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Abstract. Existing cognitive agent programming languages that are
based on the BDI model employ logical representation and reasoning for
implementing the beliefs of agents. In these programming languages, the
beliefs are assumed to be certain, i.e. an implemented agent can believe
a proposition or not. These programming languages fail to capture the
underlying uncertainty of the agent’s beliefs which is essential for many
real world agent applications. We introduce Dempster-Shafer theory as
a convenient method to model uncertainty in agent’s beliefs. We show
that the computational complexity of Dempster’s Rule of Combination
can be controlled. In particular, the certainty value of a proposition can
be deduced in linear time from the beliefs of agents, without having to
calculate the combination of Dempster-Shafer mass functions.

1 Introduction

In multi-agent systems, individual agents are assumed to be situated in some
environment and are capable of autonomous actions in the environment in order
to achieve their objectives [20]. An autonomous agent interacts with its environ-
ment, based on its information and objectives, both of which are updated with
the information acquired through interaction. In order to develop multi-agent
systems, many programming languages have been proposed to implement indi-
vidual agents, their environments, and interactions [5, 10, 4, 3]. These languages
provide programming constructs to enable the implementation of agents that
can reason about their information and objectives and update them according
to their interactions.

Unfortunately, although Rao and Georgeff [12] already uses beliefs - rather
than knowledge operators - due to the agent’s lack of knowledge about the state
of the world, many of the proposed programming languages assume that the
information and objectives of agents are certain. This is obviously an unrealistic
assumption for many real world applications. In such applications, either the
environment of the agents involves uncertainty or the uncertainty is introduced
to agents through imperfect sensory information. Past research dealing with the
application of existing programming languages such as 3APL for robot control
[17] showed, that sensory input is not always accurate, and that external actions
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have unpredictable outcomes: the environment in which the agent operates is
both inaccessible and indeterministic. This seriously devalues the practical use
of such agent programming languages for real applications like mobile robot
control. Therefore, we believe that individual agents need to be able to reason
and update their states with uncertain information, and that agent-oriented
programming languages should facilitate these functionalities.

In this paper, we focus on cognitive agents which can be described and imple-
mented in terms of cognitive concepts such as beliefs and goals. We consider pro-
gramming languages that provide programming constructs to implement agent’s
beliefs, to reason about beliefs, and update beliefs. In order to allow the im-
plementation of cognitive agents that can work with uncertain information, we
investigate the possible use of Dempster-Shafer theory to incorporate uncertainty
in BDI-type agent programming languages. We discuss how uncertain beliefs can
be represented and reasoned with, and how they can be updated with uncertain
information.

The structure of this paper is as follows. First we will introduce the most im-
portant relevant concepts in Dempster-Shafer theory. In section 3 we propose a
mapping between this theory and agent beliefs. In section 4 we deal with imple-
mentational issues, and show that computational complexity can be controlled
given certain restrictions on the belief representation. In section 5 we show how
the agent’s belief base can be updated and queried, while the computational
complexity of these operations are discussed in section 6. Finally, in section 7
we conclude the paper.

2 Dempster-Shafer theory

The concept uncertainty is closely related to probability theory. We differentiate
between the notion of chance and probability : a chance represents an objective,
statistical likeliness of an event (such as throwing a six with a dice), while prob-
ability represents the likeliness of an event given certain subjective knowledge
(for example, the probability of six, given that we know the number is even).
Probabilistic reasoning deals with the question how evidence influences our belief
in a certain hypothesis H. We define the probability of H, denoted as P (H), as a
real number between 0 and 1, with P (H) = 0 meaning H is definitely false, and
P (H) = 1 meaning H is definitely true. A value between 0 and 1 is a measure
for the probability of H.

The theory of Dempster and Shafer [14] can be seen as a generalisation of
probability theory. In this theory, a frame of discernment Ω is defined as the
set of all hypotheses in a certain domain. On the power set 2Ω , a mass func-
tion m(X) is defined for every X ⊆ Ω, with m(X) ≥ 0 and

∑
X⊆Ωm(X) = 1. If

there is no information available with respect to Ω, m(Ω) = 1, and m(X) = 0 for
every subset of Ω. For example, in a murder case Ω is a list of suspects, {Peter,
John, Paul, Mary, Cindy}. If the investigator has no further information, the
mass function associated with Ω will assign 1 to Ω and 0 to all real subsets
of Ω. If there is evidence found regarding certain subsets of Ω, for example a



slightly unreliable witness claims the killer was probably a male, we assign an
appropriate mass value (say 0.6) to this particular subset of Ω and - since we
have no further information and

∑
X⊆Ωm(X) = 1 by definition - we assign a

mass value of 0.4 to Ω. The mass function in this case would be:

m1(X) =

0.6 if X ={Peter, John, Paul}
0.4 if X = Ω
0 otherwise

Note that no value whatsoever is assigned to subsets of {Peter, John, Paul}.
If we receive further evidence, for example that the killer was most likely (say
with a probability of 0.9) left-handed, and both John and Mary are left-handed,
then we might have another mass function like:

m2(X) =

0.9 if X ={John, Mary}
0.1 if X = Ω
0 otherwise

Dempster’s Rule of Combination is a method to combine both pieces of
evidence into one combined mass function. This function for the combination
of m1 ⊕m2 is defined as:

