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Abstract
Typically, when one discusses approximation algorithms for (NP-hard) problems (like TRAVELING SALES-
PERSON, VERTEX COVER, KNAPSACK), one refers to algorithms that return a solution whose value is (at
least ideally) close to optimal; e.g., a tour with almost minimal length, a vertex cover of size just above
minimal, or collection of objects that has close to maximal value. In contrast, one might also be interested
in approximations algorithms that return solutions that resemble the optimal solutions, i.e., whose struc-
ture is akin to the optimal solution, like a tour that is almost similar to the optimal tour, a vertex cover
that differs in only a few vertices from the optimal cover, or a collection that is similar to the optimal
collection. In this paper, we discuss structure-approximation of the problem of finding the most probable
explanation of observations in Bayesian networks, i.e., finding a joint value assignment that looks like the
most probable one, rather than has an almost as high value. We show that it is NP-hard to obtain the value
of just a single variable of the most probable explanation. However, when partial orders on the values of
the variables are available, we can improve on these results.

1 Introduction
A key computational problem in Bayesian networks [17] is the computation of the most probable explanation
(MPE) of a set of observed phenomena; i.e., given a Bayesian network whose variables are partitioned into
an evidence set E with observed joint value assignment e and an explanation set M, determine the joint
value assignment m to the explanation set M such that Pr(M = m,E = e) is maximal. This problem,
also called Bayesian abduction, is a key component in many decision support systems like [15, 21], in many
Bayesian models of cognition, for example intention recognition [2] or recipient design [22], as well as in
various models of sociological [19] or economical [8] processes.

Unfortunately, computing the MPE is in general NP-hard [13, 3, 18] and remains NP-hard when the
most probable explanation is to be approximated rather than exactly computed. In particular it is NP-
hard to find a joint value assignment whose probability is within a fixed ratio of the most probable joint
value assignment [1] and it is even NP-hard to find a joint value assignment that has a non-zero probability
[13]. However, these formal notions of approximation focus on the value of the explanation, i.e., the goal
is to find an explanation whose probability is ‘close’ to the probability of the most probable explanation.
Sometimes we may not be primarily interested in finding explanations with an almost-as-high probability,
but rather in explanations that are quite similar to the most probable explanation, that is, they look like
the most probable explanation. For example, in cognitive science, one’s goal is to describe, model, and
predict human cognition. In such applications it is conceivable that we are most interested in approximating
structure, rather than value [16]; we will refer to this notion of approximation as structure approximation.

Preferably, of course, in many domains we would like to have an approximation that both resembles the
optimal solution and have an almost-as-high probability [4]. While it may well be the case that ‘good’ value
approximations sometimes have a similar structure as the optimal solution, this need not be the case, as we
will show in Section 2.3.

Structure approximation has its roots in computational complexity theory1[12, 6]. The relevance of
1Here it was called witness approximation, referring to the more general concept of a witness or certificate: a string that can be used

to verify membership in NP. Such a string may (but does not need to) encode an actual solution, such as a satisfying truth instantiation.



structure approximation, in particular in the context of the so-called Coherence Problem, was first suggested
by Millgram [16] and extensively studied in Hamilton et al. [9] and Van Rooij et al. [23]. In this paper we
further build on this work and discuss structure approximations of MPE2.

In the remainder of this paper, we will discuss some relevant preliminaries and definitions in Bayesian
networks and structure approximation in Section 2. In Section 3 we focus on structure-approximating MPE.
We discuss the computational complexity of structure approximation of MPE in general in Subsection 3.1,
and the effect of having an ordering of the variables in Subsection 3.2. In Section 4 we conclude this paper.

2 Preliminaries
In this section we introduce Bayesian networks and, more in particular, the problem of finding the most
probable explanation (MPE) for a subset of variables in the network, given observations for the other vari-
ables. For more background, the reader is referred to textbooks as [17, 10, 11] and overview papers as
[14, 13]. Furthermore, we introduce a formal definition of structure approximation, as presented in [9]. We
assume that the reader is familiar with basic notions in complexity theory, like NP-hardness proofs; for more
background, we refer to [7].

2.1 Bayesian networks and the MPE problem
A Bayesian or probabilistic network B is a graphical structure that models a set of stochastic variables, the
conditional independencies among these variables, and a joint probability distribution over these variables.
B includes a directed acyclic graph GB = (V,A), modeling the variables and conditional independencies
in the network, and a set of parameter probabilities Γ in the form of conditional probability tables (CPTs),
capturing the strengths of the relationships between the variables. The network models a joint probability
distribution Pr(V) =

∏n
i=1 Pr(Vi | π(Vi)) over its variables, where π(Vi) denotes the parents of Vi in GB.

