
On the computational power and complexity of Spiking Neural
Networks
Johan Kwisthout

∗

Nils Donselaar
†

j.kwisthout@donders.ru.nl

n.donselaar@donders.ru.nl

Donders Institute for Brain, Cognition, and Behaviour

Nijmegen

ABSTRACT
The last decade has seen the rise of neuromorphic architectures

based on artificial spiking neural networks, such as the SpiNNaker,

TrueNorth, and Loihi systems. The massive parallelism and co-

locating of computation and memory in these architectures poten-

tially allows for an energy usage that is orders of magnitude lower

compared to traditional Von Neumann architectures. However, to

date a comparison with more traditional computational architec-

tures (particularly with respect to energy usage) is hampered by the

lack of a formal machine model and a computational complexity

theory for neuromorphic computation. In this paper we take the

first steps towards such a theory. We introduce spiking neural net-

works as a machine model where—in contrast to the familiar Turing

machine—information and the manipulation thereof are co-located

in the machine. We introduce canonical problems, define hierar-

chies of complexity classes and provide some first completeness

results.

CCS CONCEPTS
• Theory of computation → Abstract machines; Problems,
reductions and completeness.

KEYWORDS
neuromorphic computation, spiking neural networks, structural

complexity theory

ACM Reference Format:
Johan Kwisthout and Nils Donselaar. 2020. On the computational power and

complexity of Spiking Neural Networks. In Proceedings of ACM Conference
(Conference’17). ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/

nnnnnnn.nnnnnnn

∗
Supported by a grant from Intel Corporation.

†
Supported by NWO grant 612.001.601.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Moore’s law [12] stipulates that the number of transistors in inte-

grated circuits (ICs) doubles about every two years. With transistors

becoming faster IC performance doubles every 18 months, at the

cost of increased energy consumption as transistors are added [14].

Moore’s law is slowing down and is expected
1
to end by 2025.

Traditional (“Von Neumann”) computer architectures separate com-

putation and memory by a bus, requiring both data and algorithm

to be transferred from memory to the CPU with every instruction

cycle. This has been described, already in 1978, as the Von Neu-

mann bottleneck [2]. While CPUs have grown faster, transfer speed

and memory access lagged behind [7], making this bottleneck an

increasingly difficult obstacle to overcome.

In summary, while more data than ever before is produced, we

are simultaneously faced with the end of Moore’s law, limited per-

formance due to the Von Neumann bottleneck, and an increasing

energy consumption (with corresponding carbon footprint) [15].

These issues have accelerated the development of several genera-

tions of so-called neuromorphic hardware [3, 8, 11]. Inspired by the

structure of the brain (largely parallel computations in neurons, low

power consumption, event-driven communication via synapses)

these architectures co-locate computation and memory in artifi-

cial (spiking) neural networks. The spiking behavior allows for

potentially energy-lean computations [10] while still allowing for

in principle any conceivable computation [9]. However, we do not

yet fully understand the potential (and limitations) of these new ar-

chitectures. Benchmarking results are suggesting that event-driven

information processing (e.g. in neuromorphic robotics or brain-

computer-interfacing) and energy-critical applications might be

suitable candidate problems, whereas ‘deep’ classification and pat-

tern recognition (where spiking neural networks are outperformed

by convolutional deep neural networks) and applications that value

precision over energy usage may be less natural problems to solve

on neuromorphic hardware. Although several algorithms have been

developed to tackle specific problems, there is currently no insight

in the potential and limitations of neuromorphic architectures.

The emphasis on energy as a vital resource, in addition to the

more traditional time and space, suggests that the traditional models

of computation (i.e., Turing machines and Boolean circuits) and the

corresponding formal machinery (reductions, hardness proofs, com-

plete problems etc.) are ill-matched to capture the computational

power of spiking neural networks. What is lacking is a unifying

computational framework and structural complexity results that

1
https://www.economist.com/technology-quarterly/2016-03-12/after-moores-law.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://www.economist.com/technology-quarterly/2016-03-12/after-moores-law

Conference’17, July 2017, Washington, DC, USA Johan Kwisthout and Nils Donselaar

can demonstrate what can and cannot be done in principle with

bounded resources with respect to convergence time, network size,

and energy consumption [6]. Previous work is mostly restricted

to variations of Turing machine models within the Von Neumann

architecture [4] or energy functions defined on threshold circuits

[16] and as such unsuited for studying spiking neural networks.

