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Abstract. In decision support systems the motivation and justification
of the system’s diagnosis or classification is crucial for the acceptance of
the system by the human user. In Bayesian networks a diagnosis or classi-
fication is typically formalized as the computation of the most probable
joint value assignment to the hypothesis variables, given the observed
values of the evidence variables (generally known as the MAP problem).
While solving the MAP problem gives the most probable explanation of
the evidence, the computation is a black box as far as the human user
is concerned and it does not give additional insights that allow the user
to appreciate and accept the decision. For example, a user might want
to know to what extent a variable was relevant for the explanation. In
this paper we introduce a new concept, MAP-independence, which tries
to formally capture this notion of relevance, and explore its role towards
a justification of an inference to the best explanation.

Keywords: Bayesian Networks · Most Probable Explanations · Rele-
vance · Explainable AI · Computational Complexity.

1 Introduction

With the availability of petabytes of data and the emergence of ‘deep’ learning
as an AI technique to find statistical regularities in these large quantities of data,
artificial intelligence in general and machine learning in particular has arguably
entered a new phase since its emergence in the 1950s. Deep learning aims to build
hierarchical models representing the data, with every new layer in the hierarchy
representing ever more abstract information; for example, from individual pixels
to lines and curves, to geometric patterns, to features, to categories. Superficially
this might be related to how the human visual cortex interprets visual stimuli
and seeks to classify a picture to be that of a cat, rather than of a dog.

When describing in what sense a cat is different from a dog, humans may
use features and categories that we agreed upon to be defining features of cats
and dogs, such as whiskers, location and form of the ears, the nose, etc. The
deep learning method, however, does not adhere to features we humans find
to be good descriptors; it bases its decisions where and how to ‘carve nature’s
joints’ solely on basis of the statistics of the data. Hence, it might very well
be that the curvature of the spine (or some other apparently ‘random’) feature
happens to be the statistically most important factor to distinguish cats from
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dogs. This imposes huge challenges when the machine learning algorithm is asked
to motivate its classification to a human user. The sub-field of explainable AI
has recently emerged to study how to align statistical machine learning with
informative user-based motivations or explanations. Explainable AI, however,
is not limited to deep neural network applications. Any AI application where
trustworthiness is important benefits from justification and transparency of its
internal process [5], and this includes decision support systems that are based on
Bayesian networks, which is the focus of this paper. In these systems typically
one is interested in the hypothesis that best explains the available evidence; for
example in a medical case, the infection that is most probable given a set of
health complaints and test findings.

Note that ‘explainability’ in explainable AI is in principle a triadic relation-
ship between what needs to be explained, the explanation, and the user who
seeks the explanation [14]. An explanation will be more satisfying (‘lovelier’, in
Peter Lipton’s [10] terms) if it allows the user to gain more understanding about
the phenomenon to be explained. In this paper we specifically try to improve
the user’s understanding of a specific decision by explicating the relevant infor-
mation that contributed to said decision. In some way, in deciding what the best
explanation is for a set of observations, the process of marginalizing out the vari-
ables that are neither observed nor hypothesis variables, makes the process more
opaque: some of these variables have a bigger impact (i.e., are more relevant) on
the eventual decision than others, and this information is lost in the process. For
example, the absence of a specific test result (i.e., a variable we marginalize out
in the MAP computation) may lead to a different explanation of the available
evidence compared to when a negative (or positive) test result were present. In
this situation, this variable is more relevant to the eventual explanation than
if the best explanation would be the same, irrelevant of whether the test result
was positive, negative, or missing. Our approach in this paper is to motivate a
decision by showing which of these variables were relevant in this sense towards
arriving at this decision.

