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Abstract

Despite the now common view amongst neuroscientists that the brain effectively approximates Bayes-
ian inferences, there are only few researchers in the Probabilistic Graphical Models (PGM) commu-
nity currently working in this research area. We believe that this is partially due to a misunderstanding
of the theoretical challenges that theoretical neuroscience currently faces and the potential contribu-
tion that the PGM community can offer in interdisciplinary research. With this paper we hope to
remedy such misunderstandings and invite the community to contribute to the mutual benefit of neu-
roscience and Al alike.

1 Introduction

When discussing recent advances in neuroscience—that postulate that the human brain is at its essence
just a Bayesian inferential machine—with scholars in the Probabilistic Graphical Models (PGM) commu-
nity, our research group occasionally receives lukewarm responses that can best be paraphrased as “I’m
just not interested in the brain as an application area of my research”. Although there are few things as
personal as a research agenda, we still feel that this lack of interest may be at least partially due to a) a
misconception of the questions that are currently being addressed in neuroscience and b) lacking some
‘insider’s insight’ in the contribution that the PGM community can offer in interdisciplinary research.
With this paper we hope to remedy both. We will give a short overview of the increasingly popular
‘Bayesian Brain’ hypothesis in neuroscience, in particular its ‘predictive processing’ manifestation. We
will then identify three research areas within this topic where contributions from the PGM community
can actually have a huge scientific impact. After identifying potential pitfalls in such interdisciplinary
research, including a discussion of the specific (and sometime peculiar) connotations of the neuroscience
community with respect to concepts like ‘Bayesian’, ‘uncertainty’, and ‘prior’, we will conclude with
an invitation to the community to contribute.

2 The Brain as ‘Application Area’

Herman von Helmholtz [39] is traditionally seen as the originator of the view of human perception as
(statistical) inference to the best explanation of the causes of the perceptual input. The suggestion that
the human brain can be seen as performing some approximate Bayesian inference (integrating prior
expectations with newly arriving information) was coined as early as 1957 by Edwin T. Jaynes (first
published in [17]). Peter Dayan and colleagues further explored these ideas and proposed the notion
of the Bayesian Brain, emphasizing on the basis of psychophysical evidence that human perception
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actually is ‘Bayes optimal’ in combining priors and new signals. The Bayesian coding hypothesis
postulates that the brain indeed encodes probability distributions in populations of neurons.

In recent years, the Bayesian Brain hypothesis has become increasingly popular due to the emer-
gence of Karl Friston’s free energy principle, providing for a biological and physical foundation; the
predictive processing view of the brain as a ‘prediction machine’ that minimizes computational effort
by trying to predict its inputs, and the spiking neural network research area that shows that probability
distributions can be encoded and sampled from using power-efficient networks of spiking neurons. We
will elaborate more on these three important recent developments.

2.1 The free energy principle

Friston’s free energy principle [9, 10] postulates that any biological system that ‘resists a tendency to
disorder’ — be it a single cell or a social network — effectively aims to minimize free energy. In thermo-
dynamics, free energy is the amount of energy that is potentially available, but not put to effective use.
In information theory, it is a measure on the discrepancy between our observation of the world and our
model of the world, which becomes manifest as the prediction error between predicted and observed
world state. A biological system that aims to defy disorder seeks to lower entropy (the average of sur-
prise of outcomes). It can do so by minimizing prediction error, that is, aiming to make the predicted
world state match the observed world state (adapting one’s models of the world), or vice versa (changing
one’s sensory input by acting upon the world). Because biological systems must remain within certain
boundaries to exist, their models of what the world should look like (e.g., have access to a sufficient,
but not excess, amount of oxygen to maintain homeostasis) and how they currently perceive the world
(e.g., shortage of oxygen) should match, and if not, actions are taken to minimize this prediction error
(e.g., breathe faster and deeper). Friston [9, p.295] summarizes this by postulating that (i) agents resist
a natural tendency to disorder by minimizing a free-energy bound on surprise; (ii) this entails acting on
the environment to avoid surprises, which (iii) rests on making Bayesian inferences about the world.