This is nicely illustrated by the following quote:

“It is . . . likely that an entirely new computational the-

ory paradigm will need to be defined in order to en-

compass the computational abilities of neuromorphic

systems” [15, p.29]

In this paper we propose a model of computation for spiking

neural network-based neuromorphic architectures and lay the foun-

dations for a neuromorphic complexity theory. In Section 2 we will

introduce our machine model in detail. In Section 3 we further

elaborate on the resources time, space, and energy relative to our

machine model. In Section 4 we will explore the complexity classes

associated with this machine model and derive some basic struc-

tural properties and hardness results. We conclude the paper in

Section 5.

2 MACHINE MODEL
In order to abstract away from the actual computation on a neuro-

morphic device, in a similar vein as the Turing machine acts as an

abstraction of computations on traditional hardware architectures,

we introduce a novel notion of computation based on spiking neural

networks. We will first elaborate on the network model and then

proceed to translate that to a formal machine model.

2.1 Spiking neural network model
We will first introduce the specifics of our spiking neural network

model, which is a variant of the leaky integrate-and-fire model

introduced by Severa and colleagues at Sandia National Labs [13].

This model defines a discrete-timed spiking neural network as a

labeled finite digraph S = (N , S) comprised of a set of neurons N
as vertices and a set of synapses S as arcs. Every neuron k ∈ N is a

triple (Tk ∈ Q≥0,Rk ∈ Q≥0,mk ∈ [0, 1]) representing respectively

threshold, reset voltage, and leakage constant, while a synapse

s ∈ S is a 4-tuple (k ∈ N , l ∈ N ,d ∈ N>0,w ∈ Q) for the pre-

synaptic neuron, post-synaptic neuron, synaptic delay and weight

respectively. We will use notation Sk ,l = (d,w) as a shorthand to

refer to specific synapses and shorthands dkl and wkl to refer to

the synaptic delay and weight of a specific synapse.

The basic picture is thus that any spikes of a neuron k are carried

along outgoing synapses Sk ,l to serve as inputs to the receiving

neurons l . The behavior of a spiking neuron k at time t is typi-
cally defined using its membrane potential uk (t) =mkuk (t − 1) +∑
j w jkx j (t − djk) + bk which is the integrated weighted sum of

the neuron’s inputs (taking into account synaptic delay) plus an

additional bias term. Whether a neuron spikes or not at any given

time is dependent on this membrane potential, either determinis-

tically (i.e., the membrane potential acts as a threshold function

for the spike) or stochastically (i.e., the probability of a spike being

released is proportional to the potential); in this paper we assume

deterministic spike responses. A spike xk (t) is abstracted here to

be a singular discrete event, that is, xk (t) = 1 if a spike is released

Cl
(T = K)

Cl
(d = n)

n

∞

∞

(R = 1)

1

1

Nacc Nrej

Figure 1: Notational conventions for (top to bottom on the
left) a regular neuron, a programmed neuron, dedicated no-
tation for programmed neurons firing once at timestep t = 0,
and dedicated acceptance and rejectionneurons. To the right
we show simple circuits realizing a continuously firing neu-
ron, a clock neuron firing everyK time steps, and a temporal
representation of a natural number n < K relative to a clock.

by neuron xk at time t and xk (t) = 0 otherwise. Figure 2 gives an

overview of this spiking neuron model.

