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Abstract

In systems neuroscience there is a big gap between what theorists postulate (i.e., grand unifying
theories about the general principles underlying cortical processes such as the predictive processing
account) and what empiricists measure (i.e., reaction times, pupil dilations, blood-oxygenated level
dependent signal in brain areas, magnetic pulses). It is becoming increasingly difficult for the theo-
rists to come up with empirically testable hypotheses and for the empiricists to use their findings to
confirm or refute a theory. We propose a research methodology based on robot simulations that may
help bridge that gap. The methodology is summarized by four keywords: Formalize verbal theories
into computational models; Operationalize this computational model into a working robot imple-
mentation; Explore the consequences of various design choices and parameter settings to generate
empirically testable hypotheses; and finally Study these hypotheses in behavioral or imaging exper-
iments. We lay out a research program that aims at investigating various open issues in predictive
processing and exemplify our approach in a simple case study.

1 Introduction
The predictive processing account [1, 5] is currently one of the most influential unifying neuroscien-
tific accounts of what drives our cortical processes. According to this account, the brain continuously
makes predictions about what inputs it will get, based on hierarchical (stochastic) generative models that
maintain the current best hypotheses of the causes of these predictions; updating the models based on
precision-weighted prediction errors. It is claimed that this prediction principle applies to the entire cor-
tex and that the same broad apparatus and mechanism is used for both lower and higher cognition, e.g.,
both low-level vision and intention attribution [1]. While the predictive processing account is fleshed out
computationally for low-level vision and motor control [3], to account also for “higher cognitive phe-
nomena such as thought, imagery, language, social cognition, and decision-making” there is still “[...]
plenty of work to do.” [5, p.5]. Our research groups have been contributing to this research program both
by empirical research [6,17] and by theoretical and computational contributions [4,8–11,14,20,21]. One
of our key theoretical contributions is in the formalization of predictive processing in terms of causal
Bayesian networks [15], thus allowing for the representation of structurally rich knowledge domains
and complex interactions [8, 9].

Ideally, there is an interplay between theoretical advances and empirical research, where the theo-
retical work suggests hypotheses to test and the empirical work updates the theory. In current research
on predictive processing, however, we experience a huge gap between theoretical and empirical work,
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giving rise to many methodological and foundational questions. In particular since the predictive pro-
cessing account offers a unifying view on cortical processes, often painting with rather broad strokes, it
is difficult to determine whether a concrete empirical result really is evidence in support of predictive
processing; as the theory is so general, almost every result can be explained to match the general princi-
ples of the predictive processing account [16]. It is often questionable whether results and explanations
are ‘real’ or whether they are mere idiosyncrasies of an incorrect, incomplete, ambiguous, or ill-defined
interpretation of the (verbal) theory or the experimental manipulation thereof; this problem comes on
top of the surprisingly bad reproducibility [2] of experiments. The following example may illustrate our
concerns.

..

Model revision or model selection?
Sometimes prediction errors indicate that our current generative models need to be revised. For
example, if we observe our vegetarian friend ordering a ham sandwich, chances are that our
friend decided to quit being a vegetarian. That event impacts our future expectations. However,
if she was not a vegetarian, but we knew that she just ordered cheese sandwiches more often
than ham sandwiches, the observation perfectly fits with our model and there is no reason for
revision. To put this in terms of predictive processing: in the first example the precision of the
prediction error is higher, leading to an increased tendency for model revision, whereas in the
second example the prediction error is damped due to the expected uncertainty in the prediction.
O’Reilly et al. tried to experimentally dissociate different effects of prediction errors, based on
the amount of expected uncertainty in the predictions [13]. In a saccadic planning task, par-
ticipants focused on dots appearing in a particular quadrant of a unit circle, where sometimes
dots appeared in other quadrants. Whether this indicated a ‘block change’ (i.e., the quadrant of
interest was changed) or just a one-off trial (the quadrant of interest remained the same) was
indicated by the color of the outlier dot. The investigators found different brain patterns and
reaction times for the different conditions and suggested distinct brain networks associated with
‘surprise’ and ‘updating’ processes. It is debatable, however, how to fit these results in the pre-
dictive processing theory. One explanation may be that the results are evidence that the brain
revises its generative models based on unexpected prediction errors, that is, that it “need[s] to
update the internal model to predict future observations accurately in a changeable environ-
ment” [13, p.E3660]. An alternative and perfectly fitting explanation is that the different color
acts as a contextual cue that leads to the selection of a different sub-model that now becomes
active in generating hypotheses. Whereas it is plausible that models are generated and revised
during the learning stages of the experiment, it is quite defendable that what the researchers
measured is model selection based on context, not model revision.

