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Abstract

One of the key computational problems in Bayesian networks is computing the
maximal posterior probability of a set of variables in the network, given an observa-
tion of the values of another set of variables. In its most simple form, this problem
is known as the MPE-problem. In this paper, we give an overview of the com-
putational complexity of many problem variants, including enumeration variants,
parameterized problems, and approximation strategies to the MPE-problem with
and without additional (neither observed nor explained) variables. Many of these
complexity results appear elsewhere in the literature; other results have not been
published yet. The paper aims to provide a fairly exhaustive overview of both the
known and new results.

1 Introduction

Bayesian or probabilistic inference of the most probable explanation of a set of
hypotheses given observed phenomena lies at the core of many problems in di-
verse fields. For example, in a decision support system that facilitates medical
diagnosis, like the systems described in [1-4], one wants to find the most likely
diagnosis given clinical observations and test results. In a weather forecasting
system as in [5] or [6] one aims to predict precipitation based on meteorolog-
ical evidence. But the problem is often also key in the computational models
of economic processes [7-9], sociology [10,11], and cognitive tasks as vision or
goal inference [12,13]. Although these tasks may superficially appear differ-
ent, the underlying computational problem is the same: given a probabilistic
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network, describing a set of stochastic variables and the conditional indepen-
dencies between them, and observations (or evidence) of the values for some of
these variables, what is the most probable joint value assignment to (a subset
of) the other variables?

Since probabilistic (graphical) models have made their entrance in domains
like cognitive science (see, e.g., the editorial of the special issue on probabilistic
models of cognition in the TRENDS in Cognitive Sciences journal [14]), this
problem now becomes more and more interesting for other investigators than
those traditionally involved in probabilistic reasoning. However, the problem
comes in many variants (e.g., with either full or partial evidence) and has
many names (e.g., MPE, MPA, and MAP which may or may not refer to the
same problem variant) that may obscure the novice reader in the field. Apart
from the naming conventions, even the question how an explanation should
be defined depends on the author (compare, e.g., the approaches in [15], [16],
[17], and [18]). Furthermore, some computational complexity results may be
counter-intuitive at first sight.

For example, finding the best (i.e., most probable) explanation is NP-hard and
thus intractable in general, but so is finding a good enough explanation for any
reasonable formalization of ‘good enough’. So the argument that is sometimes
found in the literature (e.g. in [14]) and that can be paraphrased as “Bayesian
abduction is NP-hard, but we’ll assume that the mind approximates these re-
sults, so we're fine” is fundamentally flawed [19]. However, when constraints
are imposed on the structure of the network or on the probability distribution,
the problem may become tractable. In other words: the optimization criterion
is not a source of complexity[20] of the problem, but the network structure is,
in the sense that unconstrained structures lead to intractable models in gen-
eral, while imposing constraints to the structure sometimes leads to tractable
models.

The paper is intended to provide the computational modeler, who describes
phenomena in cognitive science, economics, sociology, or elsewhere, an overview
of complexity and tractability results in this problem, in order to assist her
in identifying sources of complexity. An example of such an approach can be
found in [21]. Here the Bayesian Inverse Planning model [12], a cognitive model
for human goal inference based on Bayesian abduction, was studied and—
based on computational complexity analysis—the conditions under which the
model becomes intractable, respectively remains tractable were identified, al-
lowing the modelers to investigate the (psychological) plausibility of these
conditions. For example, using complexity analysis they concluded that the
model predicts that if people have many parallel goals that influence their
actions, it is in general hard for an observer to infer the most probable com-
bination of goals, based on the observed actions; however, if the probability
of the most probable combination of goals is high, then inference is tractable



again.

While good introductions to explanation problems in Bayesian networks exist
(see, e.g., [22] for an overview of explanation methods and algorithms), these
papers appear to be aimed at the user-focused knowledge engineer, rather
than at the computational modeler, and thus pay less attention to complexity
issues. Being aware of these issues (i.e., the constraints that render explana-
tion problems tractable, respectively leave the problems intractable) is in our
opinion key to a thorough understanding of the phenomena that are studied
[20]. Furthermore, it allows investigators to not only constrain their compu-
tational models to be tractable under circumstances where empirical results
suggest that the task at hand is tractable indeed, but also to let their mod-
els predict under which circumstances the task becomes intractable and thus
assist in generating hypotheses which may be empirically testable.

In this paper we focus on tractability issues in explanation problems, i.e.,
we address the question under which circumstances problem variants are
tractable or intractable. We present definitions and complexity results related
to Bayesian inference of the most probable explanation, including some new or
previously unpublished results. The paper starts with some needed preliminar-
ies from probabilistic networks, graph theory, and computational complexity
theory. In the following sections the computational complexity of a number
of problem variants is discussed. The final section concludes the paper and
summarizes the results.

2 Preliminaries

In this section, we give a concise overview of a number of concepts from prob-
abilistic networks, graph theory, and complexity theory, in particular defini-
tions of probabilistic networks and treewidth, some background on complex-
ity classes defined by Probabilistic Turing Machines and oracles, and fixed-
parameter tractability. For a more thorough discussion of these concepts, the
reader is referred to textbooks like [16,23-29].

An overview paper on complexity results necessarily contains many complexity
classes and computational problems. All complexity classes in this paper that
are introduced informally in the main text will be formally defined in Appendix
A. For easy reference, all computational problems are also formally defined in
Appendix B.



2.1 DBayesian Networks

A Bayesian or probabilistic network B is a graphical structure that models a
set of stochastic variables, the conditional independencies among these vari-
ables, and a joint probability distribution over these variables. B includes a
directed acyclic graph Gz = (V, A), modeling the variables and conditional
independencies in the network, and a set of parameter probabilities I' in the
form of conditional probability tables (CPTs), capturing the strengths of the
relationships between the variables. The network models a joint probability
distribution Pr(V) = [T, Pr(V; | m(V;)) over its variables, where 7(V;) de-
notes the parents of V; in Gg. We will use upper case letters to denote individ-
ual nodes in the network, upper case bold letters to denote sets of nodes, lower
case letters to denote value assignments to nodes, and lower case bold letters
to denote joint value assignments to sets of nodes. We will use E to denote
a set of evidence nodes, i.e., a set of nodes for which a particular joint value
assignment e is observed. We will sometimes write Pr(h | e) as a shorthand
for Pr(H = h | E = e) if no ambiguity can occur.

A small example of a Bayesian network is the Brain Tumor network, shown
in Figure 1. This network, adapted from Cooper [30], captures some fictitious
and incomplete medical knowledge related to metastatic cancer. The presence
of metastatic cancer (modeled by the node MC') typically induces the devel-
opment of a brain tumor (B), and an increased level of serum calcium (/SC).
The latter can also be caused by Paget’s disease (PD). A brain tumor is likely
to increase the severity of headaches (H ). Long-term memory (M) is probably
also impaired. Furthermore, it is likely that a CT-scan (CT') of the head will
reveal a tumor if it is present.

Every (posterior) probability of interest in Bayesian networks can be com-
puted using well known lemmas in probability theory, like Bayes’ theorem
(Pr(H | E) = W}, marginalization (Pr(H) = >, Pr(H AG = g;)),
and the factorization property (Pr(V) =[I, Pr(V; | m(V;))) of Bayesian net-
works. For example, from the definition of the Brain Tumor network we can
compute that Pr(B = TRUE | M = TRUE,CT = FALSE) = 0.09 and that

Pr(MC = TRUE, PD = FALSE | M = FALSE, H = absent) = 0.13.