Definition 1. (Dempster’s Rule of Combination [14]). Let X,Y, Z ⊆ Ω. Then
the following holds:

m1 ⊕m2(X) =

∑
Y∩Z=X

m1(Y )·m2(Z)∑
Y∩Z 6=∅

m1(Y )·m2(Z)
and

m1 ⊕m2(∅) = 0

Dempster’s Rule of Combination is commutative and associative, as shown
in [13]. In our example, combining both pieces of evidence would lead to the
following mass function:

m1 ⊕m2(X) =


0.06 if X ={Peter, John, Paul}
0.36 if X ={John, Mary}
0.54 if X ={John}
0.04 if X = Ω
0 otherwise

Given a certain mass function, the subsets of Ω that have a mass value greater
than zero are called focal elements, and we will denote the set of focal elements
of a given mass function ϕ as the core of that mass function. A simple support
function is a special case of a mass function, where the evidence only supports a
certain subset A of Ω, and zero mass is assigned to all subsets of Ω other than
A, i.e., the core of a simple support function is {A, Ω}:

Definition 2. (simple support function [14]). Let X ⊆ Ω and A be an evidence
with probability s. Then, the simple support function related to A is specified as
follows:



m(X) =

 s if X = A
1-s if X = Ω
0 otherwise

On a mass function, two other functions are defined, namely a belief function
Bel(X) and a plausibility function Pl(X).

Definition 3. (belief and plausibility function [14]). Let X,Y ⊆ Ω, then the
belief and plausibility functions can be defined in terms of a certain mass function
m as follows:

Bel(X) =
∑
Y⊆X

m(Y ) and Pl(X) =
∑

X∩Y 6=∅
m(Y )

Informally, the belief and plausibility functions can be seen as a lower re-
spectively upper limit on the probability of the set of hypotheses X. Note, that
Pl(X) = 1 − Bel(Ω\X). The difference between Bel(X) and Pl(X) can be
regarded as the ignorance with respect to X.

3 Mapping agent beliefs to Dempster-Shafer sets

Can the theory of Dempster and Shafer be applied to the beliefs of an agent, if
they are represented by proposition-logical formulae in an agent programming
language? To investigate this question, suppose we have an agent-based program
that operates in the context of a 2-by-2 grid-world where bombs can appear in
certain positions in the grid and an agent can partially perceive the environment
and move around. The agent tries to sense the bombs surrounding him, thus
locating all bombs and safe squares in his environment. We assume that the
agent’s belief base is a set of logical formulae that the agent believes to hold.
This belief base can therefore be understood as the conjunction of all formulae
from the set, i.e. it can be represented as a conjunctive formula. Assume that, at
a given moment during the execution of the program, the agent has the formula
safe(1) in its belief base (say BB1).

This indicates that the agent believes that square 1 is a safe location. How
can we relate this belief in terms of the Dempster-Shafer theory? The frame of
discernment Ω can be understood as the set of all models of the grid-world, as
shown in table 1. In a 2-by-2 grid-world there are 16 models, ranging from ‘all
squares are safe’ to ‘all squares contain bombs’. We can relate the agent’s current
beliefs to a subset of hypotheses from Ω, where each hypothesis is considered as
a model of that belief.

For example, if we define the hypotheses as in table 1 then the belief for-
mula safe(1) is a representation of the set {H1,H2,H3,H4,H5,H6,H7,H8} of
hypotheses, which is exactly the set of all models of the belief base BB1. If we
define a mass-function msafe(1) according to this belief base, we would assign 1
to this set, and 0 to Ω (and to all other subsets of Ω). In fact, each belief base
can be represented by a mass function. Such a mass function would assign 1 to



Hyp. 1 2 3 4 Hyp. 1 2 3 4

1 Safe Safe Safe Safe 9 Bomb Safe Safe Safe

2 Safe Safe Safe Bomb 10 Bomb Safe Safe Bomb

3 Safe Safe Bomb Safe 11 Bomb Safe Bomb Safe

4 Safe Safe Bomb Bomb 12 Bomb Safe Bomb Bomb

5 Safe Bomb Safe Safe 13 Bomb Bomb Safe Safe

6 Safe Bomb Safe Bomb 14 Bomb Bomb Safe Bomb

7 Safe Bomb Bomb Safe 15 Bomb Bomb Bomb Safe

8 Safe Bomb Bomb Bomb 16 Bomb Bomb Bomb Bomb

Table 1. Bomb location and associated hypothesis

the particular subset of Ω that contains all hypotheses that are true with respect
to the belief base, or in other words: the maximal subset of hypotheses in Ω that
are models of safe(1). Notice that the set {H1,H2,H3,H4,H5,H6} consists of
models of safe(1) as well, but it is not the maximal subset with this property. If a
belief base is a certain belief formula ϕ, then it could be represented by a simple
support function mϕ(X) that supports only the maximal set of hypotheses in Ω
that are models of ϕ. This can be formalised as follows:

