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1 Introduction

In many probabilistic networks [3] that are used for classification in real problem domains, the variables

of the network can be distinguished into observable input variables, non-observable intermediate variables,
and a single output variable. For example, in a medical domain the observable variables represent clinical
evidence such as symptoms and test results, the output variable functions as a classification of a disease, and
the intermediate variables model non-observable facts that are relevant for classification. Often, the relations
between observable symptoms and the classification variable are monotone, e.g., higher values for a partic-
ular observable variable makes higher values of the classification variable more likely, independent of the
value of other observations. Such a networkisnotone in distributiofd] if higher-ordered configurations

of the observable variables make higher-ordered outputs more (isotone) or less (antitone) likely.

When a domain expert insists that a certain relation ought to be monotone, the joint probability distri-
bution should be such, that this property is reflected in the network [5]. If monotonicity is violated, the
probability distribution in the network can be revised in cooperation with the expert. Unfortunately, deter-
mining whether a network is monotone is highly intractable [4]. One approach to overcome this unfavorable
complexity, is by approximating the decision (i.e, sometimes have 'undecidable’ as outcome) like the al-
gorithm discussed in [4]. This algorithm uses qualitative influences (QPNs, see e.g. [7]) that summarize
the direction of the influence of variables by signs. However, the use of these signs of course requires an
ordering on the values of the variables under consideration.

Such an ordering might be implicit, for examdege > medium> smallor true > false Butin practice,
there are often variables in a network which do not have such 'natural’ orderings, e.g., in a network in the
medical domain, there may be a variable which denotes the organs infected by a particular disease. As it is
desirable to have as many as possible monotone influences (to minimize the offending context), it is impor-
tant tochoosean optimal ordering for the values of these variables. Such an optimal ordering maximises the
number of monotone arcs, or, equivalently, minimizes the number of '?’ signs in the corresponding QPN.

2 Complexity results

We introduce the notion of aimterpretationof a variable to denote a particular ordering on the values of
that variable, angnonotonicity functionsvhich determine whether a certain combination of interpretations

for the two nodes of an arc make the arc isotone or antitone. We formalise the optimisation problem (finding
an optimal ordering) and show that is is infeasible in general. In our paper, we prove NP-hardness with a
reduction from RAPH 3-COLORABILITY . Furthermore, we show that this problem is hard to approximate

as well. We prove that the problem is APX-hard (see e.g. [2]), a very strong indicator that there exists
no polynomial time approximation scheme (PTAS) for this problem, and that the problem can only be



approximated within a fixed ratio. Since this ratio might be very large, an approximation algorithm might
not be very useful to address this problem.

3 A Branch-and-bound algorithm

In our paper we sketch an exact algorithm for this problem, based on a so-called branch-and-bound strategy.
In such a strategy, the set of possible solutions is partitioned (the branch step), and upper (or lower, for
minimalization problems) bounds for this partition are calculated. Whenever these bounds are lower than or
equal to the current best solution (i.e., further exploration of these branches will not lead to a better solution)
the branch is terminated, and other, yet unvisited branches are explored. This procedure continues until all
branches terminate (we can return an optimal solution), or a given ratio between current best solution and
upper bound is reached (we can return a 'good enough’ solution).

There are many degrees of freedom in this branch-and-bound strategy; the performance of these algo-
rithms is highly dependent on the tightness of the bounds and the choice of the node to branch on. In our
paper, we chose to compute rather loose bounds; one can compute tighter bounds by considering more arcs
that can be made monotone. Nevertheless, the constraints imposed by these arcs might require re-evaluation
of all constraints in the network, so there is a tradeoff between the tightness of the bounds — and thus the
number and depth of the branches — and the time needed to calculate such bounds.

4 Conclusion

Optimising the number of monotone arcs in a network is a computationally hard problem, and hard to ap-
proximate as well. We propose a branch-and-bound approach to calculate optimal orderings. This approach
may work rather well in practice with 'real world’ networks, provided that the number of values per node

is small. For example, in the I&RM network [1], the number of values is at most four, and in the O
SOPHAGEAL network [6] it is at most six. However, for networks where some nodes have a large range of
possible values, this approach will be infeasible, since theré!gressible orderings for a variable with

values. Other methods must be used in such cases to calculate or approximate an optimal solution. These
issues are subject to further research.
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