An important structural property of a probabilistic network is its treewidth.
Treewidth is a graph-theoretical concept, which can be loosely described as a
measure on the locality of the dependencies in the network: when the variables
tend to be clustered in small groups with few connections between groups,
treewidth is typically low, whereas treewidth tends to be high if there are
no clear clusters and the connections between variables are scattered all over
the network. Treewidth plays an important role in the complexity analysis
of Bayesian networks, as many otherwise intractable computational problems



Pr(MC = TRUE) =0.20

@ Pr(PD = TRUE) =0.10

Pr(B = TRUE | MC = TRUE) =0.20

e @ Pr(B = TRUE | MC = FALSE) =0.05

Pr(ISC = TRUE | MC = TRUE, PD = TRUE) = 0.95
e @ Pr(ISC = TRUE | MC = TRUE, PD = FALSE) = 0.80
@ Pr(ISC = TRUE | MC = FALSE, PD = TRUE) = 0.70

Pr(ISC = TRUE | MC = FALSE, PD = FALSE) = 0.20

Pr(H = severe | B = TRUE) =0.70 Pr(M = TRUE | B = TRUE) = 0.50

Pr(H = moderate | B = TRUE) = 0.25 Pr(M = TRUE | B = FALSE) =0.30

Pr(H = absent | B = TRUE) =0.05

Pr(H = severe | B = FALSE) =0.30 Pr(CT = TRUE | B = TRUE, ISC = TRUE) =0.90

Pr(H = moderate | B = FALSE) = 0.20 Pr(CT = TRUE | B = TRUE, I.SC = FALSE) =0.80

Pr(H = absent | B = FALSE) =0.50 Pr(CT = TRUE | B = FALSE, ISC = TRUE) =0.10
Pr(CT = TRUE | B = FALSE, ISC = FALSE) = 0.05

Fig. 1. The Brain Tumor network with its conditional probability distributions

become tractable when the treewidth of the network is bounded.

We define the treewidth of a Bayesian network B as the treewidth of a tri-
angulation of the moralization G} of its graph Gg. This moralization is the
undirected graph that is obtained from Gpg by adding arcs so as to connect
all pairs of parents of a variable, and then dropping all directions; we will use
the phrase ‘moralized graph’ to refer to the moralization of the graph of a
network. The moralized graph of the Brain Tumor network is shown in Figure
2. A triangulation of the moralized graph G} is any graph G that embeds
GM as a subgraph and in addition is chordal, that is, it does not include
loops of more than three variables without any pair being adjacent in Gp. A
tree-decomposition [25] of a triangulation G is a tree Tg such that

e cach node X; in Tq is a bag of nodes which constitute a clique in Gr;

e for every ¢, j, k, if X lies on the path from X; to X}, in Tq, then X; X}, C
X_j.

The width of the tree-decomposition T of the graph Gt equals max;(|X;| —

1), that is, it equals the size of the largest clique in G, minus 1. The treewidth

of a Bayesian network B now is the minimum width over all possible tree-

decompositions of triangulations of GN.

Treewidth is defined such that a tree (an undirected graph without cycles)
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Fig. 2. The moralized graph obtained from the Brain Tumor network
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Fig. 3. A tree-decomposition of the moralization of the Brain Tumor network

has treewidth 1. A tree-decomposition of the moralization of the Brain Tumor
network is shown in Figure 3. The width of this tree-decomposition is 2, since
this decomposition has at most 3 variables in each bag. Note that each undi-
rected graph has many tree-decompositions, that may vary in width; recall
that the treewidth of such a graph is defined as the minimal width over all
possible tree-decompositions.

2.2 Computational Complexity Theory

In the remainder, we assume that the reader is familiar with basic concepts
of computational complexity theory, such as Turing Machines, the complexity
classes P and NP, and NP-completeness proofs. For more background we refer
to classical textbooks like [27] and [28]. In addition to these basic concepts, to
describe the complexity of various problems we will use the probabilistic class
PP, oracles, function classes, and some aspects from parameterized complexity
theory.

The class PP contains languages L accepted in polynomial time by a Proba-
bilistic Turing Machine. Such a machine augments the more traditional non-
deterministic Turing Machine with a probability distribution associated with



each state transition, e.g., by providing the machine with a tape, randomly
filled with symbols [31]. Acceptance of an input x is defined as follows: the
probability of arriving in an accept state is strictly larger than % if and only if
x € L. If all choice points are binary and the probability of each transition is
%, then an identical definition is that the majority of the computation paths
accept an input z if and only if x € L. This probability of acceptance, how-
ever, is not fixed and may (exponentially) depend on the input, e.g., a problem
in PP may accept ‘yes’-instances with size |z| with probability % + ﬁ This
potentially small majority makes problems in PP intractable in general: we
cannot amplify the probability of acceptance by running a probabilistic algo-
rithm multiple times and taking a majority vote on the output, unless we're
prepared to run the algorithm exponentially many times. But in that case, we
might as well use brute force to solve the problem exactly.

The canonical PP-complete problem is MAJSAT: given a Boolean formula ¢,
does the majority of the truth assignments satisfy ¢? Indeed it is easily shown
that MAJSAT encodes the NP-complete SATISFIABILITY problem: take a for-
mula ¢ with n variables and construct ¢ = ¢ V x,.1. Now, the majority
of truth assignments to x;...x,.1 satisfy ¢ if and only if ¢ is satisfiable,
thus NP C PP. In Bayesian networks, the canonical problem of determining
whether the probability Pr(H = h | E = e) > ¢ for a given rational ¢ (known
as the INFERENCE problem) is PP-complete [32].

A Turing Machine M has oracle access to languages in the class A, denoted
as MA| if it can “query the oracle” in one state transition, i.e., in O(1). We
can regard the oracle as a ‘black box’ that can answer membership queries in
constant time. For example, NPPP is defined as the class of languages which
are decidable in polynomial time on a non-deterministic Turing Machine with
access to an oracle deciding problems in PP. Informally, computational prob-
lems related to Bayesian networks that are in NPPP, like PARAMETER TUN-
ING[33], typically combine some sort of selecting with probabilistic inference.
The canonical NPPP-complete satisfiability variant is E-MAJSAT[34]: given
a formula ¢ with variable sets xy... zp and x5y ... x,, is there an truth
assignment to xy... x such that the majority of the truth assignments to
Thg1 ... Ty satisfy ¢? Likewise, PNP and PPP denote classes of languages de-
cidable in polynomial time on a deterministic Turing Machine with access to
an oracle for problems in NP and PP, respectively. The canonical satisfiability
variants for PNP and PPP are LEXSAT and KTHSAT (given ¢, what is the lex-
icographically first, respectively k-th, satisfying truth assignment?); PNP and
PPP are associated with finding optimal solutions or enumerating solutions,
respectively [35,36].

In complexity theory, we are often interested in decision problems, i.e., prob-
lems for which the answer is ‘yes’ or ‘no’. Well-known complexity classes like P
and NP are defined for decision problems and are formalized using Turing Ma-



chines. In this paper we will also encounter function problems, i.e., problems
for which the answer is a function of the input. For example, the problem of de-
termining whether a solution to a 3SAT instance exists, is in NP; the problem
of actually finding such a solution is in the corresponding function class FNP.
Function classes are defined using Turing Transducers, i.e., machines that not
only halt in an accepting state on a satisfying input on its input tape, but also
return a result on an output tape. There is no one-to-one mapping between
decision classes and function classes, in the sense that if a decision problem
is in NP, its functional variant is not! always in FNP. Common classes for
functional variants of NP-complete problems are also FPNP (solvable with a
deterministic Turing Transducer with access to an oracle for problems in NP)
and FP'[\I'OPg] (solvable with a deterministic Turing Transducer with limited ac-
cess to an oracle for problems in NP, i.e., at most a logarithmic amount of
calls, with respect to the input size). Whether the problem is in FNP, FPNP
or FP'[\l'OPg] depends on the nature of the problem: “J”-like problems, like 3SAT,
are typically in FNP; optimization problems, like TRAVELLING SALESMAN
PROBLEM or HAMILTONIAN CIRCUIT are in FPNF or FPRF, . depending on
whether the problem definition does (TRAVELLING SALESMAN PROBLEM) or
doesn’t (HAMILTONIAN CIRCUIT) include weights [37].

Sometimes problems are intractable (i.e., NP-hard) in general, but become
tractable if some parameter of the problem can be assumed to be small. A pa-
rameterized problem is a pair (II, k) of a decision problem II and a polynomial
time computable parameterization x : {0,1}* — N mapping strings to natu-
ral numbers. The parameterized problem (II, k) is fized-parameter tractable if
there exists an algorithm deciding every instance (x,1) of (I, ) with running
time O(f(k(z,1))- |z|°) for an arbitrary computable function f and a constant
¢, independent of |z| [38,29]. The class of all fixed-parameter tractable decision
problems is denoted as FPT. To improve readability, if the parameterization
is clear from the context (e.g., k(x,l) =), we just mention the parameter [.