A crucial assumption in the predictive processing account is that the brain tries to predict its inputs
based on previously developed generative models; it processes only that part of the input that is yet un-
explained (i.e., that was not predicted). To stick with the previous example, our brain may have built up
a generative model of what we expect our friend to order (cheese sandwiches) at lunch time; only if there
is a prediction error—a ham sandwich, rather than a cheese sandwich—the conflicting part of the input
(ham instead of cheese) is processed by the brain. There are multiple ways how such prediction errors
can be dealt with [8]. Depending on the context of the situation and on the confidence we have in the
model, we can potentially lower prediction error by either revising our generative models, updating our
current beliefs without changing the model, obtaining additional observations, or by actively manipulat-
ing the inputs. Respective examples of these mechanisms are to update the model of our friend’s dietary
preferences when we see her ordering a ham sandwich, updating the belief either heads or tails with
uniform probability to definitely heads on observing the outcome of a coin toss, determining whether
either our own train or the train on the parallel track starts to move by looking at the (stationary) railway
station building, or scratching one’s head to get rid of an unwanted itch.

Currently, the predictive processing account is largely silent as to which mechanism is applied under
which circumstances [9]. As the running example illustrates it is far from straightforward to empirically
disentangle these candidate mechanisms. The reasons therefore are two-fold: On the one side, exper-
imentally controlled manipulations will be based on ambiguous and incomplete verbal theories. It is
next to impossible to decide whether a particular empirical finding captures a ‘real effect’ or whether it



is due to implicit ‘design choices’ in the theory that emerge from the particular experimental setup. On
the other side, even if we are confident that a particular finding captures a ‘real effect’, the gap between
verbal theory and experimental condition hinders the use of that finding as confirmation or refutation of
a particular aspect of the theory. To help overcome both issues we propose the Robo-havioral methodol-
ogy as an intermediate step in the scientific process. The goal of this paper is two-fold. Firstly (Section
2), to flesh out this methodology in more detail and to propose a research program built on it; secondly
(Section 3), to present a small case study that nicely illustrates how even a relatively simple implementa-
tion can already reveal structural gaps in the theory and how we propose to deal with them. We conclude
in Section 4.

2 The Robo-havioral Methodology
Inspired by a longstanding tradition in Artificial Intelligence (already advocated in [12], but see also ap-
proaches such as [18]), we propose a new research methodology, somewhat tongue-in-cheek called the
Robo-havioral methodology, as an intermediate step between theoretical and empirical investigations
using so-called FOES. Here, FOES is the abbreviation of formalize, operationalize, explore, and study:
transform the verbal theory into a formal computational model, operationalize the model into a working
robot, explore the ‘parameter space’ and ‘design considerations’ of the theory in robot simulations, and
study thus obtained hypotheses in behavioral or imaging experiments; all in a continuous cycle. We need
to emphasize that the goal of this methodology is not to build smart robots or to extend the state of the
art in robotics. In contrast, the goal is to find gaps and ambiguities in neuroscientific theories, identify
‘design choices’ in such theories, and to explore the consequences of such commitments. The opera-
tionalization into working robots forces us to be complete and consistent with respect to our theoretical
commitments, thereby improving the theory (understanding-by-synthesis). The exploration allows us
to go beyond thought experiments and purely computational modeling; it generates empirically testable
(i.e., with human participants) hypotheses that naturally follow from such design considerations and pa-
rameter settings. They are grounded on a full, complete, and consistent operational model, rather than
on the scientist’s speculations. This helps to ensure that whatever experimental results we obtain can be
related to the theory. To summarize, we propose that this methodology forms a trait d’union between
theory forming and experimenting, leading to the following picture.

1. Conceptual analysis and theory forming
To propose verbal theories that potentially explain phenomena of interest.

2. Robo-havioral exploratory studies
To explore, identify, and fill the gaps in the theories and generate testable hypotheses.

3. Behavioral and imaging experiments
To empirically test the hypotheses and refine the theories and models.

Computer simulations can be very worthwhile tools for exploration and hypothesis generation. We
do make extensive use of our predictive processing toolbox to compare different scenario’s etcetera.
However, we propose to operationalize theories into (embodied, embedded, task-oriented) robots for
the simple reason that this forces us to take reality into account. While by formalizing a verbal theory
into computational models already quite some ambiguities typically can be resolved, the proof of the
pudding really is in the eating—not in writing up the recipe. To cite Barbara Webb [19, p. 1084]:
“Although some simulations may include all the environmental details of the real world, the simple fact
is that the majority of simulations do not. Rather, they include what the modeler thinks to be important,
that is, they tend to be biased towards the hypotheses to be tested.” In particular since one of the goals
of this methodology is to find ambiguities and missing details in theories, we believe it is vital to have
the operationalizations act in the real world.

