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1 Introduction

Computational complexity theory offers an indication of the resources needed for a particular computational
problem to be solved, as a function of the input size of a problem. These resources – most notably, time and
memory – are typically fairly coarse and built on a theoretical abstract model of computation: Turing machines.
Here, the ‘time’ resource refers to the number of state transitions in the machine, and the ‘memory’ resource
refers to the number of memory cells on the tape that are used. This traditional way of representing compu-
tations may not be the most usable to describe information processing in the brain [BF16]. Most significantly,
this model assumes symmetry in states and symbols, e.g., ‘0’ and ‘1’ are in principle interchangeable. This
is in contrast to the power-efficient spike signals used in cortical processing; here, there is a clear asynchrony
between the presence and absence of spikes: power-efficient coding requires as few spikes as possible. It has
been proposed by a working group at the Dagstuhl seminar on Resource-Bounded Problem Solving (seminar
14341, [HvRVW14, p. 66]) to have a more refined, brain-focused model of computation in the brain, based on
networks of spiking neurons, and have complexity measures loosely based on brain resources, such as spiking
rates, network size and connectivity [Maa00, Maa14]. In this extended abstract we describe work-in-progress
and future work towards that goal.

Figure 1: Example of a Turing machine (left panel) and a network of spiking neurons (right panel). The Turing
machine has an input (tape with symbols), a notion of computation (state machine transitions), resources
(length of tape used and number of transitions), and a notion of acceptance (accepting state qa). Our goal in
this project is to construct similar notions in a network of spiking neurons.

2 Structural complexity

In recent work we introduced complexity classes that capture the notion of resource-bounded stochastic com-
putations, in particular approximate Bayesian inferences [Kwi18]. We show under which constraints such
approximate inferences can be tractable, respectably remain NP-hard. These complexity classes are still based
on the Turing machine model, and while appropriate to capture tractability and intractability of problems on
traditional hardware, these classes are less suitable to capture the specific aspects of neuromorphic computing
(such as power efficiency). For example, it is known that networks of spiking neurons can in principle imple-
ment any approximate Bayesian inference [BBNM11], but it is not known when such implementations are still



tractable. We are currently working on a spiking neuron-based abstract neuromorphic model of computation
and a basic notion of complexity and completeness in classes based on this model (Figure 1). Here we discuss
a few ‘parameters’ we are currently investigating.

Acceptance criteria. For Turing Machines, different acceptance criteria lead to different complexity classes,
characterizing different sorts of problems. For example, the class PP requires that a yes-instance of a problem
is accepted by strictly more than half of the computation paths of a non-deterministic Turing machine. For the
class BPP, this majority is qualified to be polynomially bounded away from 1/2. This has huge imapct as PP-
complete problems are highly intractable while BPP-problems are feasible. We currently investigate acceptance
notions based to the stability of the distribution, assuming that differences here can lead to qualitatively
different classes of problems.

Resources. In addition to the traditional resources ‘time’ and ‘memory cells’ (that can be translated to
convergence time to a stationary distribution and the number of neurons) we investigate the resouces ‘energy’,
that materializes as the spike-no spike proportion. We hypothesize that there exist ‘energy-hard’ problems
that cannot be solved with limited energy, and also that ‘time’ and ‘energy’ trade-off in non-linear ways.

Completeness, reductions, and structural results. Defining complexity classes is rather useless without
a notion of ‘completeness’ (what characterizes that hardest problems within a class), a means to reduce one
problem into another problem while maintaining key properties such as time and energy constraints, and to
relate these classes to traditional complexity classes and results.

3 Applications

Neuromorphic engineering [I+11] typically addresses two goals: One the one hand, allowing for a better
understanding of (resource-bounded) information processing in the human brain; on the other hand, using
insights from neuronal implementations of said information processing to pave the way for the next generation
of general-purpose computing. In this new field, emphasis is typically put on hardware development and
algorithm design. We propose to augment this with a more fundamental formal study of the potential power
and inherent limitations of neuromorphic computation, allowing for a) a better understanding of the capacity of
the human brain, given its available resources, and b) understanding what can and cannot be done tractably on
this new computing platform, on a much more fine-grained level compared to what is possible with traditional
complexity theory.
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