One can also define the spiking behavior of a neuron program-
matically rather than through its membrane potential, involving

so-called spike trains, i.e. predetermined spiking schedules. Im-

portantly, such neurons allow for a means of providing the in-

put to a spiking neural network. Furthermore, for regular (non-

programmed) neurons the bias term can be replaced by an appro-

priately weighted connection stemming from a continuously firing

programmed neuron; for convenience this bias term will thus be

omitted from the model. Figure 1 introduces our notational conven-

tions that we use for graphically depicting networks, along with a

few simple networks as an illustration. As a convention, unless oth-

erwise depicted, neuron and synapse parameters have their default

values R = 0 and T =m = d = w = 1.

For every spiking neural network S we require the designation

of two specific neurons as the acceptance neuron Nacc and the re-

jection neuron Nrej. The idea is that the firing of the corresponding

neuron signifies acceptance and rejection respectively, at which

point the network is brought to a halt. In the absence of either one

of those neurons, we can impose a time constraint and include a

new neuron which fires precisely when Nacc or Nrej (whichever is

present) did not fire within time, thus adding the missing counter-

part. In this way, we ensure that this model is a specific instantiation

of Wolfgang Maass’ generic spiking neural network model that was

shown to be Turing complete [9]; hence, these spiking neural net-

works can in principle (when provided the necessary resources)

compute anything a Turing machine can. More interesting is the

question whether we can design smart algorithms that minimize

the use of resources, for example, minimize energy usage within

given bounds on time and network size. In order to answer this

question we need to define a suitable formal abstraction of what

constitutes a computational problem on a spiking neural network.

Complexity of SNNs Conference’17, July 2017, Washington, DC, USA

...

uk(t) xl(t+ dkl)

uk(t) =

{
max(0, Rk +

∑
j wjkxj(t− djk)) if uk(t− 1) ≥ Tk;

max(0,mkuk(t− 1) +
∑

j wjkxj(t− djk)) otherwise.

w1k

w2k

w3k

wmk

xk(t) =

{
1 if uk(t) ≥ Tk;
0 otherwise.

Rk = reset voltage, Tk = threshold,mk = leakage constant

x1(t− d1k)

x2(t− d2k)

x3(t− d3k)

xm(t− dmk)

Figure 2: A spiking neuron model with deterministic spiking behavior, describing the membrane potential u(t) of a leaky
integrate-and-fire neuron k over time, based on the integrated weighted sum of incoming post-synaptic potentials. We enforce
that themembrane potential is non-negative. Spikes are emittedwhen themembrane potential reaches its threshold and arrive
at post-synaptic neurons l with synaptic delay dkl .

2.2 Canonical problems
Canonical computational problems on Turing machines typically

take the following form: “Given machineM and input i on its tape,

doesM accept i using resources at most R”? Here, L is the language

that M should accept, and the job of M is to decide whether i ∈ L.
To translate such problems to a spiking neural network model one

needs to define the machine model S, the resources R that S may

use, how the input i is encoded and what it means for S to accept

the input i using resources R.
This is a non-trivial problem. In a Turing machine the input is

typically taken to be encoded in binary notation and written on

the machine’s tape, while the algorithm for accepting inputs i is
represented by the state machine ofM. However, in spiking neural

networks both the problem input and the algorithm operating on

it are encoded in the network structure and parameters. While

the most straightforward way of encoding the input is through

programming a spike train on a set of input neurons, in some cases

it might be more efficient to encode it otherwise, such as at the level

of synaptic weights or even delays. In that sense a spiking neural

network is different from both a Turing machine and a family of

Boolean circuits as depicted in Table 1.

Hence, we introduce a novel computational abstraction, suitable

for describing the behavior of neuromorphic architectures based on

spiking neural networks. We postulate that a network Si encodes

both the input i and the algorithm deciding whether i ∈ L. What

it means to decide a problem L using a spiking neural network

now becomes the following: that there is an RT -resource-bounded
Turing machine M that generates a spiking neural network Si for

every input i , such that Si decides whether i ∈ L using resources at

most RS . Note that in this definition the workload is shared between
the Turing machineM and the network Si , and that the definition

naturally allows for trading off generality of the network (accepting

different inputs by the same network) and generality of the machine

(generating different networks for each distinct input), with the

traditional Turing machine and family of Boolean circuits being

special cases of this trade-off. We can informally see the Turing

machine M as a sort of pre-processing computation generating the

spiking neural network Si and then deferring the actual decision to

accept or reject the input to this network. We will use the notation

S(RT ,RS) to refer to the class of decision problems that can be

decided in this way.