This perspective has roots in Pearl’s early work on conditional independence
[13]. Pearl suggests that human reasoning is in principle based on conditional
independence: The organizational structure of human memory is such that it
allows for easily retrieving context-dependent relevant information. For example
(from [13, p.3]): The color of my friend’s car is normally not related to the color
of my neighbour’s car. However, when my friend tells me she almost mistook my
neighbour’s car from her own, this information suddenly becomes relevant for
me to understand, and for her to explain, this mistake. That is, the color of both
cars is independent but becomes conditionally dependent on the evidence1.

1 Graphically one can see this as a so-called common-effect structure, where C1 and
C2 are variables that represent my car’s, respectively my neighbour’s car’s, color;
both variables have a directed edge towards the variable M that indicates whether
my friend misidentified the cars or not. When M is unobserved, C1 and C2 are
independent, but they become conditionally dependent on observation of M .
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In this paper we will argue that Pearl’s proposal to model context-dependent
(ir)relevance as conditional (in)dependence is in fact too strict. It generally leads
to too many variables that are considered to be relevant: for some it is likely the
case that, while they may not be conditionally independent on the hypothesized
explanation given the evidence, they do not contribute to understanding why
some explanation h is better than the alternatives. That means, for explana-
tory purposes their role is limited. In the remainder of this paper we will build
on Pearl’s work, yet provide a stronger notion of context-dependent relevance
and irrelevance of variables relative to explanations of observations. Our goal
is to further explainable AI in the context of Bayesian networks by formalizing
the problem of justification of an explanation (i.e., given an AI-generated ex-
planation, advance the user’s understanding why this explanation is preferred
over others) into a computational problem that captures some aspects of this
justification; in particular, by opening up the ‘marginalization black box’ and
show which variables contributed to this decision. We show that this problem is
intractable in the general case, but also give fixed-parameter tractability results
that show what constraints are needed to render it tractable.

To summarize, we are interested in the potential applicability of this new
concept for motivation and justification of MAP explanations, with a focus on
its theoretical properties. The remainder of this paper is structured as follows. In
the next section we offer some preliminary background on Bayesian networks and
computational complexity and share our conventions with respect to notation
with the reader. In section 3 we introduce so-called MAP-independence as an
alternative to conditional independence and elaborate on the potential of these
computational problems for justifying explanations in Bayesian networks. In
section 4 we introduce a formal computational problem based on this notion, and
give complexity proofs and fixed-parameter tractability results for this problem.
We conclude in section 5.

2 Preliminaries and notation

In this section we give some preliminaries and introduce the notational conven-
tions we use throughout this paper. The reader is referred to textbooks like [1]
for more background.

A Bayesian network B = (GB,Pr) is a probabilistic graphical model that suc-
cinctly represents a joint probability distribution Pr(V) =

∏n
i=1 Pr(Vi | π(Vi))

over a set of discrete random variables V. B is defined by a directed acyclic graph
GB = (V,A), where V represents the stochastic variables and A models the
conditional (in)dependencies between them, and a set of parameter probabilities
Pr in the form of conditional probability tables (CPTs). In our notation π(Vi)
denotes the set of parents of a node Vi in GB. We use upper case to indicate
variables, lower case to indicate a specific value of a variable, and boldface to
indicate sets of variables respectively joint value assignments to such a set. Ω(Vi)
denotes the set of value assignments to Vi, with Ω(Va) denoting the set of joint
value assignment to the set Va.



4 J. Kwisthout

One of the key computational problems in Bayesian networks is the prob-
lem to find the most probable explanation for a set of observations, i.e., a joint
value assignment to a designated set of variables (the explanation set) that has
maximum posterior probability given the observed variables (the joint value as-
signment to the evidence set) in the network. If the network includes variables
that are neither observed nor to be explained (referred to as intermediate vari-
ables) this problem is typically referred to as MAP. We use the following formal
definition:

MAP
Instance: A Bayesian network B = (GB,Pr), where V(GB) is
partitioned into a set of evidence nodes E with a joint value assignment
e, a set of intermediate nodes I, and an explanation set H.
Output: A joint value assignment h∗ to H such that for all joint value
assignments h′ to H, Pr(h∗ | e) ≥ Pr(h′ | e).

