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Abstract. The problems of generating candidate hypotheses and infer-
ring the best hypothesis out of this set are typically seen as two distinct
aspects of the more general problem of non-demonstrative inference or
abduction. In the context of Bayesian networks the latter problem (com-
puting most probable explanations) is well understood, while the former
problem is typically left as an exercise to the modeler. In other words,
the candidate hypotheses are pre-selected and hard-coded. In reality,
however, non-demonstrative inference is rather an interactive process,
switching between hypothesis generation, inference to the best expla-
nation, evidence gathering and deciding which information is relevant.
In this paper we will discuss a possible computational formalization of
finding an explanation which is both probable and as informative as pos-
sible, thereby combining (at least some aspects of) both the ‘hypotheses-
generating’ and ‘inference’ steps of the abduction process. The compu-
tational complexity of this formal problem, denoted Most Inforbable
Explanation, is then established and some problem parameters are
investigated in order to get a deeper understanding of what makes this
problem intractable in general, and under which circumstances the prob-
lem becomes tractable.

1 Introduction

Inference to the best explanation is a well-known and well-studied computational
problem in Bayesian networks. When “best” is operationalized as “most proba-
ble” (as is typically the case in the Bayesian network community, but see, e.g.,
[11] for alternative notions) it is commonly known as MAP1: given a partition
of a Bayesian network into an evidence set with observed variables, a set of ex-
planation variables which together constitute candidate hypotheses, and a set of
intermediate variables that fall in neither category, compute the most probable
joint value assignment to the explanation variables. This computational problem

1 Also Partial or Marginal MAP to distinguish the problem from the more constrained
MPE problem, in which the variables of the graph are bi-partitioned in evidence
variables and hypothesis variables and no marginalization over other variables is
needed.
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Fig. 1. In everyday problem solving the selection of hypotheses, determining upon rel-
evant information, gathering evidence, and inference to the most probable explanation
are concurrent (rather than sequential) and highly connected sub-tasks of the broader
abduction problem

has been studied from an engineering [17] and computational complexity [5, 14,
22] point of view, and exact and approximate algorithms for MAP are available
in abundance [3, 6, 7, 20–22, 25]. However, the abduction or non-demonstrative
inference problem is broader and more complex than ‘merely’ solving a MAP
problem. It is a heavily intertwined combination of deciding which are the rel-
evant variables, deciding upon candidate hypotheses, evidence gathering, and
inference to the most probable explanation (Fig. 1).

Clinical examination (i.e., diagnosing the patient) is an excellent example of
such an abduction process, consisting of hypothesis generation, obtaining evi-
dence, evaluating hypotheses, and determining throughout this process what of
all the available information is relevant to diagnosing (and preferably curing) the
patient; see, e.g., [19] and in particular the highly illustrative case study on page
26-27. Some observations and findings may not be relevant to the diagnosis. The
clinician needs to decide which are to be taken into account and which are not.
Often, symptoms and signs come in patterns; for example, polyuria, polydipsia,
and polyphagia are well known symptoms for diabetes mellitus. Clustering or
lumping such observations may benefit hypothesis generation towards a diagno-
sis. On the other hand, the clinician may miss important aspects in doing so:
There is a high probability that orthostatic hypotension is caused by vomiting
and diarrhea. Thus, they could be lumped together as cause and effect. In so
doing, however, the clinician is at risk of excluding a completely separate and
important problem, namely, extracellular volume depletion.