There is typically a trade-off between generality and efficiency

of a network. Figure 3 provides a simple comparison between three

implementations of the Array Search-problem: given an array

A of integers and a number i , does A contain i? Note that in the

rightmost example a ‘circuit approach’ is emulated. There is no

straightforward way to simulate the entire computation for arrays

of arbitrary size in the network other than simulating the behaviour

of the machine and its input as per the proof in [9].

In addition to the ‘pre-processing’ model we can also allow an

iterative interaction between M and an oracle capable of deciding

whether a spiking neural networkS accepts, such that the computa-

tion carried out byM is interleaved with oracle calls whose results

can be acted on accordingly. Before we can properly define this in-
teractive model of neuromorphic computation, we will first discuss

the class S(RT ,RS) in further detail. In Section 4 we will cover the

formal aspects involved in these definitions; we start by considering

the resources that we wish to allocate to these machines.

3 RESOURCES
We denote the resource constraints of the Turing machine with the

tuple RT = (TIME, SPACE). We allow the decision of the network

to take resources RS ; this can be further specified to be a tuple

RS = (TIME, SPACE, ENERGY), referring to the number of time

steps Si may use, the total network size |Si |, and total number

of spikes that Si is allowed to use, all as a function of the size of

the input i . Note that in practice ENERGY ≤ TIME × SPACE since

Conference’17, July 2017, Washington, DC, USA Johan Kwisthout and Nils Donselaar

Character of de-

vice(s)

Input representation i Resources R Canonical problem Q

Turing Ma-

chine M

One machine

deciding all

instances i .

Input is presented on the ma-

chine’s tape.

Time, size of the tape, transition

properties, acceptance criteria.

Does M decide whether i ∈ L
using resources at most R?

Family of

Boolean

circuits C|i |

One circuit for

every input size

|i |.

Input is represented as special

gates.

Circuit size and depth, size and

fan-in of the gates.

Does, for each i , the correspond-
ing circuit C|i | decide whether

i ∈ L using resources at most R?

Collection

of SNNs Si

One network

for every input i
or set of inputs

{i1, . . . , im }.

Input is encoded in the network

structure and/or presented as

spike trains on input neurons.

Network size, time to conver-

gence, total number of spikes.

Is there a resource-bounded Tur-

ing Machine M that, given i ,
generates (using resources RT)
Si which decides whether i ∈ L
using resources at most RS ?

Table 1: Overview of machine models: Turing machines, Boolean circuits, and families of spiking neural networks.

Nacc

(d = A[0])

(d = A[1])

(d = i)

(d = i)

(d = i)

(d = A[2])

T = 2

T = 2

T = 2

T = 1

c0

c1

c2

1

m = 0

m = 0

m = 0

(a) All computation in the network

1

c0

c1

c2

Nacc

i

(d = A[0])

(d = A[1])

(d = A[2])

T = 2

T = 2

T = 2

T = 1

m = 0

m = 0

m = 0

(b) The value i offered to the network as input

A[1]

c0

c1

c2

Nacc

i

T = 2

T = 2

T = 2

T = 1

A[0]

A[2]

m = 0

m = 0

m = 0

(c) Both the value i and the array A offered to
the network as input

Figure 3: Three spiking neural networks designed to decide whether an array A of natural numbers contains i. Note that in
network 3a both A and i as well as the parallel comparison are encoded in the network; in network 3b the search value i is
offered as input (using a spike train consisting of a single spike with delay i), and in network 3c both the search value and the
integers in the array are offered as input to the network, while the size of the array is fixed. The number of spikes used in the
computation is respectively ≤ |n |+ 2, ≤ |n |+ 3, and ≤ 2|n |+ 2; the generality of the network increases but this comes at the prize
of the increasing number of spikes in the computation.