We assume that the reader is familiar with standard notions in computational
complexity theory, notably the classes P and NP, NP-hardness, and polynomial
time (many-one) reductions. The class PP is the class of decision problems that
can be decided by a probabilistic Turing machine in polynomial time; that is,
where yes-instances are accepted with probability strictly larger than 1/2 and
no-instances are accepted with probability no more than 1/2. A problem in PP
might be accepted with probability 1/2+ ε where ε may depend exponentially on
the input size n. Hence, it may take exponential time to increase the probability
of acceptance (by repetition of the computation and taking a majority decision)
close to 1. PP is a powerful class; we know for example that NP ⊆ PP and the
inclusion is assumed to be strict. The canonical PP-complete decision problem
is Majsat: given a Boolean formula φ, does the majority of truth assignments
to its variables satisfy φ?

In computational complexity theory, so-called oracles are theoretical con-
structs that increase the power of a specific Turing machine. An oracle (e.g.,
an oracle for PP-complete problems) can be seen as a ‘magic sub-routine’ that
answers class membership queries (e.g, in PP) in a single time step. In this paper
we are specifically interested in classes defined by non-deterministic Turing ma-
chines with access to a PP-oracle. Such a machine is very powerful, and likewise
problems that are complete for the corresponding complexity classes NPPP (such
as MAP) and co-NPPP (such as Monotonicity) are highly intractable [12, 3].

3 MAP-independence

The topic of relevance in Bayesian networks has been studied from several angles:
while [17] aimed to reduce the number of variables in the explanation set to the
relevant ones, and [11] studied the relevance of evidence variables for sensitivity
analysis, in [9] the approach was to reduce the number of intermediate variables
that affect an inference to the best explanation. In the current paper we take a
similar approach, but here we focus on the application of this notion of relevance
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in explainable AI, rather than to construct a heuristic approach towards the
computationally expensive MAP problem. Here the problem of interest is not
so much to find the most probable explanation (viz., the joint value assignment
to a set of hypothesis variables given observations in the network), but rather
to motivate what information did or did not contribute to a given explanation.

That is, rather than providing the ‘trivial’ explanation “h∗ is the best2 expla-
nation for e, since argmaxhPr(H = h | e) = argmaxh

∑
i∈Ω(I) Pr(H = h, i | e) =

h∗” our goal is to partition the set I into variables I+ that are relevant to estab-
lishing the best explanation and variables I− that are irrelevant. One straight-
forward approach, motivated by [13], would be to include variables in I+ if they
are conditionally dependent on H given e, and in I− when they are conditionally
independent from H given e and to motivate the sets I+ and I− in terms of a
set of independence relations. This is particularly useful when inclusion in I+

is triggered by the presence of an observation, such as in Pearl’s example where
‘color of my friend’s car’ and ‘color of my neighbour’s car’ become dependent on
each other once we learn that my friend confused both cars.

We argue that this way of partitioning intermediate variables into relevant
and irrelevant ones, however useful, might not be the full story with respect
to explanation. There is a sense in which a variable has an explanatory role in
motivating a conclusion that goes beyond conditional (in)dependence. Take for
example the small binary network in Figure 1. Assume that we want to motivate
the best explanation for A given the evidence C = c, i.e., we want to motivate the
outcome of argmaxaPr(A = a | C = c) = argmaxa

∑
B,D Pr(A = a,B,D | C =

c) in terms of variables that contribute to this explanation. Now, obviously D
is not relevant, as it is d-separated from A given C. But the roles of B is less
obvious. This node is obviously not conditionally independent from A given C.