Informally, a problem is called fixed-parameter tractable for a parameter [ if
it can be solved in time, exponential only in [ and polynomial in the input size
|z|. In practice, this means that problem instances can be solved efficiently,
even when the problem is NP-hard in general, if [ is known to be small. If
an NP-hard problem II is fixed-parameter tractable for a parameter [ then
[ is denoted a source of complexity [20] of II: bounding [ renders the prob-
lem tractable, whereas leaving [ unbounded ensures intractability under usual
complexity-theoretic assumptions like P # NP. On the other hand, if II re-
mains NP-hard for all but finitely many values of the parameter [, then II is
para-NP-hard: bounding [ does not render the problem tractable. The notion
of fixed-parameter tractability can be extended to deal with rational, rather

I Given the usual assumptions in computational complexity theory; in this case,

NP NP
that FNP ¢ FPYP, ¢ FPNP.



than integer, parameters 2 . Informally, if a problem is fixed-rational tractable
for a (rational) parameter [, then the problem can be solved tractably if [ is
close to 0. For readability, we will liberally mix integer and rational parameters
in the remainder.

3 Computational Complexity

The problem of finding the most probable explanation for a set of variables in
Bayesian networks has been discussed in the literature using many names, like
Most Probable Explanation (MPE) [39], Maximum Probability Assignment
(MPA) [40], Belief Revision [16], Scenario-Based Explanation [41], Marginal
MAP [24], (Partial) Abductive Inference or Maximum A Posteriori hypoth-
esis (MAP) [42]. MAP also doubles to denote the set of variables for which
an explanation is sought [40]; for this set, also the term explanation set is
coined [42]. In recent years, more or less consensus is reached to use the terms
MPE and Partial MAP to denote the problem with full, respectively partial
evidence. We will use the term ezxplanation set to denote the set of variables to
be explained, and intermediate nodes to denote the variables that constitute
neither evidence nor the explanation set.

For example, in the Brain Tumor network one could be interested in the most
probable joint value assignment to MC' (presence of metastatic cancer) and
PD (presence of Paget’s disease) given the evidence that the patient has se-
vere headaches (H = severe), memory is impaired (M = TRUE) but no tumor
could be found on the CT-scan (CT" = FALSE). Here, the explanation set
is {MC, HD}; the evidence set is {H, M} and the intermediate nodes are
{B,15C}. In fact, solving the PARTIAL MAP problem with the above spec-
ifications would reveal that the most probable joint value assignment would
be the absence of both metastatic cancer and Paget’s disease as this joint
value assignment has a conditional probability of 0.78. If we’d also observe
the absence of a brain tumor (B = FALSE) yet an increased serum calcium
(ISC = TRUE) then the set of intermediate nodes would be empty, and then
solving an MPE problem would reveal that PD = TRUE, M C' = FALSE would
be the most probable joint value assignment, with probability 0.34.

2 Here a rational parameterization is a function X : {0,1}* — [0,1); a rationally
parameterized problem (I, \) is fized-rational tractable if there exists an algorithm
deciding every instance (z,l) of (II, \) with running time O(f(\(x,1)) - |z|°) for
a nondecreasing computable function f : QN [0,1) and a constant ¢, independent
of |z|. Every fixed-rational problem (II, \) can be translated in a fixed-parameter
problem (I, \)! using a translation ¢t : N — [0,1) (Moritz M. Miiller, personal
communication).



The formal definition of the canonical variants of the MPE and PARTIAL
MAP problems is as follows.

MPE

Instance: A probabilistic network B = (G, '), where V is partitioned into
a set of evidence nodes E with a joint value assignment e, and an
explanation set M.

Output: argmax,, Pr(m,e), i.e., the most probable joint value assignment
m to the nodes in M and evidence e, or L if Pr(m,e) = 0 for every joint
value assignment m to M.

PAarTIAL MAP

Instance: A probabilistic network B = (G, '), where V is partitioned into
a set, of evidence nodes E with a joint value assignment e, a set of
intermediate nodes I, and an explanation set M.

Output: arg max,, Pr(m,e), i.e., the most probable joint value assignment
m to the nodes in M and evidence e, or L if Pr(m,e) = 0 for every joint
value assignment m to M.

Note that in the above definition we use argmax,, Pr(m,e), rather than
arg max,, Pr(m | e) which is probably more often seen in the literature. Ob-
RN
joint value assignment (i.e., not its probability) is independent of Pr(e) as
this is equal for every joint value assignment. However, when we examine
the decision variant of MPE, we will see that there is a difference in com-
putational complexity between the “joint” and the “conditional” notion of
MPE. We will denote the latter problem (i.e., find the conditional MPE or
arg max,, Pr(m | e)) as MPEE in line with [43]. A similar variant exists for the
PARTIAL MAP-problem, however we will argue that the computational com-
plexity of these problems is identical and we will use both problems variants

liberally in further results.

serve, however, that Pr(m | e) = , and the value of the most probable

We assume that the problem instance is encoded using a reasonable encoding
as is customary in computational complexity theory. For example, we expect
that numbers are encoded using binary notation (rather than unary), that
probabilities are encoded using rational numbers, and that the number of val-
ues for each variable in the network is bounded by a constant, unless explicitly
mentioned otherwise. In principle, it is possible to “cheat” on the complexity
results by completely discarding the structure (i.e., the independency rela-
tions) in a network B and encode n stochastic binary variables using a single
node with 2" values that each represent a particular joint value assignment
in the original network. The CPT of this node in the thus created network
B’ (and thus the input size of the problem) is exponential in the number of
variables in the original network, and thus many computational problems will
run in time, polynomial in the input size, which of course does not reflect the

10



actual intractability of this approach.

In the next sections we will discuss the complexity of variants of MPE and
PARTIAL M AP, respectively. We then enhance both problems to enumeration
variants: instead of finding the most probable assignment to the explanation
set, we are interested in the complexity of finding the k-th most probable
assignment for arbitrary values of k. Lastly, we discuss the complexity of
approzimating MPE and PARTIAL MAP and their parameterized complexity.

4 MPE and variants

Shimony [44] first addressed the complexity of the MPE problem. He showed
that the decision variant of MPE was NP-complete, using a reduction from
VERTEX COVER. While reductions from several problems are possible, the
use of VERTEX COVER allowed particular constraints on the structure of the
network to be preserved. In particular, it was shown that MPE remains NP-
hard, even if all variables are binary and both indegree and outdegree of the
nodes is at most two [44]. The intractability of MPE is due to the fact that
we may need to consider an exponential number of joint value assignments.

An alternative proof, using a reduction from SATISFIABILITY, will be given
below. In this proof (in its original form originating from [45]), we need to
relax the constraint on the outdegree of the nodes, however, in this variant
MPE remains NP-hard when all variables have either uniformly distributed
prior probabilities (i.e., Pr(V = TRUE) = Pr(V = FALSE) = 1) or have
deterministic conditional probabilities (Pr(V = TRUE | 7(V)) is either 0 or
1). The main merit of this alternative proof is, however, that a reduction from
SATISFIABILITY may be more familiar for readers not acquainted with graph

problems. We first define the decision variant of MPE.

MPE-D

Instance: A probabilistic network B = (Gp, '), where V is partitioned into
a set of evidence nodes E with a joint value assignment e, and an
explanation set M; a rational number 0 < ¢ < 1.

Question: Is there a joint value assignment m to the nodes in M with
evidence e with probability Pr(m,e) > ¢7

Let ¢ be a Boolean formula with n variables. We construct a probabilistic
network B, from ¢ as follows. For each propositional variable z; in ¢, a binary
stochastic variable X; is added to By, with possible values TRUE and FALSE
and a uniform probability distribution. These variables will be denoted as
truth-setting variables X. For each logical operator in ¢, an additional binary
variable in By is introduced, whose parents are the variables that correspond

11



Fig. 4. The probabilistic network corresponding to —(z1 V x2) A —x3

to the input of the operator, and whose conditional probability table is equal
to the truth table of that operator. For example, the value TRUE of a stochastic
variable mimicking the and-operator would have a conditional probability of
1 if and only if both its parents have the value TRUE, and 0 otherwise. These
variables will be denoted as truth-maintaining variables T. The variable in T
associated with the top-level operator in ¢ is denoted as Vj,. The explanation
set M is XU T\ {V}. In Figure 4 the network B,,, is shown for the formula
¢ex = _|(J/’1 V ZL’Q) VAN —T3.