During this process, initial hypotheses are generated and evidence is gath-
ered and judged. Based on the evidence and the posterior probabilities of these
initial hypotheses, additional evidence may be gathered and the hypotheses may
be further refined, eventually leading to a diagnosis and possibly a treatment
procedure. These “real world” aspects of abduction problems, as illustrated in
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Fig. 2. Partitioning the domain model into hypotheses variables H, evidence variables
E, intermediate variables I, and irrelevant or “outside” variables that are not part of
the model can be graphically depicted as establishing boundaries (“drawing boxes”)
within a knowledge structure

the above example, are typically not part of the computational problem: they
are ‘left to the modeler’. Instinctively, this modeling process can be seen as es-
tablishing boundaries in a knowledge structure such as a Bayesian network (Fig.
2). In this process, numerous decisions need to be made, such as which nodes
in the knowledge structure can be dismissed as being irrelevant to the goal or
how detailed the explanation should be. These choices are driven by the goal of
the abduction process: what counts as a candidate hypotheses or as a relevant
variables is determined by what we seek to explain; see for example [8] and [18,
Ch. 3, and the references therein].

1.1 Granularity of Explanations

A correct, but hardly informative, explanation of the signs “shortness of breath,
coughing with phlegm, and pain while breathing” will be “patient-X is ill”.
This explanation has (by definition) a higher probability (say 0.95) than the
much more informative explanation “patient-X has pneumonia” (say 0.8). The
latter explanation of course has more explanatory power at the cost of little
probability mass, and thus will, in general, be preferred over the former although
this explanation has a higher probability.

This trade off between information and probability is known as the Inverse
Relationship Principe [1]: the more specific an explanation is, the lower its prob-
ability will be. From a mathematical point of view, this may be trivial: surely,
Pr(A) ≤ Pr(B) if A ⊆ B. However, in practical situations, there can be many



situation-specific circumstances that may determine whether a more specific ex-
planation is needed. While a general practitioner will need an explanation that
is specific enough to successfully describe medication, a project manager needs
only a general explanation why one of her team members won’t be at his desk
for some time. Sometimes it might be costly or impractical to determine more
specific explanations. The impact of making the wrong decision may be crucial
in determining the probability threshold; what risks are we willing to accept?

In this paper, we seek to combine two aspects of the abduction problem into
one computational formalism: choosing what to explain (and at which granular-
ity) and inference to the most probable explanation. This computational problem
of seeking an explanation which is both informative enough for our means and
has a high enough probability is denoted as the Most Inforbable Explana-
tion problem to emphasize the trade off between informativeness and probabil-
ity. The remainder of this paper is structured as follows. In the next section we
will offer some needed preliminaries on Bayesian networks and computational
complexity theory. In Section 3 we formally define Most Inforbable Expla-
nation. We discuss the computational complexity of a decision variant of Most
Inforbable Explanation in Section 4. In Section 5 we conclude the paper.

2 Preliminaries

In this section, we give a short overview of a number of concepts from Bayesian
networks, graph theory, and complexity theory, in particular definitions of prob-
abilistic networks and treewidth, some background on complexity classes defined
by Probabilistic Turing Machines and oracles, and fixed-parameter tractability.
For a more thorough discussion of these concepts, the reader is referred to text-
books like [9, 10, 12, 23].

2.1 Bayesian Networks

A Bayesian or probabilistic network B = (GB,Pr) is a graphical structure that
models a set of stochastic variables, the conditional independences among these
variables, and a joint probability distribution over these variables. B includes a
directed acyclic graph GB = (V,A), modeling the variables and conditional in-
dependences in the network, and a set of parameter probabilities Pr in the form
of conditional probability tables (CPTs), capturing the strengths of the relation-
ships between the variables. The network models a joint probability distribution
Pr(V) =

∏n
i=1 Pr(Vi | π(Vi)) over its variables, where π(Vi) denotes the parents

of Vi in GB. We will use upper case letters to denote individual nodes in the
network, upper case bold letters to denote sets of nodes, lower case letters to
denote value assignments to nodes, and lower case bold letters to denote joint
value assignments to sets of nodes.

