On the computational power and complexity of Spiking Neural
Networks

Johan Kwisthout*

Nils Donselaar’
j.kwisthout@donders.ru.nl
n.donselaar@donders.ru.nl

Donders Institute for Brain, Cognition, and Behaviour
Nijmegen

ABSTRACT

The last decade has seen the rise of neuromorphic architectures
based on artificial spiking neural networks, such as the SpiNNaker,
TrueNorth, and Loihi systems. The massive parallelism and co-
locating of computation and memory in these architectures poten-
tially allows for an energy usage that is orders of magnitude lower
compared to traditional Von Neumann architectures. However, to
date a comparison with more traditional computational architec-
tures (particularly with respect to energy usage) is hampered by the
lack of a formal machine model and a computational complexity
theory for neuromorphic computation. In this paper we take the
first steps towards such a theory. We introduce spiking neural net-
works as a machine model where—in contrast to the familiar Turing
machine—information and the manipulation thereof are co-located
in the machine. We introduce canonical problems, define hierar-
chies of complexity classes and provide some first completeness
results.

CCS CONCEPTS

« Theory of computation — Abstract machines; Problems,
reductions and completeness.

KEYWORDS

neuromorphic computation, spiking neural networks, structural
complexity theory

ACM Reference Format:

Johan Kwisthout and Nils Donselaar. 2020. On the computational power and
complexity of Spiking Neural Networks. In Proceedings of ACM Conference
(Conference’17). ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

“Supported by a grant from Intel Corporation.
Supported by NWO grant 612.001.601.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Moore’s law [12] stipulates that the number of transistors in inte-
grated circuits (ICs) doubles about every two years. With transistors
becoming faster IC performance doubles every 18 months, at the
cost of increased energy consumption as transistors are added [14].
Moore’s law is slowing down and is expected! to end by 2025.
Traditional (“Von Neumann”) computer architectures separate com-
putation and memory by a bus, requiring both data and algorithm
to be transferred from memory to the CPU with every instruction
cycle. This has been described, already in 1978, as the Von Neu-
mann bottleneck [2]. While CPUs have grown faster, transfer speed
and memory access lagged behind [7], making this bottleneck an
increasingly difficult obstacle to overcome.

In summary, while more data than ever before is produced, we
are simultaneously faced with the end of Moore’s law, limited per-
formance due to the Von Neumann bottleneck, and an increasing
energy consumption (with corresponding carbon footprint) [15].
These issues have accelerated the development of several genera-
tions of so-called neuromorphic hardware [3, 8, 11]. Inspired by the
structure of the brain (largely parallel computations in neurons, low
power consumption, event-driven communication via synapses)
these architectures co-locate computation and memory in artifi-
cial (spiking) neural networks. The spiking behavior allows for
potentially energy-lean computations [10] while still allowing for
in principle any conceivable computation [9]. However, we do not
yet fully understand the potential (and limitations) of these new ar-
chitectures. Benchmarking results are suggesting that event-driven
information processing (e.g. in neuromorphic robotics or brain-
computer-interfacing) and energy-critical applications might be
suitable candidate problems, whereas ‘deep’ classification and pat-
tern recognition (where spiking neural networks are outperformed
by convolutional deep neural networks) and applications that value
precision over energy usage may be less natural problems to solve
on neuromorphic hardware. Although several algorithms have been
developed to tackle specific problems, there is currently no insight
in the potential and limitations of neuromorphic architectures.

The emphasis on energy as a vital resource, in addition to the
more traditional time and space, suggests that the traditional models
of computation (i.e., Turing machines and Boolean circuits) and the
corresponding formal machinery (reductions, hardness proofs, com-
plete problems etc.) are ill-matched to capture the computational
power of spiking neural networks. What is lacking is a unifying
computational framework and structural complexity results that

Uhttps://www.economist.com/technology-quarterly/2016-03-12/after-moores-law.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://www.economist.com/technology-quarterly/2016-03-12/after-moores-law

Conference’17, July 2017, Washington, DC, USA

can demonstrate what can and cannot be done in principle with
bounded resources with respect to convergence time, network size,
and energy consumption [6]. Previous work is mostly restricted
to variations of Turing machine models within the Von Neumann
architecture [4] or energy functions defined on threshold circuits
[16] and as such unsuited for studying spiking neural networks.
This is nicely illustrated by the following quote:

“It is ... likely that an entirely new computational the-
ory paradigm will need to be defined in order to en-
compass the computational abilities of neuromorphic
systems” [15, p.29]

In this paper we propose a model of computation for spiking
neural network-based neuromorphic architectures and lay the foun-
dations for a neuromorphic complexity theory. In Section 2 we will
introduce our machine model in detail. In Section 3 we further
elaborate on the resources time, space, and energy relative to our
machine model. In Section 4 we will explore the complexity classes
associated with this machine model and derive some basic struc-
tural properties and hardness results. We conclude the paper in
Section 5.

