Predictive Processing

Brain as prediction machine

* The brain continuously makes predictions about
future sensory evidence based on its current best
model of the causes of such evidence

Bayesian Brain

* The brain combines prior knowledge with sensory
evidence (from various sources) in a Bayesian way

Input

. . Lo Hierarchical Brain

Precision weighting of prediction errors - The brain is organized in a hierarchical way, where
“high level” information influences “low level”
information and vice versa
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Key sub-processes From conceptual idea to formal model

» Making predictions of expected input based on the * Predictive processing is assumed to explain and unify all
generative models of cognition, including higher cognition

. . . . . * To model, e.g., complex social interactions, Theory of Mind,

+ Comparing predicted inputs with actual inputs and intention recognition, and problem solving, we need rich
computing prediction error enough knowledge structures to model dependences

(see discussion of this in Griffiths et al. (2010))

« Explaining away prediction errors (minimizing
prediction error) + Our formalization: use discrete causal Bayesian networks
as knowledge structures to describe predictive processing

« Learning and adapting generative models Grifths, Chater, Kemp, Perfors, & Tenenbaum, (2010). Probabilstic models of cognition: Exploring

representations and inductive biases. Trends in cognitive sciences, 14(8), 357-364.
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Computational model — prediction generation Computational model — error estimation

Hypotl

» Prediction and Observation are probability distributions

N over the prediction variables Pred
Hypothesis variables
W ar

Hyp = {H,, H,}
' * Prediction is defined as computing the posterior
distribution Pr(p given the parameters in the network

Predietion = F

Prediction variables
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Precision of prediction & prediction error

Precision is a property of both a prediction and of a
prediction error

Precision of a prediction (expected precision) describes
how much uncertainty there is in a prediction (and
consequently, how informative the actual observation of
what was predicted will be)

Precision of a prediction error describes what proportion
of this uncertainty can be attributed to inherent stochastic
nature of the process that caused the outcome of the
prediction > precision-weighted prediction errors

Example: tossing coins

Hyperprior

Hyperpriors are priors over priors

Define a distribution P(Outcome) over Heads and Tails

A hyperprior now describes a distribution over x, such that
P(Outcome = Heads) = x [and P(Outcome = Tails) = 1 —x]

What does it mean and what does it look like?
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Beta function as hyperprior

Hyperpriors are conjugate priors over the corresponding
likelihood function

Conjugate here means: if the likelihood distribution is of the
family X, choosing a conjugate prior ensures that the
posterior distribution is also of the family X

In particular, a beta distribution is a conjugate prior over a
binomial distribution (in this case: outcomes of coin tosses)

Dirichlet distributions are conjugate priors over categorical
distributions, Gaussians are conjugate priors over
themselves, etc.
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Bayesian Updating

Beta datnbations. oves Trialy

s = heads, n-s = tails
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Precision-weighted prediction error

» Precision-weighted prediction error describes the size of
the effect of a prediction error on the updating of the model

« The higher this pwpe, the bigger the effect on the
generative model a prediction error is

« The higher this pwpe, the more reducible uncertainty
there is in the environment

« We define this pwpe as the KL divergence between the
hyperprior ‘before’ and ‘after’ updating with the new data

« Note that this is a normative measure, not a descriptive!

o

“The Bayesian perspective suggests that there are only two sorts of
things that need to be inferred about the world; namely, the state
of the world and uncertainty about that state.

Precision-weighted prediction error (2)

We have suggested that predicted states of the world are encoded
in terms of synaptic activity, while uncertainty is encoded by
synaptic gain that encodes the precision (inverse amplitude or
variance) of random fluctuations about predicted states.

If true, this means that modulators of synaptic gain (like dopamine)
do not report perceptual content but the context in which percepts
are formed. In other words, dopamine reports the precision or
salience of sensorimotor constructs (representations) encoded by
the activity of the synapses they modulate.”
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Reconciling both views

« Normative view: the precision weighted prediction error is
the net effect of an observation on the generative model

* PWPE =Dy (f(x; a+1,B) || f(x; a, )

« Descriptive view: the precision weighted prediction error is
a weight (signal gain) on the prediction error

* PWPE =W x Dy (Pogs || Peren)

« Can we reconcile these two views? YES! We can derive
(analytically) W in terms of the hyperparameters (a and 8)
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Precision-weighted prediction error (2)
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Dopamine, Affordance and Active Inference

Karl 4, Friston'*, Tamara Shiner', Thomas FitzGerald', Joseph M. Gakea”, Rick Adams'. Harriet Brown',
Raymond ), Dolan’, Rosalyn Maran', Klaas Enno s:wn-n Swen Bestmann®

G A .
Viovmrmens Do, iverty Cbogs Lorson e o Wiy, Qe s, Lok, U Emgiom

4 gk, ket Departrare: of Motos lmmncirce ot

Abstract

!M|mddwwnmnmammm¢nmm(mmmmnfm'mumm beaming and optimal
decision theory. Hete, we present an altmmative view that fames the

y indmation and me
fernces [pedictions) g g bty In this paper, we focus on the consequences of changing 1o
cued Craciady,

umwammmmummmm de. that we cn
carfuse agents by changing the contest forder in which cues are peesented. These simuations pcmuswwm
madel of consextual uncertainty and set switching that of bel

meiporses. Furthermore. by changing the precition of

pathological behaviouns that are reminiscent of Shote seen in neurlogical disorers such a1 Parkimonts disease. We use
these simadations 10 haw a single paerine at the senaptic level can manifest in deéfesert

< This is a descriptive measure!

o

Treerers in REVIEW ARTICLE 55

The many faces of precision

The many faces of precision (Replies to commentaries on
“Whatever next? Neural prediction, situated agents, and
the future of cognitive science”)

« Off-line simulation / planning of actions without execution
+ Eliminating (expected) noise at lower levels

« Updating generative models (‘learning’ — in terms of Clark:
“Sculpting effective connectivity”)
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Derivation

Prediction: PriX =z)= “—3‘ and Pr(X = z) = %

Observation: Pr(X = z) = 1
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Derivation (2)
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Derivation (2)
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Derivation (3)

1 1 1 L
i o H—1+-+-+~-+—_§
Harmonic number: " 3t3 o .

Eal

Digamma function: Win)=Hyq -7

1
where 7= lim (—I:: n+ E I)

is the Euler-Mascheroni constant, approximating 0.57721

Important property: lim,eo H, =Inx

Derivation (4)
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In(2XZ2)
Recall: limy—oo e =Inx

So in the long run, when the model becomes stable, W becomes zero!

Weights over time
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Conclusion

» Precision-weighted prediction errors for model
updating: The more stable the model, the less
impact a prediction error has on the model

* When models are stable and represent the inherent
stochastic nature of the environment, the prediction
error is ‘just’ the amount of irreducible uncertainty
or information in the signal (think of coin toss!)

» Formal definition of "weight’ in terms of hyper-
parameters of the generative model