Theorem 1 MPE-D is NP-complete

Proof.We can prove membership in NP using a certificate consisting of a joint
value assignment m. As B is partitioned into M and E, we can compute any
probability of interest in polynomial time as we have a value assignment for
all variables.

To prove hardness, we apply the construction as illustrated above. For any
particular truth assignment x to the set of truth-setting variables X in the
formula ¢ we have that the probability of the value TRUE of V, given the joint
value assignment to the stochastic variables matching that truth assignment,
equals 1 if x satisfies ¢, and 0 if x does not satisfy ¢. With evidence V, = TRUE,
the probability of any joint value assignment to M is 0 if the assignment to X
does not satisfy ¢, or if the assignment to T does not match the constraints
imposed by the operators. However, the probability of any satisfying (and
matching) joint value assignment to M is #%’, where #,4 is the number of
satisfying truth assignments to ¢. Thus there exists an joint value assignment
m to M such that Pr(m, V; = TRUE) > 0 if and only if ¢ is satisfiable. Note
that the above network B, can be constructed from ¢ in time, polynomial in
the size of ¢, since we introduce only a single variable for each variable and

for each operator in ¢. O

12



Result 2 MPE-D is NP-complete, even when all variables are binary, the
indegree of all variables is at most two, there are no arcs from the evidence
set to the explanation set, and either the outdegree of all variables is two or
the probabilities of all variables are deterministic or uniformly distributed.

Corollary 3 MPE is NP-hard under the same constraints as above.

The decision variant of the MPEE problem (given a network B = (Gg,I'),
an explanatory set M, and an evidence set E with evidence e, compute
argmax,, Pr(m | e)) was proven PP-complete in [43] by a reduction from
MAJ3SAT (i.e., MAJSAT restricted to formulas in 3CNF form). The source of
this increase in complexity? is the division by Pr(e) to obtain Pr(m | e) =
Pr(m,e

Pr(e)). Since the set of vertices V is partitioned into M and E, computing
Pr(e) is a inference problem which has a PP-complete decision variant.

Result 4 ([43]) MPEE-D is PP-complete, even when all variables are bi-
nary.

The exact complexity of the functional variant of MPE is discussed in [46].
The proof uses a similar construction as above, however, the prior probabil-
ities of the truth-setting variables are not uniform, but depend on the index
of the variable. More in particular, the prior probabilities pi,...,p;, ..., p, for
the variables Xi,...,X;,..., X, are defined as p; = % — gn—ﬂ This ensures
that a joint value assignment x to X is more probable than x if and only if
the corresponding truth assignment x to zy, ..., x, is lexicographically ordered
before x’. Using this construction, Kwisthout et al. [46] reduced MPE from
the LEXSAT-problem of finding the lexicographically first satisfying truth as-
signment to a formula ¢. This shows that MPE is FPNP-complete and thus
in the same complexity class as the functional variant of the TRAVELLING

SALESMAN PROBLEM |[35].

This result reflects the fact that, like TSP, MPE really is an optimization
problem: we are not merely interested in a solution that exceeds a threshold
probability, but in the best solution. While it is easy to verify that a given
solution exceeds a threshold (we can compute Pr(m,e) in polynomial time
given m and e), there is no apparent trivial way to verify that there is no
better solution indeed. However, we may use some sort of binary search to find

the best solution, but this may take a polynomial number of queries to an
oracle solving MPE-D. This is reflected in the FPNP-completeness of MPE.

Result 5 ([46]) MPE is FPNP-complete, even when all variables are binary
and the indegree of all variables is at most two.

Kwisthout [33, p. 70] furthermore argued that the proposed decision variant

3 Under the usual assumption that NP # PP.
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MPE-D does not capture the essential complexity of the functional problem,
and suggested the alternative decision variant MPE-D’: given B and a des-
ignated variable M € M with designated value m, does M have the value
m in the most probable joint value assignment m to M? This problem turns
out to be PNP-complete, using a similar reduction as above, yet now from the
decision variant of LEXSAT.

Result 6 ([33]) MPE-D' is PNP_complete, even when all variables are binary
and the indegree of all variables is at most two.

Bodlaender et al. [40] used a reduction from 3SAT in order to prove a number of
complexity results for related problem variants. A 3SAT instance (U, C'), where
U denotes the variables and C' the clauses, was used to construct a probabilistic
network B(y,cy as follows. For each variable x; € U, a binary variable X; with
uniform distribution was added to By,¢). In addition, a binary and uniformly
distributed variable ¥ was added. For each clause ¢; € C, a binary variable
C; was added to B(y,c), with the variables from U appearing in ¢; and the
variable Y as parents. Lastly, a binary variable D was added with Y as parent.
The conditional probability Pr(C; | m(C})) was 2 if Y had the value TRUE or if
the corresponding truth assignment to 7(C;) \ Y satisfied the clause ¢;, and ;
otherwise. The conditional probability Pr(D | Y) was 1 if Y was set to TRUE
and % otherwise.

The construction ensures that for any joint value assignment x to X; ... X,,UY
that set Y to TRUE, x was the most probable explanation for By if (U, C)
was not satisfiable, and the second most probable explanation if (U, C) was
satisfiable. Using this construction, they proved (among others) the following
complexity results.

Result 7 ([40]) The 1S-AN-MPE problem (given a network B = (Ggp,T'),
an explanatory set M, evidence set B with evidence e, and an joint value
assignment m to M: is m the most probable joint value assignment® to M)
18 co-NP-complete.

Result 8 ([40]) The BETTER-MPE problem (given a network B = (Gg,I'),
an explanatory set M, evidence set E with evidence e, and an joint value
assignment m to M: find a joint value assignment m’ to M which has a
higher probability than m) is NP-hard.

Intuitively, the 1S-AN-MPE is co-NP-hard because if we can decide in polyno-
mial time whether a particular assignment x, with Y set to TRUE, is the most
probable explanation of X;... X, UY, then we can also decide that (U,C)
is not satisfiable. Similarly, as any assignment x with Y set to TRUE is the
second-best assignment to X;... X, UY if and only if (U, C) is satisfiable, if

4 Or one of the most probable assignments in case of a tie.
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we can decide whether there is a better explanation then we can also decide
(U,C), hence BETTER-MPE is NP-hard.

Lastly, to facilitate a later proof, we define (a decision variant of) the MINPE
problem as follows: given a network B = (Gg,I'), an explanatory set M,
evidence set E with evidence e and a rational number ¢: does Pr(m;, e) > ¢
hold for all joint value assignments m; to M? It can be readily seen that this
problem is co-NP-complete: membership in co-NP follows since we can falsify
the claim using a certificate consisting of a suitable joint value assignment my;
in polynomial time. Hardness can be shown using a similar reduction as used
to prove NP-hardness of MPE-D, but now from the canonical co-NP-complete
problem TAUTOLOGY; intuitively, the MINPE problem is hard as there are
potentially exponentially many joint value assignments to M and we must
verify that for all of them Pr(m;, e) > ¢ holds.

Result 9 The MINPE-D problem is co-NP-complete.

5 Partial MAP

Park and Darwiche [45] first addressed the computational complexity of PAR-
TIAL MAP. They showed that the decision variant of PARTIAL MAP is NPPP-
complete, using a reduction from E-MAJSAT (given a Boolean formula ¢ par-
titioned in two sets Xg and Xyp: is there an truth assignment to Xg such that
the majority of the truth assignments to Xy satisfies ¢7). The proof struc-
ture is similar to the hardness proof of MPE in Section 4, however, the nodes
modeling truth setting variables are partitioned into the evidence set Xg and
a set of intermediate variables Xps. Using this structure NPPP-completeness
is proven with the same constraints on the network structure as in Result 2.
However, Park and Darwiche also prove a considerably strengthened theorem,
using an other (and notably more technical) proof:

Result 10 ([45]) PARTIAL MAP-D remains NPPP-complete when the net-
work has depth 2, there is no evidence, all variables are binary, and all prob-
abilities lie in the interval [5 — €, 5 + €] for any fived € > 0.