Whether B plays an explanatory role in general in the outcome of the MAP
query is dependent on whether argmaxa

∑
D Pr(A = a,B = b,D | C = c) =

argmaxa
∑
D Pr(A = a,B = b̄, D | C = c). If both are equal (B’s value, were it

observed, would have been irrelevant to the MAP query) than B arguably has no
explanatory role. If both are unequal than the fact that B is unobserved may in
fact be crucial for the explanation. For example, if B represents a variable that
encodes a ‘default’ versus ‘fault’ condition (with Pr(b) > Pr(b̄)) the absence of a
fault (i.e., B is unobserved) can lead to a different MAP explanation than the
observation that B takes its default value; e.g., if Pr(b)) = 0.6, Pr(a | c, b) = 0.6,
and Pr(a | c, b̄) = 0.3 we have that Pr(a | c) = 0.48 yet Pr(a | c, b) = 0.6 so the
MAP explanation changes from ā to a on the observation of the default value b.
This information is lost in the marginalization step but it helps motivate why ā
is the best explanation of d.

2 In this paper we do not touch the question whether ‘best’ is to be identified with
‘most probable’. The interested reader is referred to the vast literature on inference
to the best explanation such as [10], and more in particular to some of our ear-
lier work [8] that discusses the trade-off between probability and informativeness of
explanations.
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Fig. 1. An example small network. Note that the explanatory role of B in motivating
the best explanation of A given an observation for C is context-dependent and may be
different for different observations for C, as well as for different conditional probability
distributions; hence it cannot be read off the graph alone.

Thus, the relevance of B for the explanation of A may need a different (and
broader) notion of independence, as also suggested by [9]. Indeed, in this ex-
ample, variable D is irrelevant for explaining A as D is conditionally inde-
pendent from A given C; yet, we could also argue that B is irrelevant for
explaining A if its value, were it observed, could not influence the explana-
tion for A. We introduce the term MAP-independence for this (uni-directional)
relationship; we say that A is MAP-independent from B given C = c when
∀b∈Ω(B)argmaxaPr(A = a,B = b | C = c) = a for a specific value assignment
a ∈ Ω(A).

3.1 MAP-independence for justification and decision support

AI-based clinical decision support systems for diagnosis and treatment have been
proposed since the 1970s, with MYCIN [15] as the canonical example. Whereas
original systems were largely an effort to demonstrate the promise of AI tech-
niques (i.e., isolated, difficult to maintain or generalize, of mostly academic in-
terest, etc.), current systems have developed into systems that are integrated
with the medical workflow, in particular aligned with electronic health records
[16]. However, several challenges that were already identified with MYCIN still
remain present in decision support systems: they are difficult to maintain and
adapt to new insights, the justification of the system’s advice does not match
typical reasoning patterns of the user, and there is little justification of the
soundness (or acknowledgement of uncertainty and ignorance) of the advice.

The concept of MAP-independence in Bayesian networks may help overcome
some of these shortcomings, particularly the justification of an inference to the
most probable explanation. For an unobserved variable I we have that the MAP
explanation h∗ is MAP-dependent of I given the evidence if the explanation
would not have been different had I be observed to some value, and MAP-
independent if this is not the case. An explication of how I may impact or fail to
impact the most probable explanation of the evidence will both help motivate
the system’s advice as well as offer guidance in further decisions (e.g., to gather
additional evidence [4, 2] to make the MAP explanation more robust).
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4 Formal problem definition and results

The computational problem of interest is to decide upon the set I+, the relevant
variables that contribute to establishing the best explanation h∗ given the evi-
dence e. In order to establish I+ we need to decide the following sub-problem:
given R ⊆ I: is H MAP-independent from R given e? We formalize this problem
as below.

MAP-independence
Instance: A Bayesian network B = (GB,Pr), where V is partitioned
into a set of evidence nodes E with a joint value assignment e, a
non-empty explanation set H with a joint value assignment
h∗ = argmaxh Pr(H = h, e), a non-empty set of nodes R for which we
want to decide MAP-independence relative to H, and a set of
intermediate nodes I.
Question: Is ∀r∈Ω(R)argmaxHPr(H,R = r | e) = h∗?