2 MACHINE MODEL

In order to abstract away from the actual computation on a neuro-
morphic device, in a similar vein as the Turing machine acts as an
abstraction of computations on traditional hardware architectures,
we introduce a novel notion of computation based on spiking neural
networks. We will first elaborate on the network model and then
proceed to translate that to a formal machine model.

2.1 Spiking neural network model

We will first introduce the specifics of our spiking neural network
model, which is a variant of the leaky integrate-and-fire model
introduced by Severa and colleagues at Sandia National Labs [13].
This model defines a discrete-timed spiking neural network as a
labeled finite digraph S = (N, S) comprised of a set of neurons N
as vertices and a set of synapses S as arcs. Every neuron k € N is a
triple (Tx. € Qx0, R € Qx0, my € [0, 1]) representing respectively
threshold, reset voltage, and leakage constant, while a synapse
s € Sis ad4-tuple (k € N,l € N,d € N5g,w € Q) for the pre-
synaptic neuron, post-synaptic neuron, synaptic delay and weight
respectively. We will use notation S ; = (d, w) as a shorthand to
refer to specific synapses and shorthands di; and wy; to refer to
the synaptic delay and weight of a specific synapse.

The basic picture is thus that any spikes of a neuron k are carried
along outgoing synapses Sy ; to serve as inputs to the receiving
neurons [. The behavior of a spiking neuron k at time ¢ is typi-
cally defined using its membrane potential uy(t) = mpug(t — 1) +
2j wjkxj(t — dji) + by which is the integrated weighted sum of
the neuron’s inputs (taking into account synaptic delay) plus an
additional bias term. Whether a neuron spikes or not at any given
time is dependent on this membrane potential, either determinis-
tically (i.e., the membrane potential acts as a threshold function
for the spike) or stochastically (i.e., the probability of a spike being
released is proportional to the potential); in this paper we assume
deterministic spike responses. A spike x(t) is abstracted here to
be a singular discrete event, that is, x4 (¢) = 1 if a spike is released

Johan Kwisthout and Nils Donselaar

(R=1)
(T =K)

D
&

Figure 1: Notational conventions for (top to bottom on the
left) a regular neuron, a programmed neuron, dedicated no-
tation for programmed neurons firing once at timestep t = 0,
and dedicated acceptance and rejection neurons. To the right
we show simple circuits realizing a continuously firing neu-
ron, a clock neuron firing every K time steps, and a temporal
representation of a natural number n < K relative to a clock.

by neuron x; at time ¢ and xx(t) = 0 otherwise. Figure 2 gives an
overview of this spiking neuron model.

One can also define the spiking behavior of a neuron program-
matically rather than through its membrane potential, involving
so-called spike trains, i.e. predetermined spiking schedules. Im-
portantly, such neurons allow for a means of providing the in-
put to a spiking neural network. Furthermore, for regular (non-
programmed) neurons the bias term can be replaced by an appro-
priately weighted connection stemming from a continuously firing
programmed neuron; for convenience this bias term will thus be
omitted from the model. Figure 1 introduces our notational conven-
tions that we use for graphically depicting networks, along with a
few simple networks as an illustration. As a convention, unless oth-
erwise depicted, neuron and synapse parameters have their default
valuesR=0andT=m=d=w=1.

For every spiking neural network S we require the designation
of two specific neurons as the acceptance neuron N, and the re-
jection neuron Nyej. The idea is that the firing of the corresponding
neuron signifies acceptance and rejection respectively, at which
point the network is brought to a halt. In the absence of either one
of those neurons, we can impose a time constraint and include a
new neuron which fires precisely when Nacc or Nej (whichever is
present) did not fire within time, thus adding the missing counter-
part. In this way, we ensure that this model is a specific instantiation
of Wolfgang Maass’ generic spiking neural network model that was
shown to be Turing complete [9]; hence, these spiking neural net-
works can in principle (when provided the necessary resources)
compute anything a Turing machine can. More interesting is the
question whether we can design smart algorithms that minimize
the use of resources, for example, minimize energy usage within
given bounds on time and network size. In order to answer this
question we need to define a suitable formal abstraction of what
constitutes a computational problem on a spiking neural network.