These complexity results can be intuitively understood when we envisage that
for solving PARTIAL MAP there are two sources of complexity. One both
has to choose a joint value assignment out of potentially exponentially many
such assignments (the “NP-part”) and, for each such assignment, marginalize
over the (also potentially exponentially many) joint value assignments to the
intermediate variables (the “PP-part”). However, since we already need the
power of the PP-oracle to compute Pr(m,e) = > ; Pr(m, e, I = i), having to
compute Pr(e) to obtain Pr(m | e) ‘does not hurt us’ complexity-wise; both
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the “marginal” and the ”conditional” decision variants of PARTIAL MAP are
in NPPP.

Park and Darwiche [45] show that a number of restricted problem variants
remain hard. If there are no intermediate variables, the problem degenerates to
MPE-D and thus remains NP-complete. On the other hand, if the explanation
set is empty, then the problem degenerates to INFERENCE and thus remains
PP-complete. If the number of variables in the explanation set is logarithmic
in the total number of variables the problem is in PFP since we can iterate
over all joint value assignments of the explanation set in polynomial time
and infer the joint probability using an oracle for INFERENCE. If the number
of intermediate variables is logarithmic in the total number of variables the
problem is in NP. As we then need to marginalize only over a polynomially
bounded number of joint value assignments of the intermediate variables, we
can verify in polynomial time whether the probability of any given joint value
assignment to the variables in the explanation set exceeds the threshold.

However, when the number of variables in the explanation set or the number
of intermediate variables is O(n¢) the problem remains NPPP-complete, since
we can ‘blow up’ the general proof construction with a polynomial number of
unconnected and deterministic dummy variables such that these constraints
are met. Lastly, the problem remains NP-complete when the network is re-
stricted to a polytree, as shown by Park and Darwiche using a reduction from
MAXSAT.

Result 11 ([45]) PARTIAL MAP-D remains NP-complete when restricted to
polytrees.

It follows as a corollary that the functional problem variant PARTIAL MAP
is NPPP-hard in general with the same constraints as the decision variant. The
exact complexity of the functional variant is discussed in [46]. Using a simi-
lar proof construct as for the functional variant of MPE, it was proven that
PARTIAL MAP is FPNPPP—complete, and that this result shares the constraints
with Result 5. The intuition behind this complexity class is also similar to the
case of MPE, yet we also need to marginalize over the intermediate variables.
This leaves us with three aspects of intractability that work on top of each
other: finding a candidate solution that exceeds a threshold (the “NP-part”),
marginalizing over the intermediate variables (the “PP-part”), and finally us-
ing binary search to compute the optimal solution (the “FP-part”).

Result 12 ([33]) PARTIAL MAP is FPNP" _complete, even when all vari-
ables are binary and the indegree of all variables is at most two.

Some variants of PARTIAL MAP have been formulated in the literature. For
example, in [47] the CONDMAP-D problem was defined as follows: Given a
network B = (Gg, '), with explanation set M, evidence set E with evidence
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e, and a rational number ¢; is there a joint value assignment m to M such
that Pr(e | m) > ¢7 Note that CONDMAP-D differs from PARTIAL MAP-D
as we use Pr(e | m) rather than Pr(m | e). In [47] it has been shown that
the hardness proof of Park and Darwiche [45] for PARTIAL MAP-D can also
be applied, with trivial adjustments, to CONDMAP-D, since in their proof
construct M does not have incoming arcs and has a uniform prior distribution
for each joint value assignment m. Since Pr(e | m) = 2™ it follows that

Pr(m)
Pr(e | m) > ¢ iff. Pr(e,m) > Pr(m) x q.

Result 13 ([47,45]) CONDMAP-D is NPPP-complete, even when all vari-
ables are binary and the indegree of all variables is at most two.

Result 14 ([47,45]) CONDMAP-D remains NP-complete on polytrees, even
when all variables are binary and the indegree of all variables is at most two.

It can be easily shown as well, using a similar argument as with the MINPE
problem, that the similarly defined MINM AP-problem (given a network B =
(Gg,I'), an explanatory set M, intermediate variables I, evidence set E with
evidence e and a rational number ¢: does Pr(m;,e) > ¢ hold for all joint
value assignments m; to M?) is co-NPPP-hard and has a co-NPPP-complete
decision variant; intuitively one can envisage that for solving a MINMAP-
problem one needs to combine both the verification of the ‘min’-property (the
“co-NP-part”) and probabilistic inference (the “PP-part”).

Result 15 MINMAP is co-NPPP-hard and has a co-NPPP-complete decision
variant.

Another problem variant, namely the mazimin a posteriori or MMA P-problem
was formulated in its decision variant as follows by De Campos and Cozman
[43]: Given a probabilistic network B = (Gg,I'), where V is partitioned into
sets L, M, I, and E, and a rational number ¢; is there a joint value assignment
1 to L such that miny,, Pr(l,m,e) > ¢? This problem of course resembles the
PARTIAL MAP-problem, however the set of variables is partitioned into four
sets rather than three. The problem was shown NPPP-hard in [43], we will
show that it is in fact NPNPPP—complete, using a reduction from the canonical
NPNP™_complete problem EA-MAJSAT, defined as follows.

EA-MAJSAT

Instance: Let ¢ be a Boolean formula with n variables
ri,i=1,....n,n>1Let 1 <k <l <n,let Xg, Xa, and Xy be the sets of
variables xy to xy, xxyq1 to x;, and x4 to x,, respectively.

Question: Is there a truth assignment to Xg such that for every possible
truth assignment to X, the majority of the truth assignments to Xyg
satisfies ¢7
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Fig. 5. The probabilistic network corresponding to —=((z1Vxz2) A(x3Vx4))A(25V 26)

The intuition behind the complexity result is as follows. We have three sources
of intractability which work on top of each other: marginalization over the
intermediate variables (the “PP-part”), choosing 1 out of potentially exponen-
tially many joint value assignments to L (one “NP-part”) and verifying that
min,, Pr(l,m, e) > ¢, with also potentially exponentially many joint value as-
signments m (the other “NP-part”, which acts as an oracle for MINPE, but
with ‘yes” and ‘no’ answers reversed).

We construct a probabilistic network B, from ¢ as in the hardness proof of
MPE-D, however, the truth-setting part X is partitioned into three sets L,
M, and I. We take the instance (¢ex = 2((x1Vx2) A(x3Vxy))A(T5V 26), XE =
{z1, 22}, XA = {3, 24}, XM = {x5,26}) as an example; the graphical struc-
ture of the network By constructed for ¢ey is shown in Figure 5. This EA-
MaJsAT-instance is satisfiable: take 7 = x5 = FALSE, then for every truth
assignment to {x3, x4}, the majority of the truth assignments to {xs, z¢} sat-

isfy (ey.

Theorem 16 MMAP-D is NPNPPP—complete.

Proof.Membership of NPNP™ can be proven as follows. Given a non-deter-
ministically chosen joint value assignment 1 to L, we can verify in polynomial
time that min,, Pr(l,m,e) > ¢ using an oracle for MINMAP-D; note that
NPNP™ — NP°°'NPPP, as we can use an oracle for SATISFIABILITY as an oracle
for UNSATISFIABILITY and vice versa by simply reversing the ‘yes’ and ‘no’
answers of the oracle.

To prove hardness, we show that every EA-MAJSAT-instance (¢, Xg, Xa, Xnm)
can be reduced to a corresponding instance (By, L, M, I, E, q) of MMAP in
polynomial time. Let B, be the probabilistic network constructed from ¢
as shown above, let E = V,,e = TRUE and let ¢ = 5. Assume there ex-
ists a joint value assignment 1 to L such that miny, Pr(l,m,e) > 1. Then

=

= oo
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the corresponding EA-MAJSAT-instance (¢, Xg, Xa, Xn) is satisfiable: for
the truth assignment that corresponds with the joint value assignment 1,
every truth assignment that corresponds to a joint value assignment m to
M ensures that the majority of truth assignments to Xp; accepts (since
miny, Pr(l,m,e) = min,, >; Pr(l,m,e,I = i) > %) On the other hand, if
(¢, Xg, Xa,XnM) is a satisfiable EA-MAJSAT-instance, then the proposed
construction ensures that min,, Pr(l,m,e) > % In other words, if we can
decide arbitrary instances (By, L, M, I, E,¢) of MMAP in polynomial time,
we can decide every EA-MAJSAT-instance since the construction is obviously
polynomial-time bounded, hence, MMAP-D is NPNPPP—Complete. a

6 Enumeration variants

In practical applications, one often wants to find a number of different joint
value assignments with a high probability, rather than just the most proba-
ble one [48,49]. For example, in medical applications, one wants to suggest
alternative (but also likely) explanations to a set of observations. One might
like to prescribe medication that treats a number of plausible (combinations
of) diseases, rather than just the most probable combination. It may also be
useful to examine the second-best explanation to gain insight in how good the
best explanation is, relative to other solutions, or how sensitive it is to changes
in the parameters of the network [50].