any neuron can fire at most once per time step. Furthermore, note

that similarly SPACE is upper bounded by RT , as for example we

cannot in polynomial time construct a network with an exponential

number of neurons.We assume in the remainder that the constraints

can be described by their asymptotic behavior, and in particular

that they are closed under scalar and additive operations; we will

describe RT and RS as being well-behaved if they adhere to this

assumption. (To clarify, here we restrict ourselves to considering

only deterministic resources for both RT and RS , just as we consider
only deterministic membrane potential functions.)

Observe that we really need the pre-processing to be part of the

definition of the model for neuromorphic computation to meaning-

fully define resource-bounded computations, as we are allowed in

principle to define a unique network per instance i . Otherwise, the
mapping between i and Si could be the trivial and uninformative

mapping:

i → Si :

{
(N {acc},∅) if i ∈ L;
(N {rej},∅) otherwise.

3.1 Clock and meter
According to a classical and generally known result (see [5]) one

can for any Turing machineM provide an equivalent machineM ′

which effectively has access to a clock and a ruler, such thatM ′
en-

ters the rejection state immediately when these bounds are violated,

using overhead which is typically negligible from a complexity per-

spective. As a consequence one is often allowed to work under the

assumption that Turing machines possess such clocks and rulers,

as we shall also do here for convenience. To demonstrate the power

of the spiking neural network model under consideration, we show

that it is similarly possible to build into a spiking neural network

S both a meter to monitor energy usage as well as a timer which
counts down the allotted time steps. However, as these components

Complexity of SNNs Conference’17, July 2017, Washington, DC, USA

are not relevant for our subsequent results, we will not treat them

as part of our baseline assumption. Given an upper bound e on

the number of spikes, we can construct an energy counter neu-

ron E = (e, e, 1) with synapses Sk ,E = (1, 1) for all k ∈ N , and

SE ,Nacc
= (1,−

∑
j |w jNacc

|), SE ,Nrej
= (1,TNacc

+
∑
j |w jNacc

|) where

applicable. This ensures that if at some time step the permitted num-

ber of spikes has been reachedwithout accepting or rejecting (which

itself involves a spike from the corresponding neuron), from the

next time step on the energy counter will inhibit the acceptance neu-

ron and excite the rejection neuron if present. Along similar lines,

given an upper bound t on the number of time steps, we can include

a programmed timer neuron T = (1, 0, 1) which fires once at the

first time step, along with synapses ST ,Nacc
= (t + 1,−

∑
j |w jNacc

|),

and ST ,Nrej
= (t + 1,TNacc

+
∑
j |w jNacc

|) where applicable (Figure

4). Observe that these constructions add only two neurons, a pro-

portionate number of synapses, and (in the presence of a rejection

neuron) only a few additional spikes expended, hence the network

size and in particular its construction time remain the same asymp-

totically.

T

E

SNN

Nacc

Nrej

Figure 4: Adding a timer and a meter to an arbitrary spiking
neural network

4 STRUCTURAL COMPLEXITY
Now that we have specified what we mean by the resources RT
and RS , it is time to take a closer look at the class S(RT ,RS), start-
ing with some initial observations. To begin with, it makes little

sense to allow the pre-processing to operate with at least as much

resources as the spiking neural network, since otherwise the exe-

cution of the spiking neural network can be simulately classically;

this remark is illustrated in Theorem 4.1 below. For this reason we

typically choose RT to be only polynomial time and polynomial or

even logarithmic space, corresponding to the classes P and L respec-
tively. When the constraints RT are such thatM(RT) characterizes
familiar complexity classes we will use the common notation for

that class from here on; as an abuse of notation we will also use

this notation as a shorthand for the resources RT themselves.

Theorem 4.1. S(P,RS) = P whenever RS involves at most poly-
nomial time constraints.