2.2 Predictive processing

The Predictive Processing account proposes that the brain continuously predicts its inputs in a hierar-
chical cascade of (increasingly more concrete) probabilistic predictions [4, 5, 16]. For example, when
observing a bowler on a bowling lane, contextual information (“this bowler already hit three strikes in
this game”) will generate predictions for the result of the throw (“many pins will fall down”). Based on
that expectation, more specific predictions will be made for the throwing kinematics, the ball trajectory,
where the ball will hit the pins, etc. Violations of predictions will yield prediction errors that need to
be ‘explained away’ by updating ones hypotheses (“even good bowlers will sometimes fail to throw a
strike”), taking new contextual information into consideration (“the bowler seems to have injured his
wrist whilst throwing”) etc. The computations ‘under the hood’ of this conceptual description can be
described and analyzed as various computations on causal Bayesian networks, such as the computation
of posterior probability distributions and the tuning of parameters of the network [24]. The rationale
behind this account is that processing only the prediction error is less computationally demanding as
processing the entire input; however for exact computations, it was shown that this assumption does
not hold in general, since processing even a single bit of prediction error is an NP-hard problem [21];
whether approximate Bayesian inference is tractable when the prediction error is low is currently an
open problem. Despite its popularity as a unifying theory, it is far from clear what the brain’s approxi-
mation algorithms actually look like; in Clark’s [4, p.201] words: What do the local approximations to
Bayesian reasoning look like as we depart further and further from the safe shores of basic perception
and motor control? What new forms of representation are then required, and how do they behave in the
context of the hierarchical predictive coding regime?

2.3 Networks of spiking neurons

One of the most promising computational models of neuronal computation in general is the recurrent
network of spiking neurons model [28]. These biologically inspired networks mimic Boltzmann ma-
chines (neural networks that represent a probability distribution that can be sampled from), with a
key difference that the neurons are not outputting a zero or one state, but a spike; a brief burst of



energy. These networks are energy-efficient and stochastic in nature and they can represent, and reason
with, arbitrary probability distributions by means of stochastic sampling in winner-take-all microcir-
cuits [2, 13,33]. It has been proposed that such sampling methods (like MCMC sampling) are the
most promising techniques to describe actual stochastic inferences in the brain [36]. Because of their
efficiency — the brain uses a mere 25W of energy — these networks are potentially crucial for future gen-
erations of computer hardware by utilizing (rather than trying to filter) the noise that is inherent at the
nano-scale [14]. No free lunch is offered, though: As approximate Bayesian inference is an intractable
problem [7,23], there will be problem instances where the convergence time of the network will grow
exponentially with the input size, in particular in networks with extreme probability distributions [28].

In terms of Marr’s levels of explanation [29], one can see the free energy principle as aiming to
answer the ‘why’ of the Bayesian Brain hypothesis, the predictive processing account describes ‘what’
is actually being computed, whereas the ‘spiking neurons’ community studies the ‘how’ aspect of ap-
proximate Bayesian computations in the brain. Where the free energy/predictive processing and the
networks of spiking neurons communities were traditionally relatively isolated — as a proxy, one could
see them as exponents of the UK, respectively Continental approach towards theoretical neuroscience
— there have been recent mutual research events (for example at the European Institute for Theoretical
Neuroscience in Paris) that try to bridge the gap between both communities.

2.4 Organization of this paper

All these developments support the ‘Bayesian’ view of the brain as it is currently dominant in contempo-
rary neuroscience. We believe that this opens up a significant area of research for the PGM community.
Where graphical models are currently used in neuroscience, their role is typically limited to association,
clustering, or classification of brain data [1], i.e., as a data-analysis tool rather than as a process-level
description of the brain’s mechanisms for information processing. Yet, the emergence of the Bayesian
brain hypotheses opens up a whole new area of research. In the remainder of this paper we will further
elaborate on this. We will show how a formal and computational background can help to bring con-
ceptual clarity and formal rigidity to the field; how neuroscience is in urgent need for new algorithms,
implementations, and complexity analyses that computer scientists and Al practitioners can provide,
and where new questions in the ‘meta’-theory of learning and modifying Bayesian networks emerge.

3 Conceptual Clarity and Rigidity

An important area where researchers with a strong background in computational and formal modeling
can make vital contributions is in offering conceptual clarity and formal rigidity, translating verbal
theories into complete and consistent computational models, thus exposing ambiguities and gaps in the
theory and explicating ‘design choices’ and their computational consequences [31]. Examples are in the
formal explication of the role and nature of the underlying principles of predictive processing [20,34,37],
critically assessing the validity of simplifying assumptions [30], and in exposing the consequences of
alternative readings of vague or conflicting verbal models [25]. On top of this, the specific background
of researchers in the PGM community can contribute significantly to the theory itself, generating new
theoretical and empirical questions. The following case study will further exemplify this.