Kwisthout et al. [46] addressed the computational complexity of MPE and
PARTIAL MAP when extended to the k-th most probable explanation, for
arbitrary values of k. The construction for the hardness proof of KTH MPE
is similar to that of Result 5, however, the reduction is made from KTH-
SAT (given a Boolean formula ¢, what is the lexicographically k-th satisfying
truth assignment?) rather than LEXSAT. It is thus shown that KTH MPE
is FPPP-complete and has a PPP-complete decision variant, even if all nodes
have indegree at most two. Finding the k-th MPE is thus considerably harder
(i.e., complexity-wise) than MPE, and also harder than the PP-complete IN-
FERENCE-problem in Bayesian networks. The computational power of PPP and
FPPP (and thus the intractability of KTH MPE) is illustrated by Toda’s theo-
rem [51] which states that PP? includes the entire Polynomial Hierarchy (PH).
Here an intuitive argument for membership of the classes PPP and FPPF is less
easy to give; one might suggest that finding the lexicographically k-th (or, in
particular, the middle) satisfying truth assignment to a Boolean formula is
more difficult than finding the first assignment; we refer to [36] for a more
exhaustive discussion.

Result 17 ([46]) KTH MPE is FPPP-complete and has a PPP-complete de-
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cision variant, even if all nodes have indegree at most two.

The KTH PARTIAL MAP-problem is even harder than that, under usual as-
sumptions® in complexity theory. Kwisthout et al. proved [46] that a variant
of the problem with bounds on the probabilities (BOUNDED KTH PARTIAL
MAP) is FPPPPP—complete and has a PPPPP—complete decision variant, using a
reduction from the KTHNUMSAT-problem (given a Boolean formula ¢ whose
variables are partitioned in two subsets Xk and Xy, and an integer [, what
is the lexicographically k-th satisfying truth assignment to Xk such that ex-
actly [ truth assignments to Xy, satisfy ¢?7). When compared to the KTH MPE
problem, we need the extra PP oracle for computing the marginal distribution
of the intermediate variables, analogously to PARTIAL M AP when compared
to MPE.

Result 18 ([46]) KTH PARTIAL MAP is FPPP™ _complete and has a PPP™ -
complete decision variant, even if all nodes have indegree at most two.

7 Approximation Results

While sometimes NP-hard problems can be efficiently approximated in polyno-
mial time (e.g., algorithms exist that find a solution that may not be optimal,
but nevertheless is guaranteed to be within a certain bound), no such algo-
rithms exist for the MPE and PARTIAL MAP problems. In fact, Abdelbar
and Hedetniemi [53] showed (among other results) that there can not exist an
algorithm that is guaranteed to find a joint value assignment within any fixed
bound of the most probable assignment, unless P = NP [53]. That does not im-
ply that heuristics play no role in finding assignments; however, if no further
restrictions are assumed on the graph structure or probability distribution,
no approximation algorithm is guaranteed to find a solution (in polynomial
time) that has a probability of at least % times the probability of the best
explanation, for any fixed r; the same holds for finding the KTH MPE.

Result 19 ([53]) MPE cannot be approximated within any fized ratio unless
P = NP.

Result 20 ([53]) KTH MPE cannot be approximated within any fized ratio
unless P = NP.

In fact, it can be easily shown that no algorithm can guarantee absolute bounds
as well. As we have seen in Section 4, deciding whether there exist a joint
value assignment with a probability larger than ¢ is NP-hard for any ¢ larger

> To be more precise, the assumptions that the inclusions in the Counting Hierarchy
[52] are strict.
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than 0. Thus, finding a solution which is ‘good enough’ is NP-hard in general,
where ‘good enough’ may be defined as a ratio of the probability of the best
explanation, as a function of the input size, or as an absolute threshold.

Result 21 (follows as a corollary from Result 2) MPE cannot be approz-
imated within any approzimation factor f(n) unless P = NP.

Observe that MPE is a special case of PARTIAL MAP, in which the set of
intermediate variables I is empty, and that the intractability of approximat-
ing MPE extends to PARTIAL MAP. Furthermore, Park and Darwiche [45]
proved that approximating PARTIAL MAP on polytrees within a factor of
2171 i NP-hard for any fixed ¢, 0 < € < 1, where || is the size of the instance.

Result 22 ([45]) PARTIAL MAP cannot be approximated within a factor
of 217 for any fized €,0 < € < 1, even when restricted to polytrees, unless

P = NP.

8 Fixed Parameter Results

In the previous sections we saw that finding the best explanation in a prob-
abilistic network is NP-hard and NP-hard to approximate as well. These in-
tractability results hold in general, i.e., when no further constraints are put
on the problem instances. However, polynomial-time algorithms are possible
for MPE if certain problem parameters are known to be small. In this section,
we present known results and corollaries that follow from these results. In
particular, we discuss the following parameters: probability (PROBABILITY-Q
MPE, PROBABILITY-Q PARTIAL MAP), treewidth (TREEWIDTH-TW MPE,
TREEWIDTH-TW PARTIAL MAP), and, for PARTIAL M AP, the number of
intermediate variables (INTERMEDIATE-L PARTIAL MAP). In all of these
problems, the input is a probabilistic network and the parameter [ as men-
tioned. Also, for the PARTIAL M AP variants combinations of these parameters
will be discussed, in particular probability and treewidth (PROBABILITY-Q
TREEWIDTH-TW PARTIAL MAP) and probability and number of intermedi-
ate variables (PROBABILITY-Q INTERMEDIATE-L PARTIAL MAP).

Bodlaender et al. [40] presented an algorithm to decide whether the most
probable explanation has a probability larger than ¢, but where ¢ is seen as a
fixed parameter rather than part of the input. The algorithm has a running
time of (9(2101;% - n), where n denotes the number of variables. When ¢ is
a fixed parameter (and thus assumed constant), this is linear in n; moreover,
the running time decreases when ¢ increases, thus for problem instances where
the most probable explanation has a high probability, deciding the problem
is tractable. The problem is easily enhanced to a functional problem variant
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where the most probable assignment (rather than TRUE or FALSE) is returned.

Result 23 ([40]) Any instance x of PROBABILITY-Q MPE can be solved in
time O(f(q) - |z|°) for an arbitrary function f and an instance-independent
constant ¢ and is thus fixed-parameter tractable for {q}.

Intuitively this result implies that finding the most probable explanation can
be done efficiently if the probability of that explanation is high.

Sy [39] first introduced an algorithm for finding the most probable explana-
tion, based on junction tree techniques, which in multiply connected graphs
runs in time, exponential only in the maximum number of node states of the
compound variables. Since the size of the compound variables in the junction
tree is equal to the treewidth of the network plus one, and we assumed that
the number of values per variable is bounded by a constant, this algorithm is
exponential only in the treewidth of the network. Hence, if the treewidth tw
is seen as a fixed parameter, then the algorithm runs in polynomial time.

Result 24 ([39]) Any instance x of TREEWIDTH-TW MPE can be solved in
time O(f(tw) - |x|°) for an arbitrary function f and an instance-independent
constant ¢ and is thus fived-parameter tractable for {tw}.

This result implies that finding the most probable explanation can be done
efficiently also if the treewidth of the network is low.

Sy’s algorithm [39] in fact finds the & most probable explanations (rather than
only the most probable) and has a running time of O(k- n- | C |), where
| C'| denotes the maximum number of node states of the compound variables.
Since k may become exponential in the size of the network this is in general not
polynomial, even with low treewidth; however, if k is regarded as parameter
then fixed-parameter tractability follows as a corollary.

Result 25 ([39]) Any instance x of TREEWIDTH-TW KTH MPE can be
solved in time O(f(tw, k) - |x|°) for an arbitrary function f and an instance-
independent constant ¢ and is thus fized-parameter tractable for {tw, k}.

Finding the k-th most probable explanation thus can be done efficiently if
both k and the treewidth of the network are low.