Complexity of SNNs

.Il(t — dlk)

l’g(t — ko)

W3k
xg(t—dgk)//g"

l‘m(t — dmk)

v (t) _ max((), Ry + Z]' wjka:]-(t — d]k))
k max (0, mypuy(t — 1) + >, wikx;(t — dji;)) otherwise.

Conference’17, July 2017, Washington, DC, USA

x(t+ dig)

if uk(t - 1) Z Tk;

Ry, = reset voltage, T}, = threshold, my = leakage constant

() :{ L

0 otherwise.

Figure 2: A spiking neuron model with deterministic spiking behavior, describing the membrane potential u(t) of a leaky
integrate-and-fire neuron k over time, based on the integrated weighted sum of incoming post-synaptic potentials. We enforce
that the membrane potential is non-negative. Spikes are emitted when the membrane potential reaches its threshold and arrive

at post-synaptic neurons [with synaptic delay di;.

2.2 Canonical problems

Canonical computational problems on Turing machines typically
take the following form: “Given machine M and input i on its tape,
does M accept i using resources at most R”? Here, L is the language
that M should accept, and the job of M is to decide whether i € L.
To translate such problems to a spiking neural network model one
needs to define the machine model S, the resources R that S may
use, how the input i is encoded and what it means for S to accept
the input i using resources R.

This is a non-trivial problem. In a Turing machine the input is
typically taken to be encoded in binary notation and written on
the machine’s tape, while the algorithm for accepting inputs i is
represented by the state machine of M. However, in spiking neural
networks both the problem input and the algorithm operating on
it are encoded in the network structure and parameters. While
the most straightforward way of encoding the input is through
programming a spike train on a set of input neurons, in some cases
it might be more efficient to encode it otherwise, such as at the level
of synaptic weights or even delays. In that sense a spiking neural
network is different from both a Turing machine and a family of
Boolean circuits as depicted in Table 1.

Hence, we introduce a novel computational abstraction, suitable
for describing the behavior of neuromorphic architectures based on
spiking neural networks. We postulate that a network S; encodes
both the input i and the algorithm deciding whether i € L. What
it means to decide a problem L using a spiking neural network
now becomes the following: that there is an Ry-resource-bounded
Turing machine M that generates a spiking neural network S; for
every input i, such that S; decides whether i € L using resources at
most Rg. Note that in this definition the workload is shared between
the Turing machine M and the network S;, and that the definition
naturally allows for trading off generality of the network (accepting
different inputs by the same network) and generality of the machine

(generating different networks for each distinct input), with the
traditional Turing machine and family of Boolean circuits being
special cases of this trade-off. We can informally see the Turing
machine M as a sort of pre-processing computation generating the
spiking neural network S; and then deferring the actual decision to
accept or reject the input to this network. We will use the notation
S(RT, Rs) to refer to the class of decision problems that can be
decided in this way.

There is typically a trade-off between generality and efficiency
of a network. Figure 3 provides a simple comparison between three
implementations of the ARRAY SEARCH-problem: given an array
A of integers and a number i, does A contain i? Note that in the
rightmost example a ‘circuit approach’ is emulated. There is no
straightforward way to simulate the entire computation for arrays
of arbitrary size in the network other than simulating the behaviour
of the machine and its input as per the proof in [9].

In addition to the ‘pre-processing’ model we can also allow an
iterative interaction between M and an oracle capable of deciding
whether a spiking neural network S accepts, such that the computa-
tion carried out by M is interleaved with oracle calls whose results
can be acted on accordingly. Before we can properly define this in-
teractive model of neuromorphic computation, we will first discuss
the class S(RT, Rs) in further detail. In Section 4 we will cover the
formal aspects involved in these definitions; we start by considering
the resources that we wish to allocate to these machines.