One of the key computational problems in Bayesian networks is the problem
to find the most probable explanation for a set of observations, i.e., the joint value
assignment to a designated set of variables that has highest posterior probability



given the observed variables in the network. If the network is bi-partitioned into
explanation variables and evidence variables this problem is known as Most
Probable Explanation, however, in practice there will often be variables that
are neither observed nor to be explained; for example, variables that influence
the posterior probability distribution but whose value is impractical or even
impossible to observe. In that case, the problem is denoted (Partial) MAP (or
Marginal MAP, to emphasize that we need to marginalize over the unobserved
variables); the decision variant of this problem is defined as follows:

MAP
Instance: A probabilistic network B = (GB,Pr), where V is partitioned into a
set of evidence nodes E with a joint value assignment e, a set of intermediate
nodes I, and an explanation set H; a rational number 0 ≤ q < 1.
Question: Is there a joint value assignment h to H such that Pr(h, e) > q?

MAP is NP-hard under a wide range of constraints, both to compute exact and
to approximate [22, 14, 5, 15].

An important structural property of a probabilistic network is its treewidth.
Treewidth is a graph-theoretical concept, which can be loosely described as a
measure on the ‘localness’ of the dependencies in the network: when the vari-
ables tend to be clustered in small groups with few connections between groups,
treewidth is typically low, whereas treewidth tends to be high if the connections
between variables are scattered all over the network. Formally, the treewidth of a
Bayesian network B is defined as the minimum width over all tree-decompositions
of triangulations of the moralization GM

B of the network [24]. Treewidth plays an
important role in the complexity analysis of Bayesian networks, as many other-
wise intractable computational problems become tractable when the treewidth
of the network is bounded.

2.2 Computational Complexity Theory

In the remainder, we assume that the reader is familiar with basic concepts
of computational complexity theory, such as Turing Machines, the complexity
classes P and NP, and NP-completeness proofs. In addition to these basic con-
cepts, to describe the complexity of various problems we will use the probabilistic
class PP, oracles, and some aspects from parameterized complexity theory.

The class PP contains languages L accepted in polynomial time by a Prob-
abilistic Turing Machine. Such a machine augments the more traditional non-
deterministic Turing Machine with a probability distribution associated with
each state transition. Acceptance of an input x is defined as follows: the probabil-
ity of arriving in an accept state is strictly larger than 1

2 if and only if x ∈ L. This
probability of acceptance, however, is not fixed and may (exponentially) depend
on the input, e.g., a problem in PP may accept ‘yes’-instances with size |x| with
probability 1

2 + 1
2|x| . PP-complete problems are considered to be intractable. The

canonical PP-complete problem is MajSAT: given a Boolean formula φ, does the
majority of the truth assignments satisfy φ? In Bayesian networks, the canonical



problem of determining whether the probability Pr(H = h | E = e) > q for a
given rational q (known as the Inference problem) is PP-complete [4, 13].

A Turing Machine M has oracle access to languages in the class C, denoted
as MC, if it can “query the oracle” in one state transition, i.e., in O(1). We
can regard the oracle as a ‘black box’ that can answer membership queries in
constant time. For example, NPPP is defined as the class of languages which are
decidable in polynomial time on a non-deterministic Turing Machine with access
to an oracle deciding problems in PP.

Sometimes problems are intractable (i.e., NP-hard) in general, but become
tractable if some parameters of the problem can be assumed to be small. Infor-
mally, a problem is called fixed-parameter tractable for a parameter k (or a set
{k1, . . . , kn} of parameters) if it can be solved in time, exponential only in k and
polynomial in the input size |x|, i.e., in time O(f(k) · |x|c) for a constant c and
an arbitrary function f . In practice, this means that problem instances can be
solved efficiently, even when the problem is NP-hard in general, if k is known to
be small.

3 Most Inforbable Explanations

In the MAP problem, one seeks to find the joint value assignment to a set of
variables that has maximum posterior probability. Here the candidate solutions
consist of joint value assignments to exactly that set of variables, i.e., a con-
junction of value assignments {(H1 = h1) ∧ . . . ∧ (Hn = hn)} to the individual
variables of the explanation set. This assumes that both the candidate hypothe-
ses and the granularity of the explanation are set beforehand.