In multi-dimensional classifiers (MBCs) one effectively solves an MPE prob-
lem in a network where the dependencies of the network are constrained: there
are no arcs from the evidence set (in MBCs: feature variables) to the expla-
nation set (in MBCs: classification variables). Observe that from the proof of
Result 2 it follows that solving MBCs is NP-hard in general. Finding the most
probable explanation in these restricted graphs can be done in polynomial
time if both the treewidth of the evidence set and the number of classification
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variables are bounded (i.e., no restrictions are imposed on the topology of the
explanation set) [54].

Result 26 ([54]) Solving MBCs is fized-parameter tractable for {twg, |M]|}.

Furthermore, if the MBC can be class-bridge decomposed [55] into components
such that the maximal number of class variables |C;| per component C;j and
the treewidth of the evidence set are bounded, solving MBCs can be done in
polynomial time [55].

Result 27 ([55]) Solving MBCs is fived-parameter tractable for {twg, maxc, |Cj|}.

When we consider PARTIAL M AP then restricting either the probability or the
treewidth is insufficient to render the problem tractable. Park and Darwiche
[45] established NP-completeness of PARTIAL MAP restricted to polytrees
with at most two parents per node, i.e., networks with treewidth at most
2, yet with an unbounded number of values per variable. Recently, among
other results, De Campos [56] proved NP-completeness even for binary vari-
ables, strengthening the previous result. Furthermore, it is easy to see that
deciding PARTIAL MAP includes solving the INFERENCE problem, even if
¢, the probability of the most probable explanation, is very high. Assume
we have a network B with designated binary variable V. Deciding whether
Pr(V = TRUE) > 1 is PP-complete in general (see, e.g., [33, p.19-21] for a
completeness proof, using a reduction from MAJSAT). We now add a binary
variable C' to our network, with V' as its only parent, and probability table
Pr(C = TRUE | V = TRUE) = ¢ + € and Pr(C = TRUE | V = FALSE) = ¢ — ¢
for an arbitrary small value e. Now, Pr(C' = TRUE) > ¢ if and only if
Pr(V = TRUE) > %, so determining whether the most probable explanation of
C has a probability larger than ¢ boils down to deciding INFERENCE which is
PP-complete.

Result 28 ([45,56]) TREEWIDTH-TW PARTIAL MAP is para-NP-complete
for {tw}.

Result 29 PROBABILITY-Q PARTIAL MAP is para-PP-complete for {q}.

However, the algorithm of Bodlaender et al. [40] can be adapted to find Partial
MAPs as well ¢ . The algorithm iterates over a topological sort 1,...,4,...,n of
the nodes of the network. At one point, the algorithm computes Pr(V;;, | v) for
a particular joint value assignment v to Vi, ..., V;. In the paper it is concluded
that this can be done in polynomial time since all values of V4, ..., V; are known
at iteration step 7. To obtain an algorithm for finding partial MAPs, we just
skip any iteration step ¢ if V; is an intermediate variable, and we compute
Pr(Vi41) by computing the probability distribution over the ‘missing’ values

6 Hans L. Bodlaender, personal communication.
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V;. This can be done in polynomial time if either the number of intermediate
variables (1) is fixed or the treewidth of the network (tw) is fixed.

Result 30 (adapted from [40]) Any instance x of PROBABILITY-Q TREE-
WIDTH-TW PARTIAL MAP can be solved in time O(f(q,tw) - |x|°) for an
arbitrary function f and an instance-independent constant ¢ and is thus fized-
parameter tractable for {q,tw}.

Result 31 (adapted from [40]) Any instance v of PROBABILITY-Q INTER-
MEDIATE-L PARTIAL MAP can be solved in time O(f(q,l) - |z|¢) for an ar-
bitrary function f and an instance-independent constant ¢ and is thus fized-
parameter tractable for {q,l}.

Intuitively, finding the Partial MAP can be done efficiently if both the prob-
ability of the most probable explanation is high, and either the treewidth of
the network or the number of intermediate variables is low.

9 Conclusion

Inference of the most probable explanation is hard in general. Approximating
the most probable explanation is hard as well. Furthermore, various problem
variants, like finding the k-th MPE, finding a better explanation than the one
that is given, and finding best explanations when not all evidence is available
is hard. Many problems remain hard under severe constraints.

However, this need not to be ‘all bad news’ for the computational modeler.
MPE is tractable when the probability of the most probable explanation is
high or when the treewidth of the underlying graph is low. PARTIAL MAP
is tractable when both constraints are met, to name a few examples. The key
question for the modeler is: are these constraints plausible with respect to
the phenomenon one wants to model? Is it reasonable to suggest that the phe-
nomenon does not occur when the constraints are violated? For example, when
cognitive processes like goal inference are modeled as finding the most proba-
ble explanation of a set of variables given partial evidence, is it reasonable to
suggest that humans have difficulty inferring actions when the probability of
the most probable explanation is low, as suggested by [21]?

We do not claim to have answers to such questions; these are to be decided by,
e.g., cognitive psychologists. However, the overview of known results in this
paper may aid the computational modeler in finding potential sources of in-
tractability, i.e., parameters that render her model computationally intractable
when unbounded. Whether the outcome is received as a blessing (because em-
pirical results like reaction times and error rates may confirm those sources of
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intractability, showing that indeed the cognitive task is intractable when these
parameters are unbounded, thus attributing more credibility to the model) or
a curse (because empirical results refute those sources of intractability, thus
providing counterexamples to the model) is beyond our control.
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Appendix A: overview of complexity classes

In the main text of the paper, a number of complexity classes have been
introduced. Here we give a short overview of these classes, composed of both
a formal definition and an intuitive notion. We refer the interested reader to
the classical textbooks for more background on these classes.

NP

Formal definition: Class of problems for which membership is decidable in
polynomial time by a non-deterministic Turing Machine (with at least one
accepting path); alternatively, class of problems for which membership is
verifiable in polynomial time by a deterministic Turing Machine using a
certificate.

Intuitive notion: A problem is in NP if one can easily verify membership
when given a proof, e.g., one can easily verify that a Boolean formula is
satisfiable, when given a satisfying truth instantiation.

co-NP

Formal definition: The complement set of NP, i.e., the class of problems
for which non-membership is decidable in polynomial time by a
non-deterministic Turing Machine; alternatively, class of problems for which
membership can be falsified in polynomial time by a deterministic Turing
Machine using a certificate.

Intuitive notion: A problem is in co-NP if one can easily verify
non-membership when given a counterexample, e.g., one can easily falsify
that a Boolean formula is a contradiction, when given a satisfying truth
instantiation.
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FNP

Formal definition: Class of functions that are computable in polynomial
time on a non-deterministic Turing Transducer.

Intuitive notion: Strongly related to NP, but for functions rather than
yes/no decision problems.

PP

Formal definition: Class of problems for which membership is decidable in
polynomial time on a Probabilistic Turing Machine with an arbitrary small
majority.

Intuitive notion: While for NP it suffices that there is at least one admissible
solution, and for co-NP it is necessary that no solution” is admissible, for PP
we demand that the (strict) majority of solutions are admissible. Typically
associated with reasoning under uncertainty, in particular probabilistic
inference.

PNP7 FPNP

Formal definition: Class of problems for which membership is decidable on
a deterministic Turing Machine, respectively functions that are computable
on a deterministic Turing Transducer, in polynomial time with access to an
oracle for problems in NP.

Intuitive notion: PN? and FPNP are classes that are typically associated with
the problem of finding an optimal solution, such as the lexicographically first
satisfying truth instantiation.

PPP, FpPP

Formal definition: Class of problems for which membership is decidable on
a deterministic Turing Machine, respectively functions that are computable
on a deterministic Turing Transducer, in polynomial time with access to an
oracle for problems in PP.

Intuitive notion: PPP and FPPP are classes that are typically associated with
the problem of finding the k-th best solution, such as the lexicographically
k-th satisfying truth instantiation.

NPPP. co-NPPP

Formal definition: Class of problems for which membership, respectively
non-membership, is decidable in polynomial time on a non-deterministic
Turing Machine with access to an oracle for problems in PP.

Intuitive notion: NPPP and co-NPFPP are classes that are typically associated
with problems that combine probabilistic inference with either selecting
candidate-solutions (NPPP) or verifying properties (co-NPPP).