3 Case study: Recognize Sorting Intentions
Many aspects of the predictive processing account are still under-defined, in particular when we move
to higher cognitive theories such as action understanding [7]. For example, we do not yet know how the



formal theory can account for the integration of long-term intentions with motor acts on a much shorter
time-scale, how generative models are developed, what the effect of different mechanisms of prediction
error minimization is, etcetera [9]. In addition, many such aspects are probably still overlooked. To
illustrate our methodology, we constructed a LEGO Mindstorms RECOGNIZESORTINGINTENTIONS
robot whose goal it is to recognize whether someone is sorting Duplo blocks either by color or by size
(Figure 1). There are nine blocks, three colors (red, green, yellow) and three sizes (2× 2× 4, 2× 2× 2,
1× 2× 4). The blocks thus can be sorted by the three colors or by the three sizes. When picking up the
blocks from a stack, and putting them into three separate bins, initially it is not clear what the sorting
intention is, but at most after the fourth block is put in one of the three bins, this can be inferred. The
robot is equipped with various sensors and it can move around to change its sensory inputs. Its “action
understanding” is based on a hierarchical generative model, i.e., a hierarchy of Bayesian networks that
generate predictions, at the lowest level (sensory) predictions for the inputs of its sensors, at higher
levels (action) predictions for movements towards buckets and the grasping of blocks, predictions for
where a particular block is put, which block is selected to pick up, and at the highest level (intention)
predictions about which sorting strategy is used. The robot will encounter uncertainty (due to noisy
sensors or ambiguous situations) and prediction errors; we implement and compare means of dealing
with them (for example, moving closer or turning its head to increase precision of the sensors (Figure
2) or get additional observations, changing beliefs of the actual sorting strategy, etc.).

..

Figure 1: Sorting Duplo blocks either by
color (top) or by form (bottom). We con-
struct a robot, based on the predictive pro-
cessing account, that aims to recognize
which sorting intention is applied. Note that
in principle it suffices to observe four blocks
at most to be able to disambiguate the sort-
ing intention if there are 3 × 3 blocks and
3 bins. For example, if the three bins con-
tain a red 2 × 2, a green 2 × 4, and a yel-
low 1×4 block, respectively, any subsequent
block disambiguates the sorting intention.

This simple setup is already quite rich, allowing for many studies. For example, it allows for study-
ing how a robot can learn causal relationships, how different strategies of dealing with prediction errors
effect the agent’s efficiency or learning capabilities, etcetera. However simple, the setup is already quite
challenging, in particular with respect to the ‘lower-level capabilities’ of getting to know which block
is held at a time and where it is going to. However, the focus of our methodology is not on this level.
We are not as much interested in aspects of computer vision and object recognition, but rather in higher-
level ways of dealing with uncertainty. For the concrete case study that we report on in this paper,
we have (from the robot’s perspective) discrete time steps, discrete block movement, and fixed loca-
tions of the blocks. This very implementation of such a highly constrained case study already proved
very valuable in explicating overlooked aspects of the predictive processing account (e.g., that reducing
prediction error by acting (relocating the position of its sensors) needs counter-factual models of how
actions potentially change perception) and hinted at to many interesting follow-up research questions.
In the next sub-section we will describe the computational (Bayesian) model of this case study, high-
lighting where the process of formalization, operationalization and exploration exposed fundamental or
practical issues. We emphasize again that our goal was not to build a smart robot for recognizing Duplo
blocks sorting procedures, but to become aware of such issues, i.e., understanding-by-synthesis. The
description of the computational model and the pilot will therefore be interleaved with “Theory Insight”
comments.
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Figure 2: An ambiguous percept that can be dis-
ambiguated by the robot by moving the position
of its sensors. In the left panel, the robot cannot
disambiguate between a 1 × 4 or a 2 × 4 Duplo
block. When it moves its position (right panel),
thereby changing the inputs of its sensors, it might
reduce the prediction error stemming from this un-
certainty.

