
Prediction error weighting

Johan Kwisthout

October 24, 2017

1 Introduction

It is often assumed in the predictive processing account that prediction errors are
weighted: the more a prediction error can be used to update generative models,
the higher this weight should be. In the literature this is often referred to as
precision-weighted prediction errors; the prediction error is weighted according
to the expected precision of the prediction, that is, how much noise there will
be in the signal. The noisier the signal is expected to be, the less influence a
prediction error should have.

When we use causal Bayesian networks as a computational framework for
realizing predictive processing, this concept is not as usable. We propose that
generative models are based on hyperpriors, that capture the confidence in a
particular probability distribution. Specifically, for discrete distributions the
hyperpriors are Dirichlet distributions f(x;α1, . . . , αn) with hyperparameters
α1, . . . , αn, where n is the number of parameters in the (original, discrete) dis-
tribution plus one. In this paper we use (without loss of generality) n = 2 (for
binary distributions, that have just a single parameter) and refer to them as
α and β. We assume that there is a generative model Pr(X), defined by the
current values of α and β such that Pr(X = x) = α

α+β and Pr(X = x̄) = β
α+β .

We assume that the current observation is X = x and we define the predic-
tion error DKL(PrPred‖PrObs) as the KL-divergence between the distribution
PrPred as defined above and the distribution PrObs as Pr(X = x) = 1. This
KL-divergence is defined as

DKL(PrObs‖PrPred) =
∑

p∈Ω(Obs)

PrObs(p) ln

(
PrObs(p)

PrPred(p)

)
where the term 0 ln 0 as 0 when appearing in this formula is interpreted as 0

as limx→0 x lnx = 0. Note that we here define the KL-divergence in nats, rather
than in bits, using the natural logarithm rather than log2.

We (normatively) define the precision-weighted prediction error as the effect
of the observation on the underlying hyperprior. That is, on observation of an
event associated with α, we compute the (continuous) KL-divergence between
f(x;α, β) and f(x;α+1, β). Alternatively, one can refer to ‘weighted prediction
error’ as W ×DKL(Probs‖Prpred). Can W be analytically derived in terms of α
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and β? The answer to this question turns out to be ‘yes’. Moreover, we show
that our normative definition of precision-weighted prediction errors captures
exactly these proporties of weights that we would like to have.

2 Derivation

Let PrPred(X = x) = α
α+β , PrPred(X = x̄) = β

α+β , PrObs(X = x) = 1,

and PrObs(X = x̄) = 0, for unspecified α ≥ 1, β ≥ 1. We then have that
DKL(PrObs‖PrPred) = 1 × ln (1/ α

α+β ) + 0 × ln (0/ β
α+β ) = ln (α+β

α ). For the KL-
divergence between f ′(x;α + 1, β) and f(x;α, β) we use the approach demon-

strated by Bariç Kurt1. We use that DKL(f ′(x)‖f(x)) =
〈

ln ( f
′(x)
f(x) )

〉
f ′(x)

=

〈ln f ′(x)− ln f(x)〉f ′(x) and expand and re-arrange this geometric mean:

〈ln f ′(x)− ln f(x)〉f ′(x) =

〈ln Γ(α+ β + 1)− ln Γ(α+ 1)− ln Γ(β) + (α+ β) lnx

− ln Γ(α+ β) + ln Γ(α) + ln Γ(β)− (α+ β − 1) lnx〉f ′(x) = (1)

ln Γ(α+ β + 1)− ln Γ(α+ β) + ln Γ(α)− ln Γ(α+ 1) + 〈lnx〉f ′(x) = (2)

(ln (α+ β)!− ln (α+ β − 1)!)− (ln (α)!− ln (α− 1)!)

+ ψ(α+ 1)− ψ(α+ β + 1) = (3)

ln (α+ β)− lnα+ ψ(α+ 1)− ψ(α+ β + 1) = (4)

ln (α+ β)− lnα+ (Hα − γ)− (Hα+β − γ) = (5)

ln (α+ β)− lnα+Hα −Hα+β (6)

We used in Step 3 that 〈lnx〉f ′(x) = ψ(α+1)−ψ(α+β+1) and Γ(x) = (x−1)!.
In Step 4, Hn is the n-th harmonic number, where γ is the Euler-Mascheroni
constant. Note that, since limx→∞Hx = lnx, in the limit the weighted predic-
tion error approaches zero. We thus have W ×DKL(PrObs‖PrPred) = ln (α+β

α )+

Hα −Hα+β and thus W = 1 +
Hα−Hα+β

ln ( α+β
α )

. W has its maximum for α = β = 1

and decreases to zero with increasing α and β as shown on the following figure.

3 Conclusion and Future work

We defined precision-weighted prediction error as the KL-divergence between
the hyperprior, representing a parameter in a generative model, before and
after updating the hyper-parameters as a consequence of observing an event.
We showed that in this definition the ‘weight’ of the prediction error (defined
as the KL-divergence between prediction and observation) can be analytically
derived and has the desired properties. This model does not yet address the
following theoretical questions:

1http://bariskurt.com/kullback-leibler-divergence-between-two-dirichlet-and-beta-distributions.
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� What if we did not observe an event with full certainty; how should then
the hyperparameters be updated?

� The updating of generative models here does not take into account model
revision or model refinement; this is pure model updating.

� We simplified a ‘generative model’ and collapsed it to be a single variable.
When models consist of non-trivial interactions between multiple vari-
ables, such as multiple causes for the same effect, the question is: What
part of the prediction error accounts for which parameter update.
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