Observe that the complement problem MAP-dependence is defined similarly
with yes- and no-answers reversed.

4.1 Computational complexity

We will show in this sub-section that an appropriate decision variant of MAP-
independence is co-NPPP-complete and thus resides in the same complexity
class as the Monotonicity problem [3]. Note that the definition of MAP-
independence in the previous sub-section had the MAP explanation given in
the input and assumed that R is nonempty. The reason therefore is that if we
would allow R = ∅ and leave out the MAP explanation, the problem has MAP
as a degenerate special case. As this somewhat obfuscates the computational
complexity of the core of the problem (i.e., determining the relevance of the set
R for the actual explanation) we force R to be non-empty and argmaxhPr(H =
h, e) to be provided in the input.

Another complication is that, while MAP-independence is already defined
as a decision problem, part of the problem definition requires comparing MAP
explanations, and while the MAP problem has a decision variant that is NPPP-

complete, the functional variant is FPNPPP

-complete [6]. We therefore introduce
the following decision variant3 which is in the line with the traditional decision
variant of Partial MAP:
3 Note that as a decision variant of MAP-independence there is still a slight caveat,

as the probability of Pr(h∗, r, e) can be different for each joint value assignment r,
implying that the ‘generic’ threshold s can either be too strict (h is still the MAP
explanation although the test fails) or too loose (there is another explanation h′

which is the MAP explanation although the test passes). As the number of joint
value assignments |r| can be exponential in the size of the network (and thus we
cannot include individual thresholds si in the input of the decision problem without
blowing up the input size), this nonetheless appears to be the closest decision problem
variant that still captures the crucial aspects of MAP-independence.
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MAP-independence-D
Instance: A Bayesian network B = (GB,Pr), where V is partitioned
into a set of evidence nodes E with a joint value assignment e, a
non-empty explanation set H with a joint value assignment
h∗ = argmaxh Pr(H = h, e), a non-empty set of nodes R for which we
want to decide MAP-independence relative to H, and a set of
intermediate nodes I; rational number s.
Question: Is, for each joint value assignment r to R, Pr(h∗, r, e) > s?

For the hardness proof we reduce from the canonical satisfiability co-NPPP-
complete variant A-Majsat defined as follows:

A-Majsat
Instance: A Boolean formula φ with n variables {x1, xn}, partitioned
into the sets A = {x1, xk} and M = {xk+1, xn} for some k ≤ n.
Question: Does, for every truth instantiation xa to A, the majority of
truth instantiations xm to M satisfy φ?

As a running example for our reduction we use the formula φex = ¬(x1 ∧
x2) ∨ (x3 ∨ x4), with A = {x1, x2} and M = {x3, x4}. This is a yes-instance
of A-Majsat: for each truth assignment to A, at least three out of four truth
assignments to M satisfy φ.

We construct a Bayesian network Bφ from a given Boolean formula φ with
n variables. For each propositional variable xi in φ, a binary stochastic variable
Xi is added to Bφ, with possible values T and F and a uniform probability
distribution. For each logical operator in φ, an additional binary variable in Bφ
is introduced, whose parents are the variables that correspond to the input of
the operator, and whose conditional probability table is equal to the truth table
of that operator. For example, the value T of a stochastic variable mimicking
the and -operator would have a conditional probability of 1 if and only if both its
parents have the value T , and 0 otherwise. The top-level operator in φ is denoted
as Vφ. In Figure 2 the network Bφ is shown for the formula ¬(x1∧x2)∨(x3∨x4).

Theorem 1. MAP-independence is co-NPPP-complete.

Proof. To prove membership in co-NPPP, we give a falsification algorithm for
no-answers to MAP-independence-D instances, given access to an oracle for
the PP-complete Inference problem. Let (B,E, e,H,h∗,R, I, s) be an instance
of MAP-independence-D. We non-deterministically guess a joint value assign-
ment r̄, and use the Inference oracle to verify that Pr(h∗, r̄, e) ≤ s, which by
definition implies that H is not MAP-independent from R given E = e.