NPNP™

7 Or every solution, for the dual problem, compare UNSATISFIABILITY to TAUTO-
LOGY.
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Formal definition: Class of problems for which membership is decidable in
polynomial time on a non-deterministic Turing Machine with access to an
oracle for problems in NPPP.

Intuitive notion: The class of problems typically associated with problems
that combine selecting solutions, verifying properties, and probabilistic
inference, each of which individually adds to the complexity of the problem.

PNPPP PPPPP FPNPPP FPPPPP
9 Y )

Formal definition: Class of problems for which membership is decidable,
respectively functions that are computable, in polynomial time on a
deterministic Turing Machine (Transducer) with access to an oracle for
problems in NPPP | respectively PPPP.

Intuitive notion: The classes of problems that are created when augmenting
PNP PPPFPNP and FPPP with an additional oracle for PP. These problems
typically combine probabilistic inference with finding optimal, respectively
k-th best, solutions.

FPT

Formal definition: Class of problems that have a parameter [ such that
membership can be decided in O(f(1) - |z|¢) for any function f and constant
c.

Intuitive notion: A problem can be hard in general, but tractable when a
particular parameter of the problem instances is assumed to be fairly small.
If a problem is, e.g., NP-complete for every (but finitely many) value of [,
then the problem is para-NP-complete for parameter [. An example is
[—SATISFIABILITY, where the Boolean formula is in [-CNF form. For each
value of [ larger than two, [—SATISFIABILITY is NP-complete.

Appendix B: overview of computational problems

In this appendix we formally define the relevant computational problems that
are used in the paper, together with their computational complexity.

SATISFIABILITY

Instance: Let ¢ be a Boolean formula with n variables
rz,,i=1,....,n,n>1.

Question: Is there a truth assignment to z1, ..., x, that satisfies ¢?

Comment: NP-complete [57].

3SAT
Instance: As in SATISFIABILITY, but now ¢ is in 3-CNF form.
Question: Is there a truth assignment to z1, ..., x, that satisfies ¢?

Comment: NP-complete [58].
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TAUTOLOGY

Instance: As in SATISFIABILITY.

Question: Does every truth assignment to xq, ..., x, satisfy ¢?

Comment: co-NP-complete (follows by definition from NP-completeness of
SATISFIABILITY).

MAJSAT
Instance: As in SATISFIABILITY.
Question: Does the majority of truth assignments to x1, ..., x, satisfy ¢7

Comment: PP-complete [31].

MAJ3SAT
Instance: As in SATISFIABILITY, but now ¢ is in 3-CNF form.
Question: Does the majority of truth assignments to xq,...,x, satisfy ¢?

Comment: PP-complete [31].

E-MAJSAT

Instance: As in SATISFIABILITY, furthermore we partition the variables
into sets Xg and Xpg.

Question: Is there a truth assignment to Xg such that the majority of the
truth assignments to Xy satisfy ¢?

Comment: NPPP-complete [59)].

EA-MAJSAT

Instance: As in SATISFIABILITY, furthermore we partition the variables
into sets Xg, Xa and Xys.

Question: Is there a truth assignment to Xg such that for every possible
truth assignment to X, the majority of the truth assignments to Xy
satisfies ¢7

Comment: NPNP™_complete [59].

LEXSAT

Instance: As in SATISFIABILITY.

Output: The lexicographically first truth assignment that satisfies ¢, or L if
no such assignment exists.

Comment: FPNP_complete [35].

LEXSAT-D

Instance: As in SATISFIABILITY.

Question: Is the least significant bit in the lexicographically first truth
assignment that satisfies ¢ odd?

Comment: PNP-complete [35].

KTHSAT
Instance: As in SATISFIABILITY, natural number k.
Output: The lexicographically k-th truth assignment that satisfies ¢, or L
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if no such assignment exists.
Comment: FPPP-complete [36].

KTHSAT-D

Instance: As in SATISFIABILITY, natural number k.

Question: Is the least significant bit in the lexicographically k-th truth
assignment that satisfies ¢ odd?

Comment: PPP-complete [36].

KTHNUMSAT

Instance: As in E-MAJSAT, natural numbers k and .

Output: The lexicographically k-th truth assignment to the set Xg for
which exactly [ truth assignments to Xy satisfy ¢, or L if no such
assignment exists.

Comment: FPPP™ _complete [33].

MPE

Instance: A probabilistic network B = (G, '), where V is partitioned into
a set of evidence nodes E with a joint value assignment e, and an
explanation set M.

Output: The most probable joint value assignment m to the nodes in M
and evidence e, or L if Pr(M = m, E = e) = 0 for every joint value
assignment m to M.

Comment: FPNP-complete [46].

MPE-D

Instance: As in MPE, rational number q.

Question: Is there a joint value assignment m to the nodes in M with
evidence e with probability Pr(M = m,E =e) > ¢?

Comment: NP-complete [44].

MPEE-D

Instance: As in MPE, rational number q.

Question: Is there a joint value assignment m to the nodes in M with
evidence e with probability Pr(M =m | E = e) > ¢7

Comment: PP-complete [43].

MPE-D’

Instance: As in MPE, designated variable M € M with designated value m.
Question: Does M have the value m in the most probable joint value
assignment m to M?

Comment: PNP-complete [33].

1S-AN-MPE
Instance: As in MPE, joint value assignment m to M.
Question: Is m the most probable joint value assignment to M?
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Comment: co-NP-complete [40].

BETTER-MPE

Instance: As in MPE, joint value assignment m to M.

Output: A joint value assignment m’ to M such that

PriM =m’' |E=¢e) > Pr(M =m | E = e), or L if no such joint value
assignment exists.

Comment: NP-hard [40].

MINPE-D

Instance: As in MPE, rational number q.

Question: Does Pr(M = m;, E = e) > ¢ hold for all joint value assignments
m; to M?

Comment: co-NP-complete (Section 4).

Kta MPE

Instance: As in MPE, natural number k.

Output: The k-th most probable joint value assignment m to the nodes in
M and evidence e, or L if k is larger than the number of joint value
assignments m to M for which Pr(m,e) > 0.

Comment: FPNP_complete [46].

Kta MPE-D

Instance: As in MPE, natural number k, designated variable M € M with
designated value m.

Question: Does M have the value m in the k-th most probable joint value
assignment m to the nodes in M and evidence e?

Comment: PNP-complete [46].

ParTIAL MAP

Instance: A probabilistic network B = (G, '), where V is partitioned into
a set of evidence nodes E with a joint value assignment e, a set of
intermediate nodes I, and an explanation set M.

Output: The most probable joint value assignment m to the nodes in M
and evidence e, or L if Pr(m,e) = 0 for every joint value assignment m to
M.

Comment: FPNP™ _complete [46].

ParTIAL MAP-D

Instance: As in PARTIAL M AP, rational number q.

Question: Is there a joint value assignment m to the nodes in M with
evidence e with probability Pr(M =m,E = e) > ¢?

Comment: NPPP-complete [45].

CoNDMAP-D
Instance: As in PARTIAL MAP, rational number q.
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Question: Is there a joint value assignment m to M such that
Pr(E=e|M=m) > ¢?
Comment: NPPP-complete [45,47].

MINMAP-D

Instance: As in PARTIAL MAP, rational number q.

Question: Is Pr(M = m;, E = e) > ¢ for all joint value assignments m; to
M?

Comment: co-NPPP-complete (Section 5).

MMAP-D

Instance: A probabilistic network B = (Gp, '), where V is partitioned into
a set of evidence nodes E with a joint value assignment e, a set of
intermediate nodes I, and explanation sets L and M, rational number q.
Question: Is there a joint value assignment 1 to L such that

ming, Pr(L =1 M =m,E =e) > ¢7

Comment: NPNP™_complete (Section 5).

KTH PARTIAL MAP

Instance: As in PARTIAL MAP, natural number k.

Output: The k-th most probable joint value assignment m to the nodes in
M and evidence e, or L if k is larger than the number of joint value
assignments m to M for which Pr(m,e) > 0.

Comment: FPPP" -complete [46].

KTH PARTIAL MAP-D

Instance: As in PARTIAL MAP, designated variable M € M with
designated value m.

Question: Does M have the value m in the k-th most probable joint value
assignment m to the nodes in M and evidence e?

Comment: PPP" -complete [46].
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