In real life, however, candidate hypotheses are formed and considered dur-
ing the inference process, and the granularity of the explanation varies. Let
us assume there is evidence that a patient suffers from a lung disease. On
examination, when further evidence becomes available, the diagnosis may be
refined to an obstructive lung disease, and later on, even further refined to
the more specfic COPD and finally chronic bronchitis (Fig. 3). Preferably, we
would like to find an explanation that has high probability and is specific, like
{(CB = true)∧ (EM = false)∧ . . .∧ (LP = false)}, denoting that the patient
has chronic bronchitis and no other lung disease is present. But what if there
is not enough evidence to clearly distuinguish between chronic bronchitis and
emphysema? Would it be wise to ignore the possibility of other lung diseases
being present (maybe altering the advised medication) if the probability of their
presense is maybe not convincing, but still non-neglectable?

Let us consider the three cases as presented in Table 1. In case a), the ex-
planation is as specific as possible and has a high probability: the patient suffers
from chronic bronchitis and no other lung disease is present. Case b) reflects that
no clear distinction between chronic bronchitis and emphysema could be made.
Note, however, that the probability of the three joint value assignments that
correspond with {((CB = true)∨ (EM = true))∧ . . .∧ (LP = false)} is high.
Here, it seems best to restrict the diagnosis to “COPD”, rather than to refine it
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Fig. 3. Example of part of a classification of lung diseases

further. In case c) the patient definately suffers from chronic bronchitis, but in
addition, some form of pneumonia may be present. Here, it would be wise (if no
further evidence can be gathered) to settle for the diagnosis “chronic bronchitis,
and maybe also pneumonia” and describe medication that covers both.

case BP LP CB EM AS IN prob.

a false false true false false false 0.87
false false false true false false 0.04
false false true true false false 0.02

other 0.07

b false false true false false false 0.48
false false false true false false 0.37
false false true true false false 0.10

other 0.05

c false false true false false false 0.48
true false true false false false 0.21
false true true false false false 0.17
true true true false false false 0.08

other 0.06

Table 1. Joint value assignments and their probabilities in the lung disease example

What we did in case a) corresponds to ‘plain’ MAP. In case b) and c), how-
ever, we choose as explanation a set of joint value assignments rather than
a singleton joint value assignment, namely the set that corresponds to the
(informal) diagnoses “COPD” (case b), respectively “chronic bronchitis, and
maybe also pneumonia” (case c). Or to put it more formally, the sets of joint



value assignments that correspond to the sentences {((CB = true) ∨ (EM =
true))∧(AS = false)∧(IN = false)∧(BP = false)∧(LP = false)}, respec-
tively {(CB = true) ∧ (EM = false) ∧ (AS = false) ∧ (IN = false)}. Thus,
we extended MAP to deal with sets of joint value assignments, each consisting
of a conjunction of value assignments to the variables in the explanation set2.

We can also use a possible world semantics to describe these explanations.
In case a) the explanation corresponds to the world where CB is true and all
other variables are false. In case b) the explanation corresponds to the worlds
where either CB or EM or both are set to true, and all other variables are
false. In case c) the set of possible worlds are those where CB is true, BP and
LP are either true or false, and the other variables are false. If we count
these worlds in the three cases, we see that there is a single world in case a) with
probability 0.87, there are three worlds in case b) whose probabilities add up
to 0.95, and there are four worlds in case c) with total probability 0.94. Thus,
in order to gain probabibility mass, in case b) and c) we needed to trade off
informativeness, where we define explanation H to be more informative than H ′

if H corresponds to fewer possible worlds than H ′.

3.1 Succinct encodings

We saw that the formal definition of “chronic bronchitis, and maybe also pneu-
monia”, which corresponds to four possible worlds in the lung disease example,
can be quite succinctly described as {(CB = true) ∧ (EM = false) ∧ (AS =
false) ∧ (IN = false)} because the values of BP and LP are “don’t cares”.
Surely, not every combination of four possible worlds can be described so easily,
and we may need to resort to a full enumeration of four joint value assignments
to describe that explanation.