To prove hardness, we reduce from A-Majsat. Let (φ,XA,XM) be an in-
stance of A-Majsat and let Bφ be the Bayesian network created from φ as per
the procedure described above. We set R = XA, I = XM, H = {Vφ}, h∗ = {T},
E = ∅, and s = 2−|R|−1.
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Fig. 2. The network Bφ created from the A-Majsat instance (φ, {x1, x2}, {x3, x4}) per
the description above.

=⇒ Assume that (φ,XA,XM) is a yes-instance of A-Majsat, i.e., for
every truth assignment to XA, the majority of truth assignments to
XM satisfies φ. Then, by the construction of Bφ, we have

∑
r Pr(Vφ =

T, r) > 1/2 and so, as the variables in R are all uniformly distributed,
Pr(Vφ = T, r) > 2−|R|−1 for every joint value assignment r to R, and
so this is a yes-instance of MAP-independence-D.

⇐= Assume that (B,∅,∅, Vφ, T,R, I, 2−|R|−1) is a yes-instance of MAP-
independence-D. Given the construction this implies that for all
joint value assignments r it holds that Pr(Vφ = T, r) > 2−|R|−1. But
this implies that for all truth assignments to XA, the majority of
truth assignments to XM satisfies φ, hence, this is a yes-instance of
A-Majsat.

Observe that the construction of Bφ takes time, polynomial in the size of φ, which
concludes our proof. Furthermore, the results holds in the absence of evidence

Corollary 1. MAP-dependence is NPPP-complete.

4.2 Algorithm and algorithmic complexity

To decide whether a MAP explanation h∗ is MAP-independent from a set of
variables R given evidence e, the straightforward algorithm below shows that
the run-time of this algorithm is O(Ω(R)) = O(2|R|) times the time needed for
each MAP computation.
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Algorithm 1: Straightforward MAP-independence algorithm

Input: Bayesian network partitioned in E = e, H = h∗, R, and I.
Output: yes if H is MAP-independent from R given e, no if otherwise.
foreach r ∈ Ω(R) do

if argmaxHPr(H,R = r | e) 6= h∗ then
return no;

end

end
return yes;

This implies that, given known results on fixed-parameter tractability [7] and
efficient approximation[12, 9] of MAP, the size of the set against which which
we want to establish MAP independence is the crucial source of complexity if
MAP can be computed or approximated feasibly. The following fixed-parameter
tractability results can be derived:

Corollary 2. Let c = maxW∈V (G)Ω(W ), q = Pr(h∗), and let tw be the tree-
width of B. Then p-MAP-independence is fixed-parameter tractable for p =
{|H|, |R|, tw, c}, p = {|H|, |R|, |I|, c}, p = {q, |R|, tw, c}, and p = {q, |R|, |I|, c}.

5 Conclusion and future work

In this paper we introduced MAP-independence as a formal notion, relevant for
decision support and justification of decisions. In a sense, MAP-independence
is a relaxation of conditional independence, suggested by Pearl [13] to be a
scaffold for human context-dependent reasoning. We suggest that that MAP-
independence may be a useful notion to further explicate the variables that are
relevant for the establishment of a particular MAP explanation. Establishing
whether the MAP explanation is MAP-independent from a set of variables given
the evidence (and so, whether these variables are relevant for justifying the MAP
explanation) is a computationally intractable problem; however, for a specific
variable of interest I (or a small set of these variables together) the problem
is tractable whenever MAP can be computed tractably; in practice, this may
suffice for usability in typical decision support systems.