3.1 Constructing the computational model
We focus our computational model on a time lapse of four blocks that are taken from a stack and placed
in one out of three bins. The model is graphically depicted in Figure 3. At the highest level of the
generative model (left panel) is a binary variable describing the sorting intention with values SORT-BY-
COLOR and SORT-BY-FORM. This variable, together with contextual information (the blocks that are
still on the stack and the contents of the bins), generates predictions for which block will be picked next
from the stack, transported to one of the three bins, and placed in that bin. In the model this is called
a COMPOUND-ACTION. Initially, the probability distribution of the first action will be uniform. This
COMPOUND-ACTION can be further decomposed in more basic actions PICKUP-X, MOVE-X-TO-Y,
and DROP-Y (right panel). Each of these actions drives predictions for what the robot will observe in
any of the four discrete frames T0 (when the block is picked up), T1 (when the block hovers above the
first bin), and T2 and T3 (when the block is above the second and third bin). For example, if we expect
the red 2 × 2 block to be moved to bin 2, then we expect to see this block in T0, in T1, and in T2, but
we expect to see nothing in T3. In addition there is a dynamic dependence: if we (think we) saw the red
2 × 2 block in T0, then we don’t expect a green 1 × 4 block in T1. The predictions here finally drive
low-level predictions for the color (C) and shape (S) expectations of the robot.

Theory Insight In the predictive processing account, information flows top-down (e.g., from hypoth-
esized intentions to predicted actions) and bottom-up (from observed color and shape to action).
However, it seems almost inevitable to have dependences in time as well (i.e., whatever block we
saw one frame ago). The Bayesian inference computations must deal with such time-dependences,
forbidding to (or at least be reluctant to) change belief states in the past. This aspect is overlooked
in the predictive processing account.

Theory Insight Much general world knowledge (e.g., a block cannot be both on the stack and in one
of the bins at the same time; blocks do not change color), needs to be encoded for predictions
to take shape. We operationalized this in the case study as constraints encoded in the probability
distributions. However, this becomes problematic if one wants to update probability distributions
due to prediction errors: some beliefs (such as the laws of nature) should be less resilient than
others.

So far, we described the top-down predictive stream in predictive processing. The hypothesized sort-
ing intention (initially uniformly distributed) drives a prediction for the actions, and the hypothesized
actions (again initially uniformly distributed) drives a prediction for the visual stimuli in each of the four
frames. The PREDICTION process in the predictive processing account thus is simply the computation
of a posterior distribution [8]. At the lowest level, the prediction is matched with the actual observation
of color and shape by the robot. To obtain these observations, we equipped the robot with a web-cam
and processed the raw inputs such as to obtain probability distributions over the three colors and the
three shapes (and ∅ in both cases to indicate nothing was seen), as described in the supplementary ma-
terial available at www.socsci.ru.nl/johank/BNAIC2015/technicalreport.pdf. We
then computed the PREDICTION ERROR as the Kullback-Leibler divergence between the predicted dis-
tributions for color and shape and the observed distributions. The next step is to update the hypotheses
as to reduce prediction errors. In this simple case study we assume that prediction errors are always
reduced by updating current beliefs. This BELIEF REVISION process seeks to find a revised prior prob-
ability distribution over the set of hypothesis variables that minimizes the prediction error.



Theory Insight Color and shape can be seen as multi-modal predictions. We thus have, for a particular
hypothesis, two predictions and two prediction errors. We may or may not weight the separate
prediction errors according to how influential we want them to be in updating our beliefs. This
may or may not be orthogonal to the confidence in (a particular part of) the generative model.

..
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Figure 3: Description of the computational model of the RECOGNIZESORTINGINTENTIONS
robot. The model consists of hierarchical layers, describing intentions, context-modulated ac-
tions (left panel), visual percepts at various points in time, and raw color and shape information
(right panel). Every layer is described by a causal Bayesian network. Bottom-up inference is
done by computing prediction errors between expected and actual inputs, and revising the prob-
ability distribution over the hypothesis nodes such that this prediction error is minimized. This
again induces a prediction error at the level above which is then propagated upwards.