We will use upper case letters to denote individual nodes in the network, upper case bold letters to denote
sets of nodes, lower case letters to denote value assignments to nodes, and lower case bold letters to denote
joint value assignments to sets of nodes. We will use E to denote a set of evidence nodes, i.e., a set of
nodes for which a particular joint value assignment e is observed; likewise, we will use M to denote a set of
nodes for which the explanation is sought. We will sometimes write Pr(x) as a shorthand for Pr(X = x)
if no ambiguity can occur. We denote with Ω(X) the set of all values that X can take; Ω(X) is defined
analogously for sets of variables.

Among other computational problems defined on Bayesian networks, one particularly interesting prob-
lem for many applications is the problem of determining the most probable explanation for some observa-
tions, i.e., the most probable joint value assignment to a subset of variables in the network, given evidence
for the other variables3. This problem is formally defined as follows [13].

MPE
Instance: A probabilistic network B = (GB,Γ), where V is partitioned into a set of evidence nodes E
with a joint value assignment e, and an explanation set M.
Output: argmaxmPr(m, e), i.e., the most probable joint value assignment m to the nodes in M and
evidence e, or the designated symbol ⊥ if Pr(m, e) = 0 for every joint value assignment m to M.

MPE is intractable in general; to be precise, the problem is FPNP-complete and has an NP-complete decision
variant [13, 18].

2.2 Structure approximation
The notion of a structure approximation is typically captured using a solution distance function, a metric
associated with each optimization problem relating candidate solutions with the optimal solution [9]. Let Π
be a optimization problem with instance x, let cansol(x) denote a function returning candidate solutions to

2Note that the term ‘structure’ does not refer to the graphical structure (i.e., the arcs) of the network, but to the structure of the joint
value assignments.

3If we have only partial evidence, i.e., the network is partitioned into variables for which the explanation is sought, evidence
variables, and other variables that constitute neither evidence nor explanation, then the problem generalized to a Partial (or Marginal)
MAP problem. The (intractability) results presented here generalize also to Partial MAP.
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Figure 1: Example network with distinct structure and value approximations

x, with optsol(x) denoting a function returning the optimal solution4 to x. For any y, y′ ∈ cansol(x), let
d(y, y′) be the distance between y and y′ as defined by d. As d is a metric, the following properties hold for
all a, b, c ∈ cansol(x):

1. d(a, a) = 0
2. if a 6= b, d(a, b) > 0
3. d(a, b) = d(b, a)
4. d(a, b) + d(b, c) ≥ d(a, c)

Typically, for many problems Π, d might correspond to the Hamming distance or edit distance between two
candidate solutions: the number of elements in which the candidate solutions differ, or the number of oper-
ations needed to transform one candidate solution into another. We define a h/d-structure approximation of
Π as follows:

Definition 2.1 ([9]). Given an optimization problem Π, a solution-distance function d, and a non-decreasing
function h : N → N, an algorithm A is a polynomial-time h/d-structure approximation algorithm if for
every instance x of Π, d(A(x), optsol(x)) ≤ h(|x|) and A runs in time polynomial in |x|.

2.3 Value versus structure approximation
Possibly counter to intuition, a “good” value approximation may not be a “good” structure approxima-
tion and vice verse. As an example, consider the Bayesian network in Figure 1 with binary variables
V,X1, . . . , Xn, a uniform probability distribution for the variables X1 to Xn, and the following condi-
tional probability distribution for V :

Pr(V = TRUE, X1, . . . , Xn) =

 1 if ∀iXi = TRUE
1− ε if ∀iXi = FALSE
0 otherwise

Note that the most probable explanation for the observation V = TRUE would be the explanation where
all variables Xi are set to TRUE, and the second most probable explanation where all variables Xi are set
to FALSE. Any non-zero value approximation thus would yield an explanation with a completely different
structure than the most probable explanation. On the other hand, any explanation that has a similar structure
(i.e., differ in only few variables) would have a probability of zero.

3 Structure approximation of MPE
Let cansol(B, e) denote the set of explanations (i.e., joint value assignments to M) of a Bayesian network
B with observed evidence e, with optsol(B, e) as the most probable explanation, i.e., the joint value assign-
ment to M with the highest joint probability. We define the structure distance function dH(m, optsol(B, e))
as the Hamming distance between explanation m ∈ cansol(B, e) and the most probable explanation.