There are many related problems of interest that one can identify, but which
will be delegated to future work. For example, if the set of relevant variables is
large, one might be interested in deciding whether observing one variable can
bring down this set (by more than one, obviously). Another related problem
would be to decide upon the observations that are relevant for the MAP expla-
nation (i.e., had we not observed E ∈ E or had we observed a different value,
would that change the MAP explanation?) This would extend previous work
[11] where the relevance of E for computing a posterior probability (conditioned
on E) was established. Finally, in order to test its practical usage, the formal
concept introduced in this paper should be put to the empirical test in an ac-
tual decision support system to establish whether the justifications supported
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by the notion of MAP-independence actually help understand and appreciate
the system’s advise.

References

1. Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge Uni-
versity Press (2009)

2. van der Gaag, L., Bodlaender, H.: On stopping evidence gathering for diagnos-
tic Bayesian networks. In: European Conference on Symbolic and Quantitative
Approaches to Reasoning and Uncertainty. pp. 170–181 (2011)

3. van der Gaag, L., Bodlaender, H., Feelders, A.: Monotonicity in Bayesian networks.
In: Chickering, M., Halpern, J. (eds.) Proceedings of the Twentieth Conference on
Uncertainty in Artificial Intelligence. pp. 569–576. Arlington: AUAI press (2004)

4. van der Gaag, L., Wessels, M.: Selective evidence gathering for diagnostic belief
networks. AISB Quarterly 86, 23–34 (1993)

5. Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., Yang, G.: XAI—
explainable artificial intelligence. Science Robotics 4(37) (2019)

6. Kwisthout, J.: Complexity results for enumerating MPE and Partial MAP. In:
Jaeger, M., Nielsen, T. (eds.) Proceedings of the Fourth European Workshop on
Probabilistic Graphical Models. pp. 161–168 (2008)

7. Kwisthout, J.: Most Probable Explanations in Bayesian networks: Complexity and
tractability. International Journal of Approximate Reasoning 52(9) (2011)

8. Kwisthout, J.: Most inforbable explanations: Finding explanations in Bayesian
networks that are both probable and informative. In: van der Gaag, L. (ed.) Pro-
ceedings of the Twelfth European Conference on Symbolic and Quantitative Ap-
proaches to Reasoning with Uncertainty. LNAI, vol. 7958, pp. 328–339. Springer-
Verlag (2013)

9. Kwisthout, J.: Tree-width and the computational complexity of MAP approxima-
tions in Bayesian networks. Journal of Artificial Intelligence Research 53, 699–720
(2015)

10. Lipton, P.: Inference to the Best Explanation. London, UK: Routledge (1991)
11. Meekes, M., Renooij, S., van der Gaag, L.: Relevance of evidence in Bayesian

networks. In: European Conference on Symbolic and Quantitative Approaches to
Reasoning and Uncertainty. pp. 366–375. Springer (2015)

12. Park, J.D., Darwiche, A.: Complexity results and approximation settings for MAP
explanations. Journal of Artificial Intelligence Research 21, 101–133 (2004)

13. Pearl, J., Paz, A.: GRAPHOIDS: a graph-based logic for reasoning about relevance
relations. Tech. Rep. R-53-L, UCLA Computer Science Department (1987)

14. Ras, G., van Gerven, M., Haselager, W.: Explanation methods in deep learning:
Users, values, concerns and challenges. In: Explainable and Interpretable Models
in Computer Vision and Machine Learning, pp. 19–36. Springer (2018)

15. Shortliffe, E., Buchanan, B.: A model of inexact reasoning in medicine. Mathemat-
ical Biosciences 379, 233–262 (1975)

16. Sutton, R., Pincock, D., Baumgart, D., Sadowski, D., Fedorak, R., Kroeker, K.:
An overview of clinical decision support systems: benefits, risks, and strategies for
success. NPJ digital medicine 3(1), 1–10 (2020)

17. Yuan, C., Lim, H., Lu, T.: Most relevant explanation in Bayesian networks. Journal
of Artificial Intelligence Research 42(1), 309–352 (2011)