Proof. As P ⊆ S(P,RS) is obvious, we focus on proving the

inclusion in the other direction. The crucial observation is that for

a Turing machine with polynomial time constraints it is impossible

to construct a larger than polynomial network, rendering the space

constraints actually imposed moot. Recalling our earlier observa-

tion that the energy consumption of a spiking neural network is

upper bounded in terms of (the product of) its size and time con-

straints, this implies that the spiking neural network constructed is

effectively polynomially bounded (or worse) on all resources. Now

it suffices to show that a deterministic Turing machine can simulate

in polynomial time the execution of a spiking neural network of

polynomial size for at most polynomial time. This can be done by

explicitly iterating over the neurons for every time step, determin-

ing whether they fire and scheduling the transmission of this spike

along the outgoing synapses, until the network terminates or the

time bounds are reached. By thus absorbing the decision proce-

dure carried out by the network into the classical polynomial-time

computation carried out by the machine we arrive at the stated

inclusion. □

This theorem serves as a reminder that spiking neural networks

are no magical devices: while there is a potential efficiency gain,

mostly in terms of energy usage relative to computations on tradi-

tional hardware (only), neuromorphic computations with at most

polynomial time constraints cannot achieve more than their clas-

sical counterparts. It remains to be determined to what extent the

classes S(RT ,RS) exhibit any hierarchical behavior based on the

constraints RS : in particular, it is still unclear whether there is an

energy hierarchy analogous to the classical time hierarchy. We can

however note that for well-defined resource contraints the classes

S(RT ,RS) are closed under operations such as intersection and

complement, since spiking neural networks themselves are, so that

decision procedures can be adjusted or combined at the network

level.

Observe that using different resource constraints RT and RS
we can define a lattice of complexity classes S(RT ,RS), including
such degenerate cases asS((O(1),O(1)),RS)where the constructed
network is only finitely dependent on the actual input (and thus can

be constructed in constant time), and S(RT , (O(1),O(1),O(1))) =

M(RT). It is therefore natural to consider the notions of reduction

and hardness in this context, which is what we will do next.

4.1 Completeness for S(RT ,RS)
In order to arrive at a canonical complete problem for the class

S(RT ,RS), it makes sense to consider the analogywith othermodels

of computation, where one asks whether the given procedure (be

it machine, circuit or otherwise) accepts the provided input. Since

even for the class S(RT ,RS) it is not a spiking neural network but

a Turing machine which controls how the input is handled, the

resulting candidate for a complete problem for this class will involve

the latter and not the former. This means that to distinguish this

problem from its classical equivalent we must include the promise

that the Turing machine is indeed of the kind associated with the

class S(RT ,RS), in that it generates an RS -bounded spiking neural

Conference’17, July 2017, Washington, DC, USA Johan Kwisthout and Nils Donselaar

network using resources RT
2
. In other words, we claim that the

following problem is complete under polynomial-time reductions

for the promise version of the class S(RT ,RS).

S(RT ,RS)-Halting
Instance: Turing machineM along with input string i .
Promise: M is an S(RT ,RS)-machine.

Question: DoesM accept i?

Theorem 4.2. S(RT ,RS)-Halting is complete under polynomial-
time reductions for the promise version of S(RT ,RS).

Proof. Membership of this problem is established as follows:

with a universal S(RT ,RS) machine one can take the machine

M and simulate it on the input i . If the machine M is indeed an

S(RT ,RS) machine as per the promise, then this simulation will

succeed within the permitted resource bounds and we can simply

return the answer given by M. In case the promise fails to hold,

we only need to ensure that the (unsuccessful) simulation does not

exceed the resource bounds, since it is otherwise irrelevant which

response is ultimately given. For the hardness of this problem, we

observe that every problem inS(RT ,RS) is by definition solvable by
an S(RT ,RS)-machine, hence the straightforward reduction from

any such problem to S(RT ,RS)-Halting consists of taking the

input i and passing it along to S(RT ,RS)-Halting accompanied

by a particular S(RT ,RS)-machine which decides the problem. □

However, for particular assignments of RT we can actually re-

place the Turing machine by a spiking neural network and still

end up with a complete (promise) problem. We will illustrate this

construction for RT being linear time (and space); the same result

also holds for RT corresponding to P and L under polynomial-time

and logspace reductions respectively.