In the remainder of this paper, we consider h to be a function taking an MPE instance x = {B, e} and
returning a distance. With h(x)/dH -structure-approximate-MPE, we define the problem of finding a struc-
ture approximation that differs in at most h(x) variables from the most probable explanation optsol(B, e).
With E(h(x))/dH -structure-approximate-MPE we define the problem of finding a joint value assignment

4Or, in case of a draw, one of the optimal solutions.
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Figure 2: Construction of Bφex from φex

that has an expected Hamming distance h(x) to optsol(B, e), i.e., a structure approximation is sought that
differs on average in at most h(x) variables from the MPE.

3.1 Computational complexity
In this section we will discuss the computational complexity of structure approximations of MPE. Note
that a random guess of the values of variables would return a value assignment which gives an expected
Hamming distance h(x) = |M| − |M|

c , with c as the cardinality of the (unobserved) variables. In particular,
when all unobserved variables are binary, we can expect to guess half of them correctly.

Corollary 3.1. MPE is E(h(x))/dH -structure approximable for h(x) = |M| − |M|
c .

We cannot expect to do better than chance: given that it is NP-hard to n
2 −ε/dH -structure approximate 3SAT

[6] and we can reduce 3SAT to MPE in polynomial time while preserving the structure of the certificates
(by a simple variant of the proof used in [13, p.1457], which is omitted here for reasons of space), any
polynomial-time |M| − |M|

c − ε/dH -structure approximation algorithm for MPE could be used to find a
n
2 − ε/dH -structure approximation of any 3SAT instance in polynomial time.

Lemma 3.2. MPE is h(x)/dH -structure inapproximable for h(x) = |M| − |M|
c − ε, unless P = NP.

This result holds for binary variables with indegree at most three5. Here, we allow the approximation
algorithm to select the h(x) variables. If we are allowed to designate the variables for which the value is
sought, then it is easy to see that we cannot have a polynomial-time structure approximation algorithm A for
MPE, even for a single variable, unless P = NP, as we could use A consecutively for all |M| unobserved
variables of B and thus obtain a polynomial-time exact algorithm for MPE; as MPE is NP-hard, the result
follows as a corollary. However, we can prove a much stronger result for networks with three values per
variable and indegree at most six: There cannot exist an algorithm that tells6 us the value of an arbitrary
single variable, unless P = NP:

Theorem 3.3. No algorithm can calculate the value of one of the variables in the most probable explanation
in polynomial time, unless P = NP.

We will prove Theorem 3.3 with a reduction from 3SAT, defined as follows.

3-CNF SATISFIABILITY (3SAT)
Instance: A Boolean formula φ = (U,C) in 3-CNF form, with variables U = u1, . . . , un and literals
C = c1, . . . , cm.
Question: Does there exist a truth assignment to the variables U such that all clauses C are satisfied?

As a running example, we will construct a network for the following (satisfiable) 3SAT instance [5]:

Example 3.4. φex = (U,C), where U = {u1, u2, u3, u4}, and C = {(u1 ∨ u2 ∨ u3), (¬u1 ∨ ¬u2 ∨ u3),
(u2 ∨ ¬u3 ∨ u4)}.

5As each clause has three variables, the corresponding MPE instance has indegree at most three.
6Note that here we require that the algorithm not only returns a joint value assignment cansol(x), but also tells us which subset of

cansol(x) matches optsol(x).



We construct a Bayesian network Bφ from a 3SAT instance φ = (U,C) as follows. For each variable ui

in φ we add a ternary stochastic variable Ui in Bφ with values {TRUE, FALSE,#} and uniform prior prob-
ability; the set of all Ui is denoted U. For each clause cj in φ we add a binary stochastic variable Cj in
Bφ with values TRUE and FALSE; the set of all Cj is denoted C. Cj is to be conditioned on the variables
Uj = {U1

j , U2
j , U3

j } that correspond to the variables that occur in cj , and (for j > 1) on the variables
Uj−1 = {U1

j−1, U
2
j−1, U

3
j−1} that correspond to the variables that occur in cj−1. To improve readability,

we define the following shorthands for joint value assignments to Uj and Uj−1: let u# denote a joint value
assignment where all variables have the value #, and let uTF denote a joint value assignment where none
of the variables have the value #, i.e., all are TRUE or FALSE. For Cj(j > 1) the following conditional
probability distribution is defined.

