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Abstract

Existing cognitive agent programming languages that are based on the BDI model employ
logical representation and reasoning for implementing the beliefs of agents. In these program-
ming languages, the beliefs are assumed to be certain, i.e. an implemented agent can believe a
proposition or not. These programming languages fail to capture the underlying uncertainty
of the agent’s beliefs which is essential for many real world agent applications. We introduce
Dempster-Shafer theory as a convenient method to model uncertainty in agent’s beliefs.

1 Mapping agent beliefs to Dempster-Shafer sets

In Dempster-Shafer theory[4], a frame of discernment Q) is defined as the set of all hypotheses in
a certain domain. On the power set 2%, a mass function m(X) is defined for every X C Q, with

m(X) > 0and > m(X)=1. If there is no information available with respect to Q, m(Q) = 1,
XCQ

and m(X) = 0 for every subset of Q. A simple support function is a special case of a mass func-
tion, where the evidence supports one set of hypotheses A, and zero mass value is assigned to any
subset of 2 other than A. Mass functions can be combined using Dempster’s Rule of Combination.
This combination rule for mass function m; and ms is denoted as mi @ mo and is defined, for
XY, Z CQ, as:

Z m1(Y)-ma(Z)
mi D mg(X) = Yﬁfxml(Y)‘mz(Z) and

YNZ#0D

mq @mg((/)) = 0

There is an intuitive mapping between agent beliefs, in the form of logical formulae, and
Dempster-Shafer sets of hypotheses: a logical formula ¢ can be represented by a simple support
function m,,, that supports the maximum set of hypotheses that are models of ¢, i.e. hypotheses
in which ¢ is true. The extent to which ¢ is believed to be true can be represented by the mass
value of that particular set of hypotheses. A belief base, i.e., a set of logical formulae, can then be
represented by the combination of the mass functions that represent the individual belief formulae.

2 Computational complexity

Because n belief formulae lead to a mass function of 2™ combinations, keeping a mass function in
memory and updating it when the belief base changes, will lead to a combinatorial explosion in both
processing time and memory requirements: Dempsters’s Rule of Combination is #P-Complete, as
Orponen [3] showed. Wilson [5] has provided a number of algorithms to overcome this problem
using for example Monte Carlo methods, and Barnett [1, 2] has shown, that the calculation of the
combination is linear if only singleton subsets are used or if the subsets are atomic with respect to
the evidence. Both restrictions, however, are problematic if we want to map a logical belief base to
a mass function.

We propose an alternative solution to this problem by demanding that only simple support
functions are used to model agent beliefs, and that the frame of discernment €2 is such that all



combinations of simple support functions related to these beliefs have a model in €2, i.e., there
are no inconsistent beliefs in the belief base. In that case, Dempsters Rule of combination can be
simplified to mg @ my(X) = me(Y) -my(Z) where Y NZ = X. Using this simplified rule and given
the fact that any mass function only supports one single piece of evidence, it is possible to calculate
the mass value of a proposition in linear time, without needing to calculate the combination of all
mass functions.

3 Updating and querying the belief base

Since we can derive a mass function from a given belief base, we can just add a belief formula and
its probability to this belief base to update the belief base, if the belief base does not yet contain
this formula. If the belief base already contains this belief formula, we can update it with a simple
combination since Dempster’s rule of combination is associative. We can query the belief base by
testing if a certain proposition can be derived from the mass function that represents the belief
base. For this, we use the Belief and Plausibility functions as defined in [4]. The former denotes
the total mass assigned to a set of hypotheses and its subsets while the latter denotes the total
mass that is not assigned to the complement of that set. Informally, these functions can be seen as
a lower and upper limit on the probability of a certain proposition.

4 Conclusion

Particulary appealing in Dempster-Shafer theory is the ability to model ignorance as well as uncer-
tainty. Nevertheless, the combinatorial explosion of the combination rule is a serious disadvantage
of this theory for practical applications like agent programs. We have investigated a possible map-
ping of Dempster-Shafer sets to a belief base, which is represented by logical formulae in an agent
programming language. With restrictions on the mass functions and on the frame of discernment,
Dempster-Shafer theory is a convenient way to model uncertainty in agent beliefs such that com-
putational complexity can be controlled.
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