In the predictive processing theory, stochastic predictions are compared with actual observations and
only the residual (non-predicted) signal is processed by prediction error minimization. This prediction
error, however, is dependent on the state space of the prediction and its granularity; for example, when
we predict and observe a (non-specified) tree, or when we predict to see an oak and see a chestnut tree.
This observation — made from an information-theoretic point of view — led to a further refinement of the
predictive processing account with the notion of levels of detail of models and predictions (Figure 1),
and spawned various research projects. One particular empirical result that is based on these insights is
the development of a predictive processing account of how psychedelics effect the brain’s information
processing [35]. Here it was proposed that psychedelics such as psilocybin hyper-activate 5H 75 4 re-
ceptors in layer-5 pyramid cells, effectively leading to over-detailed, diffuse predictions that cause many
of the sympoms associated with psilocybin administration.
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Figure 1: A formalization of the relationship between different levels of detail of hypotheses and pre-
dictions. In this example we have a singleton hypothesis and a singleton prediction, each with vour
different values. Observe that the actual hypotheses, as well as the predictions, can be clustered, re-
defining the conditional probability distributions in a straightforward way. We can thus lower the detail
of the predictions (leftmost CPT), lower the detail of the hypotheses (rightmost CPT), or both (bottom
CPT).

4 Theory, Algorithms, and Analysis

The Bayesian Brain hypothesis stipulates that the brain approximates probabilistic inference by means
of variational Bayes methods [12] or sampling approaches [36]. As exact inference is PP-complete [26]
there cannot exist efficient approximation algorithms in general, unless BPP equals PP. That means that
there must be constraints on the inputs in order to render this approximate computation tractable; the
field of parameterized complexity studies such constraints. Recent developments in this area allow for
the analysis of stochastic computations where the probability of answering incorrectly is parameterized,
rather than the computation time [22,23]. This allows for the study of so-called fixed error randomized
tractable approximations, relative to ‘ecologically valid’ parameters, viz. parameters that can plausibly
be assumed to be small in the computations as performed by the brain. In particular the parameterized
complexity of approximate inference, as parameterized by the prediction error of the generative model,
is an important open problem that would significantly contribute to the Bayesian Brain hypothesis in
general and predictive processing in particular: It is claimed [4] that the brain can be efficient because it
tries to minimized prediction error and thus that inference can be tractable when prediction error is low.

Apart from process-level considerations (under what constraints can the approximations postulated
by predictive processing be tractable), one can study the properties and plausibility of neuronal imple-
mentations of such approximations using networks of spiking neurons. Crucial properties here are the
power efficiency of such networks [28], the nature of the noise in the brain and its consequences for
efficient sampling [13], and the general question how many resources are needed for effective computa-
tions [27]. Computational complexity theory offers an indication of the resources needed for a particular
computational problem to be solved, as a function of the input size of a problem. These resources most



notably, time and memory are typically fairly coarse and built on a theoretical abstract model of com-
putation: Turing machines. Here, the ‘time’ resource refers to the number of state transitions in the
machine, and the ‘memory’ resource refers to the number of memory cells on the tape that are used. It
has been proposed by a working group at the Dagstuhl seminar on Resource-Bounded Problem Solving
(seminar 14341) to have a more refined, brain-focused model of computation in the brain, based on
networks of spiking neurons, and have complexity measures based on brain resources, such as spiking
rates, network size, and connectivity [15]. The development of such a model of computation would
allow for seminal contributions to the Bayesian Brain hypothesis by analyzing the fundamental limits
of brain computations.

5 Meta-theory of Bayesian Networks

When learning a Bayesian network from data one might reconstruct the structure of the network, the
probability distributions, and even the distributions over hidden variables. Crucially, though, one needs
to settle beforehand on the variables and their state space. This is to be contrasted with how generative
models in the Bayesian brain hypothesis are actually constructed: Here, one somehow needs to ‘learn’
new variables and the values they can take, both for potential causes and their observable manifestations.
The question then arises when a Bayesian learner realizes that the current model is insufficient and new
hypotheses should be formed, as well as what these hypotheses should look like [3]. This problem comes
on top of ‘normal’ model revision by Jeffrey updating [19], where just the probability distributions are
updated in the light of new evidence; this aspect of model revision can be elegantly related to predictive
processing concepts such as precision-weighted prediction error [32]. The problem of adding new
variables and values of variables to a network in the light of unresolvable prediction error is a major
open problem.

When a prediction error is to be accounted for, one can either update ones current beliefs about
the actual hypotheses or try to reduce uncertainty by observing hidden variables. These predictive
processing sub-processes (belief revision and adding observations) correspond to aspects of parameter
tuning and sensitivity analysis [6] and selecting evidence [38]. Algorithmic and analytical aspects of
these problems are of direct relevance to the Bayesian Brain hypothesis.