Pr(Cj = TRUE | Uj,Uj−1) =

 1 if Uj = u, where u makes clause Cj true, and Uj−1 = uTF

ε if Uj = u# and Uj−1 = u#

0 otherwise

Here, ε is defined to be a sufficiently small (i.e., ε < 1
2n ), yet polynomial-time computable, value. Likewise,

C1 is defined as follows.

Pr(C1 = TRUE | U1) =

 1 if U1 = u, where u makes clause C1 true
ε if U1 = u#

0 otherwise

As an example of this construction, Figure 2 shows the network as constructed from φex. We set the evidence
variables E = C with e = ∧m

j=1Cj = TRUE. We claim that φ is satisfiable if and only if none of the variables
in the most probable joint value assignment u to U has the value #, and unsatisfiable if and only if all of
the variables in u have the value #. Thus, if an approximation algorithm tells us the value of any variable
of the most probable explanation of B, we can use that algorithm to solve the corresponding 3SAT instance
in polynomial-time.

Proof of Theorem 3.3. Assume there exists a polynomial-time structure approximation algorithm A that,
when given an MPE instance, returns for one of the variables in the explanation set M a value that cor-
responds to the value of that variable in the most probable explanation. We will show that A can be used
to decide 3SAT in polynomial time; hence, from the existence of such an algorithm it would follow that
P = NP. Let φ be an arbitrary instance of 3SAT and let (Bφ,E, e) be the MPE instance as constructed
above. Note that we can construct Bφ from φ in polynomial time, as every literal and clause in φ cor-
responds to a single variable in Bφ and the size of the conditional probability tables of each variable is
bounded by a constant.

Let u be a joint value assignment to the variables of U of Bφ. We will distinguish between three possible
scenarios:

1. u ∈ {#}n, i.e., all variables are set to #
2. u ∈ {TRUE, FALSE}n, i.e., none of the variables are set to #
3. u ∈ {TRUE, FALSE,#}n

Note that in case 3) Pr(u, e) = 0 due to the constraints in the joint probability distributions of Cj . In case
2), if u does not satisfy φ, then also Pr(u, e) = 0. If on the other hand u does satisfy φ, then the probability
Pr(u, e) equals 1

Nsat(1+ε) , where 1 ≤ Nsat ≤ 2n denotes the number of satisfying truth assignments to φ.
In case 1), if φ is satisfiable, then Pr(u, e) = ε

1+ε ; as ε was chosen to be strictly less than 1
2n , this probability

is lower than the probability of any satisfying joint value assignment. However, when φ is not satisfiable,
then Pr(u, e) = 1.

Thus, the most probable explanation for evidence e = ∧m
j=1Cj = TRUE is either u ∈ {TRUE, FALSE}n

if φ is satisfiable, or u ∈ {#}n if φ is not satisfiable. Now assume that, when given (Bφ,E, e) as input, A
outputs the value assignment of one of the unobserved variables in Bφ, that correspond to the value in the
most probable explanation of Bφ. In case A outputs TRUE or FALSE, φ is satisfiable; in case A outputs #, φ
is not satisfiable. Hence, we can use A to solve 3SAT in polynomial time, concluding the proof.
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Figure 3: A lattice describing the partial order of the joint value assignments to the variables X and Y

3.2 Ordered variables
We saw in the previous section that it is NP-hard to structure-approximate even a single variable of the
most probable explanation in a Bayesian network. However, we assumed that the values of the variables in
the network were unordered. In this section we assume a particular order on the values and investigate the
consequences for the computational complexity of structure approximation.

Typically, in a Bayesian network some variables might have a ‘natural’ ordering, like a variable HEIGHT
with values TALL, NORMAL and SMALL; these values are ordered SMALL � NORMAL � TALL. Other
variables, like BLOODTYPE or ETHNICGROUP lack such an ordering. When a variable is ordered, it makes
sense to redefine the distance measure: when HEIGHT is assigned the value TALL in the most probable
explanation, NORMAL would be a better approximation than SMALL.

In the remainder we assume that all variables are ordered, and we introduce a partial ordered lattice
[20] and a corresponding lattice distance function. The lattice includes all joint value assignments to the
observable variables in the network and it captures the partial order between the assignments. The bottom
of the lattice encodes the joint value assignment m such that m � m′ for all m′ ∈ Ω(M). Likewise, the
top of the lattice encodes the joint value assignment m′′ such that m′ � m′′ for all m′ ∈ Ω(M). In general,
a lattice element L(m) encoding a joint value assignment m precedes another lattice element L(m′) if and
only if m � m′. In Figure 3 an example (from [20]) is shown for two ternary variables X and Y .