mϕ(X) =
{

1 if X⊆Ω & models(X,ϕ) & ∀Y ⊆Ω (models(Y, ϕ) ⇒ Y ⊆X)
0 otherwise

In this definition, the relation models(X,ϕ) is defined as ∀M ∈X M |=ϕ,
where M is a model and |= is the propositional satisfaction relation. The con-
dition of the if-clause indicates that X is the maximum set of hypotheses in
Ω that are models of ϕ. In the sequel we use the function maxΩ(ϕ) to denote
this set, and define it as follows: maxΩ(ϕ) = X ⇐⇒ X⊆Ω & models(X,ϕ) &
∀Y ⊆Ω (models(Y, ϕ) ⇒ Y ⊆X). Using this auxillary function, the mass func-
tion that represents the belief base BB1 can then be rewritten as:

msafe(1)(X) =
{

1 if X = maxΩ(safe(1))
0 otherwise

3.1 Adding beliefs

If we add another belief formula to the belief base, the resulting belief base can
be represented by the combination of the mass function of both belief formulae.
Suppose we add safe(2) to the belief base, with the following mass function:

msafe(2)(X) =
{

1 if X = maxΩ(safe(2))
0 otherwise

We can combine both pieces of evidence using Dempster’s Rule of Combina-
tion. Since the only non-empty intersection of sets defined by either msafe(1) or
msafe(2) is the set maxΩ(safe(1) ∧ safe(2)), the resulting mass function m1 =



msafe(1) ⊕msafe(2) is defined as follows1:

m1(X) =
{

1 if X = maxΩ(safe(1) ∧ safe(2))
0 otherwise

Note that maxΩ(safe(1) ∧ safe(2)) corresponds to the subset {H1,H2,H3,H4}
of hypotheses. Apart from these beliefs, which can be either true or false, we
could imagine a situation where a belief is uncertain. We might conclude, on
the basis of specific evidence, that a location probably contains a bomb; such a
belief formula (say bomb(3) with a probability value of 0.7), should be added to
the belief base. In order to incorporate such cases, we introduce the concept of
a basic belief formula to represent uncertain belief formulae.

Definition 4. (Basic belief formula). Let ϕ be a belief formula and p ∈ [0..1].
Then the pair ϕ : p, which indicates that ϕ holds with probability p, will be called
a basic belief formula2.

With these basic belief formulae, the above mentioned belief base can be
represented as { safe(1): 1.0, safe(2): 1.0, bomb(3): 0.7 }. Of course, we could
represent bomb(3): 0.7 as a mass function, as we did with beliefs safe(1) and
safe(2). This mass function would assign a probability value of 0.7 to the set of
hypotheses, all having a bomb on location 3, and (because we have no further
information) a probability value of 0.3 tot Ω:

mbomb(3)(X) =

0.7 if X = maxΩ(bomb(3))
0.3 if X = Ω
0 otherwise

If we would combine m1 and mbomb(3) using Dempster’s Rule of Combination,
we would get the following mass function:

m2 = m1 ⊕mbomb(3)(X) =

0.7 if X = maxΩ(safe(1) ∧ safe(2) ∧ bomb(3))
0.3 if X = maxΩ(safe(1) ∧ safe(2))
0 otherwise

This combined mass function m2 represents our updated belief base. Note, that
the set maxΩ(safe(1) ∧ safe(2)) is exactly {H1,H2,H3,H4}, and the set
maxΩ(safe(1) ∧ safe(2) ∧ bomb(3)) is equal to {H3,H4}.

3.2 Deleting beliefs

We can also delete belief formulae from our belief base. For example, we could
conclude ¬bomb(3) during the execution of our program. We will model deletion
of a formula as the addition of its negation. This corresponds to the maximal
set of hypotheses according to which there is no bomb on location 3:

1 We will use simple indices for the combined mass functions to improve readability.
2 The term basic belief formula should not be confused with an atomic belief formula.

Note, that the probability assigned to a basic belief formula cannot be (further)
distributed to the atomic formulae that may constitute the basic belief formula.



m¬bomb(3)(X) =
{

1 if X = maxΩ(¬bomb(3))
0 otherwise

Combining msafe(1) and m¬bomb(3) leads to the following mass function:

m3 = msave(1) ⊕m¬bomb(3)(X) =
{

1 if X = maxΩ(save(1) ∧¬bomb(3))
0 otherwise

Of course, we could also conclude that a certain belief becomes less probable
instead of impossible. In that case, the negation of the formula under considera-
tion will be added with a certainty value, for example ¬bomb(3): 0.3. We would
represent this formula as:

m¬bomb(3)(X) =

0.3 if X = maxΩ(¬bomb(3))
0.7 if X = Ω
0 otherwise

Combining this alternative mass function m¬bomb(3) and msafe(1) leads to the
following mass function:

m4 = msafe(1) ⊕m¬bomb(3)(X) =

0.59 if X = maxΩ(save(1) ∧¬bomb(3))
0.41 if X = maxΩ(save(1) ∧ bomb(3))
0 otherwise

