,, will be at most [%, 1] and the consecutive additions

will ensure an influence in Y of [—1,1].

4.2 NP-hardness proof

Using the construct presented in the previous section, the computational com-
plexity of the IPIEQNETD can be established as follows.

Theorem 4 The IPIEQNETD problem is NP-hard.

Proof. To prove NP-hardness, we construct a transformation from the 3sAT
problem. Let (U,C') be an instance of this problem, and let Q,cy be the
interval-based qualitative probabilistic network constructed from this instance,
as described in the previous section. When the node I € @) is instantiated with
[1,1], then I has an influence of [1,1] on D,, (and therefore an influence on Y’

13
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Fig. 13. Continuous node interval change

which is a true subset of [—1, 1]) if and only if all nodes C; have a value of [1, 1],
i.e., there exists an ordering of the operators in the “variable-gadget” such that
at least one literal in C' is true. We conclude that (U, C') has a solution with
at least one true literal in each clause, if and only if the IPIEQNETD problem
has a solution for network Q ¢y, instantiation / = [1, 1] and output node
Y. Since Qu,cy can be computed from (U, C) in polynomial time, we have a
polynomial-time transformation from 3SAT to IPIEQNETD, which proves NP-
hardness of IPIEQNETD. O

4.8 On the possible membership of NP

Although 1PIEQNETD has been shown to be NP-hard, membership of NP
(and, as a consequence, NP-completeness) is not trivial to prove. To prove
membership of NP, one has to prove that if the instance is solvable, then
there exists a certificate that can be used to verify this claim in polynomial
time. A trivial certificate could be a formula, using the ®- and ®-operators,
influences, and parentheses, describing how the influence of the a certain node
can be calculated from the instantiated node and the characteristics of the
network. Unfortunately, such a certificate can grow exponentially large, and
verifying a claim using this certificate would take time, exponential in the size
of the network. While the properties of the traditional (i.e., non-enhanced)
®- and @-operators ensure that a node sign van change at most two times in
an inference algorithm, this no longer holds for the interval operators. From
the definition of the @; operator in Figure 7, we can see that a node interval
can change with every update and does not need to converge (see Figure 13
for an example). Thus, the number of interval changes can be as large as the
(possibly exponential) number of trails between the instantiation node and
the target node.

14



5 Operator variants

We now discuss whether the results from the previous section can be gener-
alised to other operator variants. In order to be able to represent every possible
3SAT instance, a relaxation scheme must be able to generate a variable gadget,
and retain enough information to discriminate between the cases where zero,
or more literals in each clause are true. Furthermore, the relaxation scheme
must be able to represent the instantiations [1,1] (or T) and [-1, —1] (or L),
and the uninstantiated case [0,0]. With a relaxation scheme that effectively
divides the interval [—1,1] in discrete blocks with size of a multiple of , (such

as Ri(a,b) = [Hfj,@
the general case discussed in section 3. This relaxation scheme does not have
any effect on the intervals we used in the variable gadget and the clause con-
struction of Q). The network constructed in the NP-hardness proof of the

general case used only intervals (a, b) for which R% (a,b) = (a,b). Furthermore,

|) the proof construction is essentially the same as in

when connecting the clauses, the possible influences in Y are relaxed to [0, 1],
13,1, [3,1], [3,1], and [1,1], so we can construct Y’ by consecutively adding
the interval in Y to [—1,1] and [—32,1]. Thus, the problem—which we will
denote as RELAXED-PIEQNETD—remains NP-hard for relaxation scheme R 1.

The non-associativity of the @&.-operator defined in [10] suggest hardness of
the inference problem as well. Although @, is not associative, it cannot pro-
duce results that can be regarded as opposites. For example, the expression
(+ 4+ @ + P.—) can lead to a positive influence of unknown strength (‘+-’)
when evaluated as ((++®.+)®.—) or an unknown influence (‘?’) when evalu-
ated as (++ Pe(+ Pe —)), but never to a negative influence. A transformation
from a 3SAT variant might not succeed because of this reason. However, it
might be possible to construct a transformation from RELAXED-PIEQNETD,
which is subject of ongoing research.

6 Conclusion

In this paper, we addressed the computational complexity of inference in en-
hanced Qualitative Probabilistic Networks. As a first step, we have “embed-
ded” both standard and enhanced QPNs in the interval-model using relaxation
schemes, and we showed that inference in this general interval-model is NP-
hard and remains NP-hard for relaxation scheme R (a,b). In general, inference
in interval-based networks is as hard as inference in probabilistic networks.
Propagation algorithms for the interval-based networks may need exponential
time, for example when a network has a high treewidth and there are many
trails between observation node and output node. Nevertheless, efficient al-
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gorithms may be developed for networks that have a bounded treewidth, like
the algorithm for probabilistic networks discussed in[8].

We believe that the hardness of inference is due to the fact that reasoning
in QPNs is under-defined: The outcome of the inference process depends on
choices during evaluation. Further research needs to be conducted in order to
determine where exactly the NP/P border lies, in other words: which enhance-
ments to the standard qualitative model allow for polynomial-time inference,
and which enhancements lead to intractable results. Despite of the unfavorable
complexity of inference, enhanced and interval-based qalitative models are use-
ful as an intermediate step in the construction of a probabilistic network[12].
Nevertheless, a better definition of transitive and compositional combinations
of qualitative influences in which the outcome is independent of the order of
the influence propagation might reduce the computational complexity of infer-
ence, and facilitate the use of qualitative models to design, validate, analyse,
and simulate probabilistic networks.
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