A natural distance function comparing two joint value assignments m and m′ would be the distance
in the lattice between these assignments, i.e., the length of the shortest path from L(m) to L(m′). For
example, the distance between x2y1 and x1y3 would be three. Note that this distance function, denoted by
dL, is a metric as the properties of Section 2.2 also hold for dL. Using this distance function, we can find
a trivial guaranteed h(x)/dL-structure approximation with ordering for h(x) = |M| · d 2

c e, rather than the
expected E(h(x)) = |M| − |M|

c without ordering, by always picking the ‘middle’ value in the order. We
can, however, not expect to do better than h(x) = |M| for c ≥ 5, unless P = NP:

Theorem 3.5. MPE is h(x)/dL-structure inapproximable for h(x) = |M| − 1, unless P = NP.

Proof. Similar as in the proof of Theorem 3.3, and using the same construction, we show that the existence
of a polynomial-time algorithm A that can h(x)/dL-structure-approximate MPE for h(x) = |M|−1 implies
that we can decide 3SAT in polynomial time. We augment the construction used to prove Theorem 3.3 as
follows: let all variables Ui have five values Ω(Ui) = {FALSE, TRUE,#, d1, d2} in which d1 and d2 act
as dummy variables. Ui is uniformly distributed, and the order of Ω(Ui) is FALSE � d1 � # � d2 �
TRUE. The conditional probability distribution of Cj is unaltered. We claim that, for any h(x)/dL-structure
approximation with h(x) ≤ |M| − 1, the majority of the variables that contain non-dummy values can be
used to decide satisfiability of φ: if the (strict) majority of these variables has TRUE or FALSE as value, then
the instance is satisfiable, otherwise the instance is unsatisfiable.

Observe that an approximation with h(x) = |M| − 1 has at least one ‘correct’ variable, as any deviation
from the MPE would increase h(x) by at least one, i.e., every variable that has a value that is not equal to the
MPE contributes a distance of 1 to h(x). In particular, when one of the variables is correctly labeled with
either # (for an unsatisfying instance) or TRUE or FALSE (for a satisfying instance), and the other variables
have dummy values that are closest to the MPE value of that variable (i.e., d1 for FALSE, d2 for TRUE, and



either d1 or d2 for #), then h(x) = |M| − 1; clearly here a majority of the (non-dummy) variables correctly
reflects the satisfiability of the instance.

Now we show that this property holds for every alteration to this joint value assignment that maintains
that h(x) = |M| − 1. We will demonstrate the case that φ is satisfiable; for unsatisfiable φ, the proof goes
analogously.

• If we replace a dummy value with a # value, then h(x) increases by one. We must also change
another dummy value to TRUE or FALSE (whichever is closest) to maintain that h(x) = |M| − 1, so
still the majority of non-dummy variables has as value TRUE or FALSE.

• If we replace a TRUE or FALSE value to a # value, then h(x) increases by two, and so two dummy
variables need to be changed into TRUE or FALSE.

Thus, if A returns a h(x)/dL-structure approximation with h(x) ≤ |M| − 1, then we can use the output to
decide 3SAT: count the number TRUE or FALSE values and the number of #-values. If the first number is
higher than the second, answer yes, else answer no. As A runs in polynomial time, this algorithm can decide
3SAT in polynomial time, hence P = NP.

4 Conclusion
In this paper we discussed structure approximations of MPE. In general, we cannot do better than just
randomly guess the joint value assignment: we then would on average expect to guess 1

c of the variables
correctly, where c is the cardinality of the variables. As it is NP-hard to determine the value of more than 1

c
of the variables in the MPE, there is little room for improvement. We hypothesize (but could not prove) that
it is even NP-hard to get an expected structure approximation that is strictly better than |M| − |M|

c .
Furthermore, we showed that it is NP-hard in general to obtain an approximation that determines even a

single variable in the MPE. So, without information on the ordering of the values or restrictions on the net-
work structure or probability distribution, if we want information on the structure of the MPE (in polynomial
time), there are little alternatives than to compute it exactly.

However, if we do have information on the ordering of the values, we can do better than that. We
showed that the simple strategy ’always stay in the middle’ guarantees a h(x)/dL-structure approximation
for h(x) = |M| · d 2

c e in the worst case, which is the same as the expected value if we would randomly guess
the values. We showed that it is NP-hard to h(x)/dL-structure approximate MPE for h(x) = |M| − 1.

The gap between these two results might leave some room for improvement. One suggestion, that we
leave for future work, is to investigate whether it could help to use monotonicity properties in the network
to get a better structure approximation.
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