3 RESOURCES

We denote the resource constraints of the Turing machine with the
tuple Rt = (TIME, SPACE). We allow the decision of the network
to take resources Rg; this can be further specified to be a tuple
Rs = (TIME, SPACE, ENERGY), referring to the number of time
steps S; may use, the total network size |S;|, and total number
of spikes that S; is allowed to use, all as a function of the size of
the input i. Note that in practice ENERGY < TIME x SPACE since

Conference’17, July 2017, Washington, DC, USA

Johan Kwisthout and Nils Donselaar

Character of de- | Input representation i Resources R Canonical problem Q
vice(s)
Turing Ma- | One machine | Input is presented on the ma- | Time, size of the tape, transition | Does M decide whether i € L
chine M deciding all | chine’s tape. properties, acceptance criteria. | using resources at most R?
instances i.
Family of | One circuit for | Input is represented as special | Circuit size and depth, size and | Does, for each i, the correspond-
Boolean every input size | gates. fan-in of the gates. ing circuit Cj;| decide whether
circuits Cp;) | li]- i € L using resources at most R?
Collection | One network | Input is encoded in the network | Network size, time to conver- | Is there a resource-bounded Tur-
of SNNs S; | for every input i | structure and/or presented as | gence, total number of spikes. ing Machine M that, given i,
or set of inputs | spike trains on input neurons. generates (using resources RT)
{it,--sim}. S; which decides whether i € L
using resources at most Rg?

Table 1: Overview of machine models: Turing machines, Boolean circuits, and families of spiking neural networks.

T=2

r=2 (c) Both the value i and the array A offered to

(a) All computation in the network (b) The value i offered to the network as input the network as input

Figure 3: Three spiking neural networks designed to decide whether an array A of natural numbers contains i. Note that in
network 3a both A and i as well as the parallel comparison are encoded in the network; in network 3b the search value i is
offered as input (using a spike train consisting of a single spike with delay i), and in network 3c both the search value and the
integers in the array are offered as input to the network, while the size of the array is fixed. The number of spikes used in the

computation is respectively < |n| +2, < |n| + 3, and < 2|n| + 2; the generality of the network increases but this comes at the prize

of the increasing number of spikes in the computation.

any neuron can fire at most once per time step. Furthermore, note
that similarly SPACE is upper bounded by Rr, as for example we
cannot in polynomial time construct a network with an exponential
number of neurons. We assume in the remainder that the constraints
can be described by their asymptotic behavior, and in particular
that they are closed under scalar and additive operations; we will
describe Rt and Rs as being well-behaved if they adhere to this
assumption. (To clarify, here we restrict ourselves to considering
only deterministic resources for both R and Rg, just as we consider
only deterministic membrane potential functions.)

Observe that we really need the pre-processing to be part of the
definition of the model for neuromorphic computation to meaning-
fully define resource-bounded computations, as we are allowed in
principle to define a unique network per instance i. Otherwise, the
mapping between i and S; could be the trivial and uninformative

mapping:

ifiel;
otherwise.

A (N{acc}’g)
Si:
RER R

3.1 Clock and meter

According to a classical and generally known result (see [5]) one
can for any Turing machine M provide an equivalent machine M’
which effectively has access to a clock and a ruler, such that M’ en-
ters the rejection state immediately when these bounds are violated,
using overhead which is typically negligible from a complexity per-
spective. As a consequence one is often allowed to work under the
assumption that Turing machines possess such clocks and rulers,
as we shall also do here for convenience. To demonstrate the power
of the spiking neural network model under consideration, we show
that it is similarly possible to build into a spiking neural network
S both a meter to monitor energy usage as well as a timer which
counts down the allotted time steps. However, as these components

Complexity of SNNs

are not relevant for our subsequent results, we will not treat them
as part of our baseline assumption. Given an upper bound e on
the number of spikes, we can construct an energy counter neu-
ron E = (e, e, 1) with synapses S g = (1,1) for all k € N, and
SENye = (1= 2j 1WiNye 1) SE Ny = (1 TN + 2 [W)jN, |) Where
applicable. This ensures that if at some time step the permitted num-
ber of spikes has been reached without accepting or rejecting (which
itself involves a spike from the corresponding neuron), from the
next time step on the energy counter will inhibit the acceptance neu-
ron and excite the rejection neuron if present. Along similar lines,
given an upper bound ¢ on the number of time steps, we can include
a programmed timer neuron T = (1,0, 1) which fires once at the
first time step, along with synapses St n,.. = (t + 1, = 2 [WjN,.),
and St, Nej = (t + 1, TN, + Xj |WjN,.|) where applicable (Figure
4). Observe that these constructions add only two neurons, a pro-
portionate number of synapses, and (in the presence of a rejection
neuron) only a few additional spikes expended, hence the network
size and in particular its construction time remain the same asymp-
totically.