3.3 Composite beliefs

Until now we have only used atomic formula in our examples. However, we can
also model disjunctions, conjunctions and negation of beliefs as sets of hypothe-
ses by mapping disjunction, conjunction and negation of beliefs, to respectively
unions, intersections, and complements of sets of hypotheses. We can illustrate
such composite beliefs with an example. Consider the following two formulae in
the already mentioned grid-world:

ϕ: safe(2) ∧ (safe(3) ∨ safe(4)), and ψ: safe(1) ∨ (¬safe(2) ∧ safe(3)).

These formulae correspond to the the sets {H1,H2,H3,H9,H10,H11} and
{H1,H2,H3,H4,H5,H6,H7,H8,H13,H14}, respectively. If ϕ has a probability
of p, and ψ has a probability of q, then these formula could be represented by
basic belief formulae as follows:

mϕ(X) =
{
p if X = maxΩ(safe(2) ∧ (safe(3) ∨ safe(4)))
1− p otherwise

mψ(X) =
{
q if X = maxΩ(safe(1) ∨ (¬safe(2) ∧ safe(3)))
1− q otherwise

Obviously, the conjunction ϕ∧ψ equals safe(1) ∧ safe(2) ∧ (safe(3) ∨ safe(4)),
and from table 1 follows, that this result corresponds to the set {H1,H2,H3},
which is the intersection of {H1,H2,H3,H9,H10,H11} and
{H1,H2,H3,H4,H5,H6,H7,H8,H13,H14}.



3.4 Inconsistency problem

The issue of inconsistency in Dempster’s Rule of Combination deserves further
attention. In the original rule, as defined in definition 1, combinations that lead
to an empty set have a mass probability of zero, and the other combinations are
scaled to make sure all mass probabilities add to one. This leads to unexpected
results when two mass functions with a high degree of conflict are combined.
This can be demonstrated with an often-used example (e.g. in [9]). In a murder
case there are three suspects: Peter, Paul and Mary. There are two witnesses,
who both give highly inconsistent testimonies, which can be represented with
the following mass functions:

m1(X) =

0.99 if X = ’killer is Peter’
0.01 if X = ’killer is Paul’
0 otherwise

m2(X) =

0.99 if X = ’killer is Mary’
0.01 if X = ’killer is Paul’
0 otherwise

Combining these two mass functions leads to a certain belief that Paul is
the killer, although there is hardly any support in either of the witnesses’ testi-
monies.

m1 ⊕m2(X)
{

1 if X = ’killer is Paul’
0 otherwise

Sentz [13] describes a number of alternatives for the Rule of Combination.
The most prominent (according to Sentz) is Yager’s modified Dempster’s Rule[21].
Ultimately, this rule attributes the probability of combinations, which lead to
the empty set, to Ω 3. A similar approach is demonstrated by Smets [15], which
states that in the case of inconsistent mass functions, the closed world assump-
tion (the assumption that one of the three suspects is the murderer) is not valid.
The probability of empty sets should be attributed to ∅, as a sort of ‘unknown
third’. This would lead to a mass function of:

m1 ⊕m2(X)

0.0001 if X = ’killer is Paul’
0.9999 if X = Ω (Yager), resp., X = ∅ (Smets)
0 otherwise

Jøsang [9] poses an alternative, namely the consensus operator, which at-
tributes the means of the probabilities of two inconsistent beliefs to the combi-
nation, rather than their multiplication:

m1 ⊕m2(X)


0.495 X = ’killer is Peter’
0.495 X = ’killer is Mary’
0.01 X = ’killer is Paul’
0 X = ∅

3 To be more exact, Yager differentiates between ground probabilities q(X) and basic
probabilities m(X). The empty set can have a q(∅) ≥ 0. When combining, these
ground probabilities are used and the mass is attributed after the combination,
where m(X) = q(X) for X 6= ∅, and m(Ω) = q(Ω) + q(∅).



Suspect W1 W2 Dempster Yager/Smets Jøsang

Peter 0.99 0 0 0 0.495

Paul 0.01 0.01 1 0.0001 0.01

Mary 0 0.99 0 0 0.495

∅ or Ω 0 0 0 0.9999 0

Table 2. Attribution of mass to inconsistent combinations

We can summarise these approaches (Dempster, Yager/Smets and Jøsang)
using the ‘murder case’ example, as shown in table 2. Note, that the issue of
inconsistency directly relates to the choice of the frame of discernment Ω. In this
example, we restrict our frame of discernment to be the set of three mutually
exclusive hypotheses, namely {Paul, Peter, Mary}. If, on the other hand, our
frame would be Ω = {Paul, Peter, Mary, Peter or Mary}, and we would map
the phrase ’killer is Peter’ to the subset {Peter, Peter or Mary} and the phrase
’killer is Mary’ to the subset {Mary, Peter or Mary}, then there would be no
inconsistency at all. We deal with the choice of our frame of discernment in the
next section.