That feels quite unnatural and unsatisfactory, in the sense that such an ex-
planation (that consists of an arbitrarily complex sentence over the values of
the variables) does not appear to be very informative at first sight. The sen-
tence (AS = true) corresponds to 32 possible worlds in which the patient has
asthma (without committing to a particular value of the other variables), yet
this is far more comprehensible and informative than a plain enumeration of, say,
11 possible worlds, so despite being “less informative” given the possible worlds
semantics, we would like to enforce some reasonable encoding that makes the ex-
planation easy to understand and to reason with. But there are also complexity-
theoretic reason to constrain how the explanation should be encoded: if we allow
the explanation to be encoded as an arbitrary set of w possible worlds, where
w is given as a binary number, we may need an exponential (in w) number of
bits to describe that explanation. Therefore, apart from high probability and
a low number of possible worlds, we also require that the sentence describing
these possible worlds is short, i.e., we also demand succinct encodings. To be

2 Observe that we assume binary variables here for ease of exposition, but we
might also include variables with a higher cardinality, like TEMP with values
{low, normal,high}, stating, e.g., {((TEMP = low) ∨ (TEMP = normal)) ∧ . . .}.



precise, we require that the explanation can be encoded by the addition of at
most ŵ = O(dlog2(w + 1)e) partial joint value assignments to subsets of the
explanation set.

We finish this section with an informal problem definition of Most In-
forbable Explanation, combining these three requirements:

Most Inforbable Explanation (informal)
Instance: A Bayesian network, partitioned into evidence nodes, explanation
nodes, and intermediate variables.
Output: An explanation that has high probability, corresponds to few possible
worlds, and is succinctly encodable.

4 Computational Complexity

To investigate the computational complexity of Most Inforbable Explana-
tion, we will formally define a decision variant of this problem as follows.

Most Inforbable Explanation
Instance: A Bayesian network B = (G,Pr), where V is partitioned into a set
of evidence nodes E with a joint value assignment e, an explanation set H, and
intermediate variables I; a rational number 0 ≤ q < 1 and a natural number w.
Question: Is there a set {h1, . . . ,hw} of w distinct joint value assignments
h1, . . . ,hw to H, encodable by the addition of at most ŵ = O(dlog2(w + 1)e)
joint value assignments h′ to subsets of H, such that∑w

i=1 Pr(hi, e) =
∑ŵ

j=1 Pr(h′j, e) > q?

Theorem 1. Most Inforbable Explanation is NPPP-complete.

Proof. We prove membership in NP#P, membership in NPPP follows as P#P =
PPP. Membership can be shown by non-deterministically guessing a certificate,
consisting of a set of at most ŵ joint value assignments h′ to subsets of H; check-
ing that this certificate yields at most w distinct joint value assignments to H;
computing, using the #P oracle,

∑ŵ
j=1 Pr(h′j, e) (note that #P is closed under

addition), and finally deciding whether
∑ŵ

j=1 Pr(h′j, e) > q. Note that the num-
ber of joint value assignments w may grow exponentially in the input size, as w is
encoded in binary notation, but that all three steps of the verification algorithm
can be done in polynomial time given the constraint that {h1, . . . ,hw} must be
succinctly (i.e., logarithmically in w) encodable. Note that NPPP-hardness fol-
lows since Most Inforbable Explanation has MAP as a special case: take
w = 1. ut