Figure 4: Adding a timer and a meter to an arbitrary spiking
neural network

4 STRUCTURAL COMPLEXITY

Now that we have specified what we mean by the resources Rt
and Rg, it is time to take a closer look at the class S(RT, Rs), start-
ing with some initial observations. To begin with, it makes little
sense to allow the pre-processing to operate with at least as much
resources as the spiking neural network, since otherwise the exe-
cution of the spiking neural network can be simulately classically;
this remark is illustrated in Theorem 4.1 below. For this reason we
typically choose Rt to be only polynomial time and polynomial or
even logarithmic space, corresponding to the classes P and L respec-
tively. When the constraints Rt are such that M(RT) characterizes
familiar complexity classes we will use the common notation for
that class from here on; as an abuse of notation we will also use
this notation as a shorthand for the resources Rt themselves.

Conference’17, July 2017, Washington, DC, USA

THEOREM 4.1. S(P,Rs) = P whenever Rg involves at most poly-
nomial time constraints.

Proor. As P € S(P,Rs) is obvious, we focus on proving the
inclusion in the other direction. The crucial observation is that for
a Turing machine with polynomial time constraints it is impossible
to construct a larger than polynomial network, rendering the space
constraints actually imposed moot. Recalling our earlier observa-
tion that the energy consumption of a spiking neural network is
upper bounded in terms of (the product of) its size and time con-
straints, this implies that the spiking neural network constructed is
effectively polynomially bounded (or worse) on all resources. Now
it suffices to show that a deterministic Turing machine can simulate
in polynomial time the execution of a spiking neural network of
polynomial size for at most polynomial time. This can be done by
explicitly iterating over the neurons for every time step, determin-
ing whether they fire and scheduling the transmission of this spike
along the outgoing synapses, until the network terminates or the
time bounds are reached. By thus absorbing the decision proce-
dure carried out by the network into the classical polynomial-time
computation carried out by the machine we arrive at the stated
inclusion. O

This theorem serves as a reminder that spiking neural networks
are no magical devices: while there is a potential efficiency gain,
mostly in terms of energy usage relative to computations on tradi-
tional hardware (only), neuromorphic computations with at most
polynomial time constraints cannot achieve more than their clas-
sical counterparts. It remains to be determined to what extent the
classes S(RT, Rs) exhibit any hierarchical behavior based on the
constraints Rg: in particular, it is still unclear whether there is an
energy hierarchy analogous to the classical time hierarchy. We can
however note that for well-defined resource contraints the classes
S(RT, Rs) are closed under operations such as intersection and
complement, since spiking neural networks themselves are, so that
decision procedures can be adjusted or combined at the network
level.

Observe that using different resource constraints Ry and Rg
we can define a lattice of complexity classes S(RT, Rg), including
such degenerate cases as S((O(1), O(1)), Rs) where the constructed
network is only finitely dependent on the actual input (and thus can
be constructed in constant time), and S(Rt, (O(1), 0(1),0(1))) =
M(RT). It is therefore natural to consider the notions of reduction
and hardness in this context, which is what we will do next.

4.1 Completeness for S(Rr, Rs)

In order to arrive at a canonical complete problem for the class
S(RT, Rs), it makes sense to consider the analogy with other models
of computation, where one asks whether the given procedure (be
it machine, circuit or otherwise) accepts the provided input. Since
even for the class S(RT, Rg) it is not a spiking neural network but
a Turing machine which controls how the input is handled, the
resulting candidate for a complete problem for this class will involve
the latter and not the former. This means that to distinguish this
problem from its classical equivalent we must include the promise
that the Turing machine is indeed of the kind associated with the
class S(RT, Rs), in that it generates an Rg-bounded spiking neural

Conference’17, July 2017, Washington, DC, USA

network using resources RTZ. In other words, we claim that the
following problem is complete under polynomial-time reductions
for the promise version of the class S(RT, Rs).

S(RT, Rs)-HALTING

Instance: Turing machine M along with input string i.
Promise: M is an S(RT, Rg)-machine.

Question: Does M accept i?

THEOREM 4.2. S(RT, Rs)-HALTING is complete under polynomial-
time reductions for the promise version of S(Rt, Rs).