S((O(n),O(n)),RS)-Network Halting

Instance: Network S along with input string i .
Promise: S terminates within resource bounds RS expressed as a

function of |i |.
Question: Does S accept?

Theorem 4.3. S((O(n),O(n)),RS)-Network Halting is com-
plete under linear-time reductions for the promise version of
S((O(n),O(n)),RS).

Proof. Membership follows from the observation that a Turing

machine can in linear time discard the input string |i |, such that

what it is left with is a network promised to be RS -constrained that
accepts precisely whenS does as it isS itself. To prove hardness we

reduce S((O(n),O(n)),RS)-Halting to S((O(n),O(n)),RS)-Net-
work Halting. Let (M, i) be an instance of the former. By simu-

lating the application of M on i and replacing it with the resulting

network Si (which by the promise can be done in linear time), we

obtain an instance (Si , i) of S((O(n),O(n)),RS)-Network Halt-

ing where the promise for Si is inherited from that for M and the

decision of Si is that ofM on i by definition. □

This completeness result shows that for those choices of RT that

we were likely to consider anyways (cf. the remark at the beginning

of this section) we are justified in taking spiking neural networks

2
This construction is similar to the one required for the class BPP associated with

probabilistic Turing machines.

as computationally primitive in a sense relevant for our treatment.

In particular, this allows us to round off our discussion by exploring

the interactive model of neuromorphic computation.

4.2 Interactive computation
We will formalize the interactive model of neuromorphic compu-

tation in terms of Turing machines equipped with an oracle for

the relevant class of spiking neural networks. This involves aug-

menting a deterministic Turing machine with a query tape, an
oracle-query state, and an oracle-result state. We can then select

the problem S(RT ,RS)-Network Halting for our choice of RT
and RS to serve as an oracle to our machine. Now when a machine

with such an oracle enters the oracle-query state with (S, i) on its

query tape it proceeds to the oracle-result state, at which point it

will replace the contents with 1 if S accepts and with 0 if S rejects

(given that the promise holds; the outcome otherwise returned is

unspecified). With a slight abuse of notation, we can thus define

M(RT ′)S(RT ,RS) to be the class of decision problems that can be

solved by a Turing machine with resource constraints RT ′ equipped

with an oracle for S(RT ,RS)-Network Halting. It follows imme-

diately that M(RT ′)S(RT ,RS) is a superclass of S(RT ′,RS), though
again the exact relations between these two kinds of classes and

between these neuromorphic complexity classes and the classical

complexity classes remain to be determined. In closing we can how-

ever offer an example of a potential use for the interactive model

of neuromorphic computation.

Example 4.4. Suppose we are interested in the behavior of P-
complete problems on neuromorphic oracle Turingmachines. Given

that such problems are assumed to be inherently serial and cannot

be computed with only a logarithmic amount of working memory,

one might suggest to look at a suitable trade-off between compu-

tations on a regular machine and on a neuromorphic device. One

way of doing this would be to constrain the working memory for

the Turing machine to be logarithmic in the input size, so that

M(RT) characterizes the complexity class L. Then if all resources

RS are linear in the size of the input, we obtain the complexity class

LS(O(n),O(n),O(n))
. In a related paper we will show that indeed the

P-complete Network Flow problem resides in this class [1].

5 CONCLUSION
In this paper we proposed a machine model to assess the potential

of neuromorphic architectures with energy as a vital resource in

addition to time and space. We introduced a hierarchy of computa-

tional complexity classes relative to these resources and provided

some first structural results and canonical complete problems for

these classes. It is important to note that these results are largely

independent of the exact definition of a spiking neural network that

is used, so that it is still an open question how variations therein

translate to the complexity level.