A vital open problem in the predictive processing account relates to the trade-off between making
predictions that are very detailed and predictions that are likely to be correct. For example, when
predicting the outcome of a throw at a bowling lane, a prediction over a distribution containing values
like ‘pin four will be hit by the ball from the left side and will topple over pins seven and eight’ is very
detailed, but probably always gives a huge prediction error. On the other hand, a prediction like ‘the
ball will hit the pins and some will fall’ is likely to be correct, but as a prediction not very informative.
There are reasons to believe that particular neurotransmitters (in particular serotonin) control this level
of detail [35], but from a more meta-perspective it is completely open how causal Bayesian models can
be ‘flexible’ in their granularity and how algorithms on such models may trade-off information gain and
prediction error.

6 Potential Pitfalls

In the previous sections we highlighted several research areas and tentative research questions where
the PGM community can substantially contribute to the ‘Bayesian Brain’ with a potential for consid-
erable impact. Notwithstanding this potential, there are also pitfalls to avoid that are inherent risks of
interdisciplinary work, in particular when the research fields have different cultures and tradition and
use specific terminology that may be misunderstood. Here we enumerate a few potential pitfalls.

* ‘Terminology’ — An informal quiz at the interdisciplinary Lorentz Center workshop ‘Perspec-
tives on Human Probabilistic Inference’” on the association that participants had with the word
‘Bayesian’ was illuminative to us. For some participants Bayesian was a synonym of probabilis-
tic, for others it concerned the semantics of probability distributions (subjective, as contrasted
with frequentist), yet others associated Bayesian with Bayes’ rule for updating distributions. De-
spite the traditional interpretation of ‘Bayesian’ as ‘subjective degrees of belief’ [18], it is not
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uncommon for proponents of the Bayesian Brain hypothesis to have a strong frequentist view on
probabilities as describing the objective state of the world [8]. Similarly diverse (and sometimes
counterintuitive) associations could be elicited for terms like ‘prior’, ‘uncertainty’, ‘information’,
and ‘structure’. The bottom line is to be aware of potential misunderstandings and to be explicit
of one’s intended meaning of such terms in communication with neuroscientists.

¢ ‘Culture and tradition’ — In computer science and artificial intelligence, acceptance of a paper
to a prestigious conference such as AAAI, UAI, FOCS or STOC is distinctive. Many scholars
focus their publication strategy on such conferences, rather than journal papers. In neuroscience,
a conference publication is close to irrelevant when it comes to evaluating research output; much
more emphasis is put on the impact factor of the journals one is publishing in. Culture and tra-
dition put emphasis on different ‘golden standards’ of excellence in research, validity of research
methodology, and importance of research topics. Awareness of such issues and an open mind may
help avoid or solve misunderstandings.

¢ ‘Interdisciplinary’ — Members of interdisciplinary teams have different backgrounds and dis-
tinct areas of expertise; that is exactly the main benefit of having interdisciplinary collaborations
at all. There is a fine line between ‘nitpicking on details’ versus ‘allowing crucial misconceptions
to exist’ in interdisciplinary collaborations, and it requires some expertise to see what is important
and what not. For example, it is rarely important to insist on the distinction between NP-hardness
and NP-completeness of a problem, but the difference between an observation and an intervention
in (causal) Bayesian networks may well be important to clarify. Don’t assume your neuroscience
collaborators share your background, and don’t be afraid to ask for clarification about what seems
obvious to them.

¢ ‘Selling your work’ — An elegant intractability proof or a new formalization of a verbal the-
ory is typically not sufficient for publication in neuroscience outlets. In order to get published
one should aim to understand the problems that neuroscientists care about, make clear why your
contribution is instrumental in solving these problems, and write in a way that connects to their
background and expectations. It might be difficult to convince one’s departmental chair or (grant)
reviewers of the relevance of this work. Our approach is to seek for niches that both allow for a
significant PGM contribution and solve crucial problems with respect to the Bayesian Brain.

7 Conclusion

Despite the potential pitfalls we identified in the previous section, we strongly believe computer sci-
entists and Al practitioners working in the PGM area can make a vital interdisciplinary contribution
to contemporary theoretical neuroscience. With this paper we hope to have given an overview of cru-
cial open problems in the Bayesian Brain hypothesis and a sketch of the contributions that the PGM
community can offer. We conclude this paper with this quote from Karl Friston [11] that (probably
inadvertently) illustrates the importance of research on probabilistic graphical models for theoretical
neuroscience: Life (...) is an inevitable and emergent property of any (ergodic) random dynamical
system that possesses a Markov blanket. We would like to invite the community to bring their toolbox
of computational and formal modeling and help to advance this fascinating research area — who knows
what else may emerge!
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