ProOF. Membership of this problem is established as follows:
with a universal S(R7, Rg) machine one can take the machine
M and simulate it on the input i. If the machine M is indeed an
S(RT, Rs) machine as per the promise, then this simulation will
succeed within the permitted resource bounds and we can simply
return the answer given by M. In case the promise fails to hold,
we only need to ensure that the (unsuccessful) simulation does not
exceed the resource bounds, since it is otherwise irrelevant which
response is ultimately given. For the hardness of this problem, we
observe that every problem in S(Rt, Rs) is by definition solvable by
an S(RT, Rs)-machine, hence the straightforward reduction from
any such problem to S(Rr, Rs)-HALTING consists of taking the
input i and passing it along to S(Rt, Rs)-HALTING accompanied
by a particular S(RT, Rg)-machine which decides the problem. O

However, for particular assignments of R we can actually re-
place the Turing machine by a spiking neural network and still
end up with a complete (promise) problem. We will illustrate this
construction for Rt being linear time (and space); the same result
also holds for Rt corresponding to P and L under polynomial-time
and logspace reductions respectively.

S((O(n), O(n)), Rs)-NETWORK HALTING

Instance: Network S along with input string i.

Promise: S terminates within resource bounds Rg expressed as a
function of [i|.

Question: Does S accept?

THEOREM 4.3. S((O(n), O(n)), Rs)-NETWORK HALTING is com-
plete under linear-time reductions for the promise version of

S((O(n), O(n)), Rs).

ProoOF. Membership follows from the observation that a Turing
machine can in linear time discard the input string [i|, such that
what it is left with is a network promised to be Rg-constrained that
accepts precisely when S does as it is S itself. To prove hardness we
reduce S((O(n), O(n)), Rs)-HALTING to S((O(n), O(n)), Rs)-NET-
WORK HALTING. Let (M, i) be an instance of the former. By simu-
lating the application of M on i and replacing it with the resulting
network S; (which by the promise can be done in linear time), we
obtain an instance (S, i) of S((O(n), O(n)), Rs)-NETWORK HALT-
ING where the promise for S; is inherited from that for M and the
decision of S; is that of M on i by definition. |

This completeness result shows that for those choices of Rt that
we were likely to consider anyways (cf. the remark at the beginning
of this section) we are justified in taking spiking neural networks

2This construction is similar to the one required for the class BPP associated with
probabilistic Turing machines.

Johan Kwisthout and Nils Donselaar

as computationally primitive in a sense relevant for our treatment.
In particular, this allows us to round off our discussion by exploring
the interactive model of neuromorphic computation.

4.2 Interactive computation

We will formalize the interactive model of neuromorphic compu-
tation in terms of Turing machines equipped with an oracle for
the relevant class of spiking neural networks. This involves aug-
menting a deterministic Turing machine with a query tape, an
oracle-query state, and an oracle-result state. We can then select
the problem S(Rt, Rs)-NETWORK HALTING for our choice of Rt
and Rg to serve as an oracle to our machine. Now when a machine
with such an oracle enters the oracle-query state with (S, i) on its
query tape it proceeds to the oracle-result state, at which point it
will replace the contents with 1 if S accepts and with 0 if S rejects
(given that the promise holds; the outcome otherwise returned is
unspecified). With a slight abuse of notation, we can thus define
MRy)SRT:Rs) t0 be the class of decision problems that can be
solved by a Turing machine with resource constraints R7» equipped
with an oracle for S(RT, Rs)-NETWORK HALTING. It follows imme-
diately that M(RTr)S<RT’R5)isa superclass of S(R7/, Rs), though
again the exact relations between these two kinds of classes and
between these neuromorphic complexity classes and the classical
complexity classes remain to be determined. In closing we can how-
ever offer an example of a potential use for the interactive model
of neuromorphic computation.

Example 4.4. Suppose we are interested in the behavior of P-
complete problems on neuromorphic oracle Turing machines. Given
that such problems are assumed to be inherently serial and cannot
be computed with only a logarithmic amount of working memory,
one might suggest to look at a suitable trade-off between compu-
tations on a regular machine and on a neuromorphic device. One
way of doing this would be to constrain the working memory for
the Turing machine to be logarithmic in the input size, so that
M(RT) characterizes the complexity class L. Then if all resources
Rg are linear in the size of the input, we obtain the complexity class
LS(0(n).0(n).0(n)) 1n 4 related paper we will show that indeed the
P-complete NETWORK FLow problem resides in this class [1].