3.5 The frame of discernment

Until now, we have mapped agent beliefs to a given set of 16 hypotheses in a
2-by-2 grid-world. Unfortunately, the frame of discernment that corresponds to
a given agent program is unknown, and, just as important, there is no unique
frame of discernment in such a program. We might just as well add a totally
irrelevant hypothesis H17, stating ’All squares contain apples’. We do not know
if a certain hypothesis, say H16, can become true at all during the execution of
the program. This implies that the relation between the frame of discernment
and the agent’s beliefs is a many-to-many mapping.

This problem can, however, be solved. According to some agent programming
languages such as 3APL [5], the number of beliefs an agent can hold during exe-
cution of the program is finite. For example, in the programming language 3APL
only basic actions can update the belief base. The update corresponding to a
basic action is specified as the post-condition of the basic action which is de-
termined by the programmer before running the program. Therefore, in a given
3APL program all possible beliefs are given either by the initial belief base or
by the specification of the basic actions. For this type of agent programs we can
construct a theoretical frame of discernment that includes a set of hypotheses
such that each belief that the agent can hold during its execution can be mapped
to a subset of the frame of discernment. Shafer states [14, p.281], that in general
the frame of discernment cannot be determined beforehand (i.e. without know-
ing which evidence might be relevant), and that we tend to enlarge it as more
evidence becomes available. But, on the other side, if Ω is too large, holding too
much irrelevant hypotheses, the probability of any hypothesis is unreasonably
small. By stating that the frame of discernment should be large enough to hold



all relevant hypotheses with respect to the program under consideration, Ω will
be neither too small nor too large.

In this paper, we demand that Ω should be such that for each belief that
an agent can hold during its execution (i.e. each combination of the basic belief
formulae) there must be at least one non-empty subset of hypotheses in Ω. This
corresponds to the demand, that the belief base of an agent should be consistent
and remain so during its execution. This is the case with, e.g., 3APL agents. In
other words, each conjunction of basic belief formulae has a non-empty subset of
hypotheses from Ω that are models of the conjunction of basic belief formulae.

4 Mass calculation

As we have seen, any given belief base can be represented with a mass function.
Generally, a belief formula biwith probability pi divides the set of all hypotheses
Ω into:

mbi
(X) =

pi if X = maxΩ(bi)
1− pi if X = Ω
0 otherwise

The combination of belief formulae b1, . . . , bn can thus be represented with
a mass function mk = m1 ⊕ . . . ⊕ mn, related to beliefs b1, . . . , bn, where the
number of subsets of Ω that are used to define mk and have a mass value greater
than zero, is equal to 2n. When a belief formula mn is combined with an already
existing combinationm1⊕. . .⊕mn−1, the resulting mass functionm1⊕. . .⊕mn is
defined by the non-empty intersections of all subsets of Ω in mn, with all subsets
of Ω in m1⊕ . . .⊕mn−1. Since we use simple support functions to represent our
beliefs - with focal elements Ω and maxΩ(ϕ) - the number of resulting subsets
is doubled with each added belief formula.

Because n belief formulae lead to a mass function of 2n combinations, keep-
ing a mass function in memory and updating it when the belief base changes
will lead to a combinatorial explosion in both processing time and memory re-
quirements, as the following scenario will show. Suppose we start with an empty
belief base, which has the following trivial mass function:

m(X) =
{

1 if X = Ω
0 otherwise

If we add basic belief formula b1 : p1, we compute the following mass function:

mb1(X) =

p1 if X = maxΩ(b1)
1− p1 if X = Ω
0 otherwise

Adding b2 : p2 leads to4:

4 Note that this general scheme is based on the assumption that b1∧b2 is not equivalent
to b1 or to b2, i.e. it is assumed that the belief formulae are such that their pairwise
intersections are not equivalent with one of the constituents. When this assumption



mb1 ⊕mb2(X) = m(X) =


p1 · (1− p2) if X = maxΩ(b1)
p2 · (1− p1) if X = maxΩ(b2)
p1 · p2 if X = maxΩ(b1 ∧ b2)
(1− p1) · (1− p2) if X = Ω
0 otherwise

Note that these consecutive mass combinations can be generalised to a sit-
uation with n basic belief formulae, and that the combined mass function will
grow exponentially5. Fortunately, there is no need to calculate the entire mass
function. If we need the mass value for a certain set X ⊆ Ω, we can calculate it
using the probabilities in the belief base without the need to calculate the entire
mass function. Before formulating and proving this theorem, we will first show
that we can simplify Dempster’s Rule of Combination if 1) we use simple sup-
port functions to represent basic belief formulae, and 2) we define Ω to be such
that each conjunction of basic belief formulae that the agent can hold during
its execution maps to a non-empty subset of Ω, as we discussed in section 3.5.
The two demands are intuitive: the first demand states, that the evidence that
is represented by each basic belief formula only supports one subset of Ω, and
the second guarantees that the conjunction of basic belief formulae has a model,
i.e. updating the belief base always results in a consistent belief base.