We already hinted at other future structural complexity work,

most urgently on the role of energy as explicit dimension of analysis.

Particular challenges include identifying general examples of an

asymptotic tradeoff between time and energy, and determining

whether there exists an energy analogue of the time complexity

hierarchy. Of further importance is a notion of amortization of

resources that is crucial when considering local changes to the

Complexity of SNNs Conference’17, July 2017, Washington, DC, USA

network, such as adapting the weights when learning, or when

using a network with a set of spike trains rather than recreating

everything from scratch.

In addition to furthering our understanding of the structural

aspects, the more applied work of populating the associated classes

with natural problems using neuromorphic algorithms, along with

deriving concrete hardness results for these problems, should be

high on the agenda for the neuromorphic research community.

REFERENCES
[1] A. Ali and J. Kwisthout. in preparation. A Neural Spiking Algorithm for Network

Flow Problems. Technical Report. Radboud University.

[2] J. Backus. 1978. Can programming be liberated from the Von Neumann style? A

functional style and its algebra of programs. Commun. ACM 21, 8 (1978), 613–641.

[3] G. Indiveri et al. 2011. Neuromorphic silicon neuron circuits. Frontiers in Neuro-
science 5 (2011), 73.

[4] A. Graves, G. Wayne, and I. Danihelka. 2014. Neural Turing Machines.

arXiv:1410.5401. (2014).

[5] J. Hartmanis and R.E. Stearns. 1965. On the computational complexity of algo-

rithms. Trans. Amer. Math. Soc. 117 (1965), 285–306.
[6] Y. Haxhimusa, I. van Rooij, S. Varma, and H. T.Wareham. 2014. Resource-bounded

Problem Solving (Dagstuhl Seminar 14341). In Dagstuhl Reports, Vol. 4(8). DOI:

http://dx.doi.org/10.4230/DagRep.4.8.45

[7] J. L. Hennessy and D. A. Patterson. 2011. Computer architecture: a quantitative
approach (5th ed.). Morgan Kaufmann.

[8] M. Davies et al. 2018. Loihi: A neuromorphic manycore processor with on-chip

learning. IEEE Micro 38, 1 (2018), 82–99.
[9] W. Maass. 1996. Lower bounds for the computational power of networks of

spiking neurons. Neural Computation 8 (1996), 1–40.

[10] W. Maass. 2014. Noise as a resource for computation and learning in networks

of spiking neurons. Proc. IEEE 102, 5 (2014), 860–880.

[11] C. Mead. 1990. Neuromorphic electronic systems. Proc. IEEE 78, 10 (1990),

1629–1636.

[12] G. E. Moore. 1975. Progress in digital integrated electronics. In Proceedings of the
1975 International Electron Devices Meeting, W. Holton (Ed.).

[13] W. Severa, O. Parekh, K.D. Carlson, C.D. James, and J.B. Aimone. 2016. Spiking net-

work algorithms for scientific computing. In Proceedings of the IEEE International
Conference on Rebooting Computing (ICRC).

[14] J. M. Shalf and R. Leland. 2015. Computing beyond Moore’s Law. Computer 48,
12 (2015), 14–23.

[15] T. Potok et al. 2016. Neuromorphic computing: Architectures, models, and ap-
plications. A Beyond-CMOS approach to future computing. DoE workshop report.
Technical Report. Oak Ridge National Laboratory.

[16] K. Uchizawa, T. Nishizeki, and E. Takimoto. 2009. Energy complexity and depth

of threshold circuits. In Proceedings of the 17th International Conference on Fun-
damentals of Computation Theory, M. Kutylowski, W. Charatonik, and M. Gebala

(Eds.). 335–345.

http://dx.doi.org/10.4230/DagRep.4.8.45

	Abstract
	1 Introduction
	2 Machine model
	2.1 Spiking neural network model
	2.2 Canonical problems

	3 Resources
	3.1 Clock and meter

	4 Structural complexity
	4.1 Completeness for S(RT,RS)
	4.2 Interactive computation

	5 Conclusion
	References