3.2 Experimental pilot
In the experimental setup four Duplo blocks (red 1 × 4, yellow 2 × 4, green 2 × 2, and red 2 × 4)
were distributed among three bins in sixteen distinct time frames (four time frames for one block),
in a following order: red 1x4 to bin 1, yellow 2x4 to bin 3, green 2x2 to bin 2 and red 2x4 to
bin 3. This particular distribution of the blocks over the bins represents the sorting strategy SORT-
BY-FORM. Initially, the robot has uniform predictions for all actions and observations, yielding the
prediction {Pr(red) = 0.5,Pr(yellow) = 0.25,Pr(green) = 0.25,Pr(∅) = 0} for color, and
{Pr(2 × 4) = 0.5,Pr(2 × 2) = 0.25,Pr(2 × 4) = 0.25,Pr(∅) = 0} in T0. According to the
robot’s sensors, in T0, the robot actually perceived the following distribution for color: {Pr(red) =
0.3719,Pr(green) = 0.1344,Pr(yellow) = 0.272,Pr(∅) = 0.2217} and for shape: {Pr(2 × 4) =
0.3407,Pr(2 × 2) = 0.1418,Pr(1 × 4) = 0.2957,Pr(∅) = 0.2217}. This yielded a prediction
error between predictions and observations of 0.1225 for color and 0.1266 for shape. The predic-
tion errors were minimized by revising the probability distribution over the hypothesis variable T0 to
{Pr(red 1 × 4) = 0.3239,Pr(yellow 2 × 4) = 0.1631,Pr(green 2 × 2) = 0.1097,Pr(red 2 × 4) =
0.1631,Pr(∅) = 0.2399}, yielding a prediction error of 0.004 for color and 0.002 for shape. While
there is considerable uncertainty, the robot still correctly inferred the red 1 × 4 block to be the most
probable one in T0. The now induced prediction error at the block level was propagated to the action
level, giving an updated distribution for the COMPOUND-ACTION variable. However, our software had
great difficulty to find an updated distribution for the highest level of the hierarchy, SORTING INTEN-
TION. Upon closer inspection this was the case because all combinations of all contextual influences (the
blocks still on the stack and in the bins) need to be taken into consideration in revising the distribution,
giving too much degrees of freedom for tractable computations.

Theory Insight Whatever sorting intention is most likely depends on many bits of contextual infor-
mation, such as the current state of the stack and the bins. When we represent such contextual



information (and the implicit world knowledge) as a probability distribution, as we did in this
case study, a straightforward belief revision algorithm will marginalize over all values of all these
variables. A ‘smarter’ way of representing world knowledge and contextual information is needed
for computations to be tractable.

Halting the inferential stream at the COMPOUND-ACTION variable and making again predictions
for the observations in T1 and T2 and updating the probability distributions after prediction errors, the
robot correctly predicted it will not see any block in T3, i.e., the block was placed in bin 2. It had some
difficulty in discriminating the red 1 × 4 from the red 2 × 4 block, however; as we could not further
infer the updated probability distribution of the SORTING INTENTION due to the intractability issues.

3.3 Discussion
Even this simple case study is illuminating. Being forced to actually implement predictive process-
ing enforced various design considerations upon us, such as how to encode world knowledge (e.g., a
block does not suddenly change its shape and it cannot be in two bins at the same time) and how to
deal with multi-modal prediction errors. The consequences are not trivial: for example, one of our as-
sumptions (that world knowledge can be encoded in probability distributions, disallowing ‘impossible’
combinations of values by attributing a zero probability to them) gives rise to huge intractability issues
when prediction errors need to be minimized. Our conclusion is that even in this simple pilot much
information is gathered that enforces us to rethink parts of the verbal theory (“go back to the drawing
board”).

One could question whether it was really needed for this simple case study to construct a robot, i.e.,
whether a computational simulation would not have revealed similar insights. We agree that the full
strength of this methodology will be more apparent in studies with a closed action-perception cycle,
where the robots act upon the environment and influence their future perceptions; this early report does
not reveal this full strength. However, even in this simple study there were theory insights (like the issue
of multi-model prediction errors and how to weight them in updating models) that we believe we would
have missed had we resorted to a computational simulation.

4 Conclusion
We proposed the Robo-havioral methodology for bridging the gap between theoretical and empirical
research in neuroscience. The aim of this methodology is to a) identify weak spots in verbal theories
and b) propose informed empirical hypotheses that are closely related to theoretical commitments. The
methodology is based on the principle understanding-by-synthesis and can be paraphrased by four key-
words: Formalize, Operationalize, Explore, and Study. We showed how even a simple case study can
already expose various theoretical issues in the predictive processing account, simply by “trying to make
it work in the real world”, providing food for thought and subsequent experiments.

The methodology, in particular the operationalization and exploration part, is still under develop-
ment, as is this particular case study. We are currently finalizing a predictive processing toolbox of algo-
rithms for the various sub-processes in predictive processing (to be publicly available) and initiating a
number of research projects that build on this work. In particular we aim to explore the effects of various
mechanisms for prediction error minimization (model revision, belief revision, passive intervention and
active intervention) and the effects of changing the state space granularity in making predictions, allow-
ing for more informative predictions with the drawback of potentially increasing prediction errors. Both
aspects are identified as key open theoretical problems within the predictive processing account [9, 11].
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