To facilitate further considerations, we define pϕ as the probability assigned
to a certain belief formula ϕ, and define mϕ to be a simple support function
associated with ϕ. The core of mϕ is denoted as C(mϕ). We introduce the
concept M-completeness to denote the mentioned condition on Ω, and define it
as follows:

Definition 5. (M-complete). Let Ω be a set of hypotheses and let M be a set of
mass functions. Then Ω will be called M-complete if and only if ∀mφ,mψ ∈M
(maxΩ(φ)∈C(mφ) & maxΩ(ψ)∈C(mψ)) ⇒maxΩ(φ ∧ ψ)⊆Ω

With this notion of M-completeness, we can formulate and prove how Demp-
ster’s Rule of Combination can be simplified.

Theorem 1. Let SΩ be the set of all basic belief formulae, and M be the set
of all mass functions associated with basic belief formulae from SΩ. Let Ω be
M-complete, and let φ and ψ be two non-equivalent basic belief formulae (i.e.
¬(φ ≡ ψ)). Then

∑
Y ∩Z 6=∅mφ(Y ) ·mψ(Z) = 1, and for each X ⊆ Ω there are

at most one Y ⊆ Ω and one Z ⊆ Ω relevant for the Dempster’s combination
rule such that this rule can be simplified to mφ⊕mψ(X) = mφ(Y ) ·mψ(Z) where
Y ∩ Z = X.

would not hold, some of the clauses would be identical, and there would be less
clauses in the remaining scheme.

5 In fact, Orponen [11] showed that Dempster’s Rule of Combination is #P-complete.
Wilson [19] has provided a number of approximation algorithms to overcome this
problem, and Barnett [1, 2] has shown, that the calculation of the combination is
linear if only singleton subsets are used or if the subsets are atomic with respect
to the evidence. The latter restriction is problematic since we are not aware of the
actual hypotheses that constitute the frame of discernment.



Proof. Since φ and ψ are two basic belief formulae, the only Y, Z ⊆ Ω for
which mφ(Y ) 6= 0 and mψ(Z) 6= 0 are focal elements of mφ and mψ, i.e.
C(mφ) = {MY , Ω} where MY = maxΩ(φ) and C(mψ) = {MZ , Ω} where MZ =
maxΩψ. In other words, Y ranges over C(mφ) and Z ranges over C(mψ). For all
other subsets Y and Z from Ω, we have mφ(Y ) = 0 and mψ(Z) = 0 such that
mφ(Y ) ·mψ(Z) = 0 which does not influence the summation

∑
Y ∩Z=X mφ(Y ) ·

mψ(Z) in the numerator of the Combination Rule. Given that Y and Z range
over C(mφ) and C(mψ) respectively, it is clear that for each X ⊆ Ω we can have
at most one Y ∈ C(mφ) for which mφ(Y ) 6= 0 and at most one Z ∈ C(mψ) for
which mψ(Z) 6= 0 such that Y ∩ Z = X. More specifically, for any X ⊆ Ω, the
subsets Y and Z can be determined as follows:

If X = Ω then Y = Ω and Z = Ω.
If X = maxΩ(φ), then Y = X and Z = Ω.
If X = maxΩ(ψ), then Y = Ω and Z = X.
If X = maxΩ(φ ∧ ψ), then Y = maxΩ(φ) and Z = maxΩ(ψ).

Since mφ and mψ are simple support functions, mφ(maxΩ(φ)) = pφ,mφ(Ω) =
1−pφ,mψ(maxΩ(ψ)) = pψ, andmψ(Ω) = 1−pψ. Then, we have

∑
Y ∩Z 6=∅mφ(Y )·

mψ(Z) = pφ · pψ + pφ · (1 − pψ) + pψ · (1 − pφ) + (1 − pφ) · (1 − pψ) = 1.
This proves that the denominator does not influence the result of the Combi-
nation Rule. Therefore, Dempster’s Rule of Combination can be simplified to
mφ ⊕mψ(X) = mφ(Y ) ·mψ(Z) where Y ∩ Z = X. ut

This result can be generalised for consecutive combinations. From the asso-
ciativity of Dempster’s Rule of Combination[13] follows, that Y1, . . . , Yn in the
formula Y1 ∩ . . . ∩ Yn = X can be determined in a similar way. For example, in
a belief base consisting of three basic belief formulae φ, ψ, and χ, the set X =
maxΩ(ψ∧ψ) can be determined as intersection of Yφ = maxΩ(φ), Yψ = maxΩ(ψ)
and Yχ = Ω. In the second theorem we formulate a straightforward method to
calculate the mass of any combination of basic belief formula, and prove that
this calculation leads to the same result as the simplified Rule of Combination.