5 CONCLUSION

In this paper we proposed a machine model to assess the potential
of neuromorphic architectures with energy as a vital resource in
addition to time and space. We introduced a hierarchy of computa-
tional complexity classes relative to these resources and provided
some first structural results and canonical complete problems for
these classes. It is important to note that these results are largely
independent of the exact definition of a spiking neural network that
is used, so that it is still an open question how variations therein
translate to the complexity level.

We already hinted at other future structural complexity work,
most urgently on the role of energy as explicit dimension of analysis.
Particular challenges include identifying general examples of an
asymptotic tradeoff between time and energy, and determining
whether there exists an energy analogue of the time complexity
hierarchy. Of further importance is a notion of amortization of
resources that is crucial when considering local changes to the

Complexity of SNNs

network, such as adapting the weights when learning, or when
using a network with a set of spike trains rather than recreating
everything from scratch.

In addition to furthering our understanding of the structural
aspects, the more applied work of populating the associated classes
with natural problems using neuromorphic algorithms, along with
deriving concrete hardness results for these problems, should be
high on the agenda for the neuromorphic research community.

REFERENCES

[1] A. Aliand J. Kwisthout. in preparation. A Neural Spiking Algorithm for Network
Flow Problems. Technical Report. Radboud University.

[2] J. Backus. 1978. Can programming be liberated from the Von Neumann style? A
functional style and its algebra of programs. Commun. ACM 21, 8 (1978), 613-641.

[3] G.Indiveri et al. 2011. Neuromorphic silicon neuron circuits. Frontiers in Neuro-
science 5 (2011), 73.

[4] A. Graves, G. Wayne, and L. Danihelka. 2014. Neural Turing Machines.
arXiv:1410.5401. (2014).

[5] J. Hartmanis and R.E. Stearns. 1965. On the computational complexity of algo-
rithms. Trans. Amer. Math. Soc. 117 (1965), 285-306.

[6] Y.Haxhimusa, I van Rooij, S. Varma, and H. T. Wareham. 2014. Resource-bounded
Problem Solving (Dagstuhl Seminar 14341). In Dagstuhl Reports, Vol. 4(8). DOI :

Conference’17, July 2017, Washington, DC, USA

http://dx.doi.org/10.4230/DagRep.4.8.45

[7] J. L. Hennessy and D. A. Patterson. 2011. Computer architecture: a quantitative
approach (5th ed.). Morgan Kaufmann.

[8] M. Davies et al. 2018. Loihi: A neuromorphic manycore processor with on-chip
learning. IEEE Micro 38, 1 (2018), 82-99.

[9] W. Maass. 1996. Lower bounds for the computational power of networks of
spiking neurons. Neural Computation 8 (1996), 1-40.

[10] W. Maass. 2014. Noise as a resource for computation and learning in networks
of spiking neurons. Proc. IEEE 102, 5 (2014), 860-880.

[11] C. Mead. 1990. Neuromorphic electronic systems. Proc. IEEE 78, 10 (1990),
1629-1636.

[12] G.E. Moore. 1975. Progress in digital integrated electronics. In Proceedings of the
1975 International Electron Devices Meeting, W. Holton (Ed.).

[13] W.Severa, O. Parekh, K.D. Carlson, C.D. James, and J.B. Aimone. 2016. Spiking net-
work algorithms for scientific computing. In Proceedings of the IEEE International
Conference on Rebooting Computing (ICRC).

[14] J. M. Shalf and R. Leland. 2015. Computing beyond Moore’s Law. Computer 48,
12 (2015), 14-23.

[15] T. Potok et al. 2016. Neuromorphic computing: Architectures, models, and ap-
plications. A Beyond-CMOS approach to future computing. DoE workshop report.
Technical Report. Oak Ridge National Laboratory.

[16] K. Uchizawa, T. Nishizeki, and E. Takimoto. 2009. Energy complexity and depth
of threshold circuits. In Proceedings of the 17th International Conference on Fun-
damentals of Computation Theory, M. Kutylowski, W. Charatonik, and M. Gebala
(Eds.). 335-345.

http://dx.doi.org/10.4230/DagRep.4.8.45

	Abstract
	1 Introduction
	2 Machine model
	2.1 Spiking neural network model
	2.2 Canonical problems

	3 Resources
	3.1 Clock and meter

	4 Structural complexity
	4.1 Completeness for S(RT,RS)
	4.2 Interactive computation

	5 Conclusion
	References