If w = 0 then Most Inforbable Explanation degenerates to Inference. If
w = 1 then Most Inforbable Explanation degenerates to MAP. Further-
more, Most Inforbable Explanation inherits the inapproximability results
of MAP [22]. MAP is fixed parameter tractable (fp-tractable) for {c, 1− p, tw},
i.e., MAP can be solved fast when the treewidth tw of the restricted junction
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Fig. 4. The fp-tractable MAP algorithm branches on each value assignment to the
variables in H, computing marginal distributions over the variables not in H; in the
left subfigure the example H = {A,B}, c = 2 is illustrated. The size of the branching
tree is bounded by the probability of the most probable joint value assignment. Here,
we extend this algorithm by branching over all possible value assignments in all possible
worlds: part of the branching tree for w = 2 is drawn in the middle subtree. In the
right subtree part of the branching tree for ŵ = 2 is drawn. Here, for each choice of ŵ,
a variable can take any of its values, or it can take no value at all, denoted with m to
illustrate that we marginalize over that variable rather than assign it a value

tree and cardinality c of the variables are small and the most probable explana-
tion has a high probability3 (1 − p is low) [2, 14]. However, this may not hold
for Most Inforbable Explanation since we need to choose w joint value
assignments out of maximally c|H| which by itself is a source of complexity.
However, the {c, 1 − p, tw}-fixed-parameter tractable algorithm4 for MAP can
be adjusted by branching on each of the (at most) cw combinations of values for
each variable, rather than on each of the (at most) c values (see Fig. 4). There-
fore, Most Inforbable Explanation is fp-tractable for {c, 1−p, tw, w}. Since
Most Inforbable Explanation is a generalization of both MAP (for w = 1)
and Inference (for w = 0) it follows that Most Inforbable Explanation
remains intractable for the set of parameters {c, 1− p, w} and {c, tw, w} [16, 5].

It can be shown that Most Inforbable Explanation is also fp-tractable
for {c, 1 − p, tw, ŵ}, i.e., instead of bounding the number of possible worlds,
we bound the size of the encoding. This can be done by further augment-
ing the above-mentioned algorithm, allowing it to branch on the (at most)
cŵ + cŵ−1 + . . . + 1 combinations of values and non-assigned variables (that
are marginalized over) — see again Fig. 4. Thus, from a computational point
of view, Most Inforbable Explanation is not harder than ‘plain’ MAP,
as both are NPPP-complete. However, to render Most Inforbable Explana-
tion fixed-parameter tractable, an additional constraint needs to be imposed on
wither the number of possible worlds w or the number of (partial) joint value
assignments ŵ encoding these worlds.

3 Technically speaking, 1−p is not a parameter as it is not a natural number; however,
it can be mapped one-to-one to a suitable natural parameter [14].

4 See [2] for the original algorithm for Most Probable Explanation, and [14] for
the augmented algorithm for MAP.



5 Conclusion

In this paper, we introduced Most Inforbable Explanation as an extention
to MAP, in order to combine both inference to the best explanation and (some
aspects of) selecting candidate hypotheses and determining the granularity of
the explanations. In human reasoning, the sets hi are not likely to be arbitrarily
chosen, but may correspond to common phrases as “either A or B, or both”,
“maybe A, but definitely not B”, or “likely A, and possibly also B”; simple
heuristics may exist that favor such phrases in practice and penalizing more
complex structures, thus enforcing the formal logarithmic bound introduced in
the formal definition and the fpt-result for ŵ. A succint encoding of “Asthma,
but also at least one other disease” (spanning 31 possible worlds in the example)
may be {(AS = true)} \ {(BP = false) ∧ (LP = false) ∧ (CB = false) ∧
(EM = false) ∧ (IN = false)}. We did not include such encodings (allowing
for substraction, as well as addition, of partial joint value assignments) as it is
not obvious that the above mentioned algorithm is fp-tractable in this case.

A particularly interesting aspect of informativeness of explanations lies in
the often contrasting nature of explanations: often, we do not simply want to
explain: ‘Why this?’, but ‘Why this, rather than that?’ [18]. For example, to
explain why Alice got tenure, referring to her quality teaching is unsufficient
when Bob is an excellent teacher as well, but happend to be denied tenure: a
better explanation would (also) refer to her many high-rated publications that
Bob lacked. We leave a formal study of how such aspects may be implemented
in a computational problem for future work.
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