Theorem 2. Let SΩ be the set of all basic belief formulae, and M be the set
of all mass functions associated with basic belief formulae from SΩ. Let Ω be
M-complete. For each subset X ⊆ Ω, there exists an unique bi-partition of the
set of basic belief formulae SΩ, say S+

X and S−X , such that the general case of
Dempster’s combination rule can be simplified as follows:⊕

i=1...n

mi(X) =
∏
ϕ∈S+

X

pϕ ·
∏
ϕ∈S−

X

(1− pϕ)

Proof. Let Y and Z be subsets of Ω. Based on theorem 1, Dempster’s Rule
of Combination can be reduced to m1 ⊕ m2(X) = m1(Y ) ·m2(Z), where
Y ∩ Z = X. The mass function that is formed by n consecutive combinations,
is then equal to



∀X,Y1, . . . , Yn ⊆ Ω :
⊕
i=1...n

mi(X) =
∏

i=1...n

mi(Yi), where
⋂

i=1...n

Yi = X

Given the mass functions mφ1 , . . . ,mφn
∈ M and for any X ⊆ Ω and 1 ≤

i ≤ n, there exists at most one Yi ⊆ Ω ranging over the core C(mφi
) such

that Y1 ∩ . . . ∩ Yn = X and mφi(Yi) 6= 0 (for the same reason as in theorem 1).
According to the definition of the simple support function, mφi(Yi) can be either
pφi

or 1−pφi
for 1 ≤ i ≤ n. Let then S+

X = {φ | Yi = maxΩ(φ) & φ ∈ SΩ} which
is the set of all basic belief formula for which the corresponding mass function
assigns pφi

to the subset Yi (rather than 1 − pφi
). Using S−X = SΩ\S+

X proves
the theorem. ut

5 Updating and querying the belief base

In order to incorporate new information (e.g. by observation or communication)
in their beliefs, agents need to update their belief base. Since both an existing
belief base (consisting of basic belief formulae) and a new basic belief formulae
can both be represented by mass functions, we can add this new basic belief
formula to the belief base which in its turn can be represented by a mass function.
This would yield the same result as combining each single support function
associated with the basic belief formulae, as we proved in theorem 2. However,
if the belief base already contains this belief formula, we can update it using the
associative nature of Dempster’s Rule of Combination. For example, suppose a
belief base, which consists of two basic belief formulae b1 : p1 and b2 : p2, is
updated with the basic belief formula b1 : p3. The new probability of b1 can be
calculated since mb1 ⊕ mb2 ⊕ m′

b1
= mb1 ⊕ m′

b1
⊕ mb2 = (mb1 ⊕ m′

b1
) ⊕ mb2 .

Combining mb1 and m′
b1

leads to a single support function with a mass value of
p1+p3−p1 ·p3 for the set X = maxΩ(b1), therefore we can update the probability
of b1 in the belief base to p1 + p3 − p1 · p3.

Furthermore, we can test (query) if a proposition ϕ can be derived from a
belief base Γ . In section 2, we discussed the belief and plausibility functions (de-
fined in terms of a certain mass function) that return the total mass assigned to
models of ϕ and the total mass that is not assigned to models of the negation of
ϕ. Using this functions, we can test if ϕ can be derived from Γ within a certain
probability interval [L,U ] (denoted as Γ |=[L,U ] ϕ). This can be done by checking
if Bel(maxΩ(ϕ)) ≥ L and Pl(maxΩ(ϕ)) ≤ U , since Bel and Pl indicate the lower
and upper bound probability, respectively. Note that Bel and Pl are defined in
terms of a mass function (definition 3). When we consider the belief base Γ , the
mass function used in Bel and Pl will represent the belief base. The mass func-
tion is then denoted by mΓ . As discussed in section 3, the mass function mΓ as-
signs a mass value to each subset of the frame of discernment related to the belief
base Γ . Therefore, the test if ϕ can be deducted from Γ within [L,U ] can be for-
mulated as follows: Γ |=[L,U ] ϕ ⇐⇒ Bel(maxΩ(ϕ)) & Pl(maxΩ(ϕ)) ⇐⇒∑
Y⊆maxΩ(ϕ)mΓ (Y ) ≥ L &

∑
Y ∩maxΩ(ϕ) 6=∅mΓ (Y ) ≤ U



6 Complexity of belief queries

We can calculate Bel(maxΩ(ϕ)) by adding all values for m(X), where X ⊆ Ω
and models(X,ϕ). Moreover, Pl(maxΩ(ϕ)) can be calculated in a similar way
by adding all values for m(X), where X ⊆ Ω and ¬models(X,¬ϕ)). Without
restrictions on the basic belief formulae in the belief base, we need to iterate over
all focal elements of m, which suggests an exponential computational complex-
ity for the determination whether Γ |=[L,U ] ϕ. However, if deduction is based
on the Closed World Assumption, then Bel(X) = Pl(X), and, furthermore, if
we restrict the logical formulae that constitute the basic belief formulae in the
belief base to be prolog facts (i.e. atoms) then the computational complexity of
Bel(maxΩ(ϕ)) is linear in the length of ϕ.

Theorem 3. Let Bel(X) and Pl(X) be Dempster-Shafer belief and plausibility
functions, respectively, defined on a certain mass function m. If the deduction
X |= ϕ is based on the Closed World Assumption, then we have Bel(X) =
Pl(X).

Proof. In the Closed World Assumption, we can test the belief in a certain for-
mula ϕ by calculating Bel(maxΩ(ϕ)), and the belief in the negation of this for-
mula by calculating Bel(Ω\maxΩ(ϕ)). Since Bel(X) is defined as

∑
Y⊆X m(Y ),

thenBel(Ω\X) =
∑
Y 6⊆X m(Y ) in the CWA. Since

∑
Y⊆X m(Y )+

∑
Y 6⊆X m(Y ) =∑

X⊆Ωm(X) = 1, it follows that Bel(Ω\X) = 1 − Bel(X). By definition6,
Pl(X) = 1 − Bel(Ω\X): the plausibility of a set of hypotheses is 1 minus the
belief in the complement (with respect to Ω) of this set. But Bel(Ω\X) =
1 − Bel(X), and therefore Pl(X) = Bel(X) under the Closed World Assump-
tion. ut

The belief in a certain formula ϕ can be calculated straightforward by using
standard probability calculus in linear time with respect to the number of atoms
and connectives in ϕ.

Theorem 4. Let the belief base be a set of atomic formulae, to which a prob-
ability value is assigned. If φ : pφ and ψ : pψ are basic belief formulae in
the belief base, then Bel(maxΩ(φ)), Bel(maxΩ(¬φ)), Bel(maxΩ(φ ∧ ψ)), and
Bel(maxΩ(φ ∨ ψ)) can be calculated as follows.

– Bel(maxΩ(φ)) = pφ
– Bel(maxΩ(¬φ)) = Bel(Ω\maxΩ(φ)) = 1− pφ
– Bel(maxΩ(φ ∧ ψ)) = pφ · pψ
– Bel(maxΩ(φ ∨ ψ)) = pφ + pψ − pφ · pψ

Proof. The proof of the first clause is as follows: Bel(maxΩ(ϕ)) is defined as the
sum of all mass values that are defined for a certain subset of hypotheses in Ω
that are models of ϕ. If the belief base consists of exactly the basic belief formula
φ : pφ, then the first clause is proved by the definition of mass function, i.e.,

6 See section 2



mφ(X) =

pφ if X = maxΩ(φ)
1− pφ if X = Ω
0 otherwise

If the belief base is, however, a combination of two mass functions, say mφ and
mχ, then maxΩ(φ) and maxΩ(φ ∧ χ) are the only focal elements of mφ ⊕ mχ

that consist of models of φ. Their mass values are then respectively pφ · pχ and
pφ · 1− pχ that sum up to pφ. The second clause follows by definition from the
first, using Bel(maxΩ(φ)) + Bel(maxΩ(¬φ)) = 1. The proof of the third clause
follows the lines of the proof of the first clause. When combining mass functions
related to mφ and mψ, the models of φ ∧ ψ are constructed by intersecting the
maximal set of hypotheses in Ω that are models of φ and ψ, and from Dempster’s
Rule of Combination follows that the mass of this intersection equals p1 ·p2. The
fourth clause follows from the second and third clause. ut

7 Conclusion and further work

A lot of research has been conducted on the topic of reasoning with uncertainty.
Many approaches are based on extending epistemic logic with probability. For
example, [7] proposed the system AXMEAS , [8] introduced the PFD system, and
[16] further refined this system to PFKD45. Some of these logics are suggested to
be a good candidate to be used as an underlying system for agent programming
(see for example [6]). However, next to the epistemic logic approach, alterna-
tive notions of uncertainty are suggested, like the Certainty Factor model used
in MYCIN, Bayesian (or causal) networks, and the Dempster-Shafer theory of
evidence. Particularly appealing in the latter is the ability to model ignorance
as well as uncertainty, the presence of a combination rule to combine evidence,
and the concept of hypotheses which can be easily related to models of logical
formulae. Nevertheless, the compuational complexity, the issue of inconsistency,
and the logical validity of the combination rule (see for example [18] for a dis-
cussion) are serious disadvantages of this theory for the practical application of
this theory to agent programming.

We have investigated a possible mapping of Dempster-Shafer sets to belief
formulae, which are represented by logical formulae, in agent programming lan-
guages. We have shown that, with restrictions on the mass functions and on
the frame of discernment, Dempster-Shafer theory is a convenient way to model
uncertainty in agent beliefs, and these disadvantages can be overcome. Because
we do not need to keep a combined mass function of n beliefs in memory and
update it with each belief update (but compute the mass value of a particular
subset of Ω based on the beliefs in the belief base) there is no combinational
explosion. Currently, we are working on an implementation of uncertain beliefs
in the agent programming language 3APL. Further research will be conducted
on the consequences of uncertain beliefs to agent deliberation.
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