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Abstract. The recent Hierarchical Predictive Coding theory is a very
influential theory in neuroscience that postulates that the brain continu-
ously makes (Bayesian) predictions about sensory inputs using a gener-
ative model. The Bayesian inferences (making predictions about sensory
states, estimating errors between prediction and observation, and low-
ering the prediction error by revising hypotheses) are assumed to allow
for efficient approximate inferences in the brain. We investigate this as-
sumption by making the conceptual ideas of how the brain may minimize
prediction error computationally precise and by studying the computa-
tional complexity of these computational problems. We show that each
problem is intractable in general and discuss the parameterized complex-
ity of the problems.

1 Introduction

The assumption that the brain in essence is a Bayesian inferential machine,
integrating prior knowledge with sensory information such as to infer the most
probable explanation for the phenomena we observe, is quite wide spread in neu-
roscience [19]. Recently, this ‘Bayesian brain’ hypothesis has merged with the
hypothesis that the brain is a prediction machine that continuously makes pre-
dictions about future sensory inputs, based on a generative model of the causes
of these inputs [17] and with the free energy principle as a driving force of pre-
diction error minimization [13]; the resulting theory has been called Hierarchical
Predictive Coding or Predictive Processing [7]. It is assumed to explain and unify
all cortical processes, spanning all of cognition [6]. Apart from being one of the
most influential current unifying theories of the modus operandi of the brain, it
has inspired researchers in domains such as developmental neurorobotics [23],
human-robot interaction [25], and conscious presence in virtual reality [26].

At the very heart of Hierarchical Predictive Coding (hereafter HPC) are the
Bayesian predictions, error estimations, and hypothesis revisions that are as-
sumed to allow for efficient approximate Bayesian inferences in the brain [7].
As Bayesian inferences are intractable in general, even to approximate [1, 9],
this invites the question to what extent the HPC mechanism indeed renders
these inferences tractable [3, 22]. In essence, minimizing prediction errors boils
down to minimizing the relative entropy or Kullback-Leibler divergence between



the predicted and observed distributions [14]. Lowering the relative entropy be-
tween prediction and observation can be done in many ways: we can revise the
hypothesized causes that generated the prediction; alternatively, we may adjust
the probabilistic dependences that modulate how predictions are generated from
hypotheses, or we might want to seek and include additional observations into
the model in order to adjust the posterior distribution over the predictions. In
contrast, we might also bring prediction and observation closer to each other by
intervention in the world, thus hopefully manipulating the observation to better
match what we predicted or expected. This is referred to as active inference in
the HPC literature [15].

The contribution of this paper is to make these informal notions explicit and
to study the computational complexity of minimizing relative entropy using these
notions. We show that each conceptualization of prediction error minimization
yields an intractable (i.e., NP-hard) computational problem. However, we can
clearly identify where the border between tractable and intractable lies by giving
fixed-parameter tractability results for all discussed problems. The remainder of
this paper is structured as follows. In Section 2 we formally define HPC in the
context of discrete Bayesian networks. We recall some needed preliminaries from
computational complexity and discuss related work. In Section 3 we discuss the
complexity of computing entropy and relative entropy in Bayesian networks. In
Sections 4 and 5 we discuss belief revision and model revision, respectively, and in
Section 6 we investigate the complexity of deciding which observation to make
in order to decrease prediction error. In Section 7 we turn to the complexity
of active inference, i.e., deciding which possible action to perform to decrease
prediction error. We switch to the parameterized complexity of these problems
in Section 8. In Section 9 we conclude this paper and sketch possible future work.

2 Preliminaries

A Bayesian network B = (GB,PrB) is a graphical structure that models a set of
stochastic variables, the conditional independences among these variables, and a
joint probability distribution over these variables. B includes a directed acyclic
graph GB = (V,A), modeling the variables and conditional independences in
the network, and a set of conditional probability tables (CPTs) PrB capturing
the stochastic dependences between the variables. The network models a joint
probability distribution Pr(V) =

∏n
i=1 Pr(Vi | π(Vi)) over its variables, where

π(Vi) denotes the parents of Vi in GB. By convention, we use upper case letters
to denote individual nodes in the network, upper case bold letters to denote
sets of nodes, lower case letters to denote value assignments to nodes, and lower
case bold letters to denote joint value assignments to sets of nodes. We use the
notation Ω(Vi) to denote the set of values that Vi can take. Likewise, Ω(V)
denotes the set of joint value assignments to V.

HPC can be understood as a cascading hierarchy of increasingly abstract hy-
potheses about the world, where the predictions on one level of the hierarchy are
identified with the hypotheses at the subordinate level. At any particular level,
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Fig. 1. An example level L of the HPC hierarchy, with hypothesis variables Hyp =
{H1, H2}, prediction variables Pred = {P1, P2, P3}, and intermediate variables Int =
{I1, . . . , I6}.

making a prediction based on the current hypothesis in any of the assumed levels
corresponds to computing a posterior probability distribution Pr(PrPred | PrHyp)
over the space of candidate predictions, given the current estimated probability
distribution over the space of hypotheses, modulated by contextual dependences.
We can thus describe each level L of the HPC hierarchy as a Bayesian network
BL, where the variables are partitioned into a set of hypothesis variables Hyp, a
set of prediction variables Pred, and a set of intermediate variables Int, describ-
ing contextual dependences and (possibly complicated) structural dependences
between hypotheses and predictions. We assume that all variables in Hyp are
source variables, all variables in Pred are sink variables, and that the Pred vari-
ables in BL are identified with the Hyp variables in BL+1 for all levels of the
hierarchy save the lowest one (See Figure 1). As HPC is claimed to be a unifying
mechanism describing all cortical processes [6], we do not impose additional a
priori constraints on the structure of the network describing the stochastic re-
lationships [16]. Motivated by the assumption that global prediction errors are
minimized by local minimization [18], we will focus on the computations in a
single level of the network.

Computing the prediction error at any level of the hierarchy corresponds to
computing the relative entropy or Kullback-Leibler divergence

DKL(Pr(Pred)‖Pr(Obs)) =
∑

p∈Ω(Pred)

PrPred(p) log

(
PrPred(p)

PrObs(p)

)



between the probability distributions over the prediction Pred and the (possibly
inferred) observation Obs1. In the remainder of this paper, to improve readabil-
ity we abbreviate DKL(Pr(Pred)‖Pr(Obs)) to simply DKL when the divergence is
computed between Pr(Pred) and Pr(Obs); we sometimes include brackets DKL[ψ]

to refer to the divergence under some particular value assignment, parameter
setting, or observation ψ.

The computed prediction error is used to bring prediction and observation
closer to each other; either by belief revision, model revision, or by passive or
active intervention. In belief revision, we lower prediction error by revising the
probability distribution over the space of hypotheses PrHyp; by model revision by
revising some parameters in PrB; by passive intervention by observing the values
of some of the intermediate variables; by active intervention by setting the values
of some of the intermediate variables. These notions will be developed further
in the remainder of the paper when we discuss the computational complexity of
these mechanisms of lowering prediction error.

2.1 Computational Complexity

In the remainder, we assume that the reader is familiar with basic concepts of
computational complexity theory, in particular Turing Machines, the complex-
ity classes P and NP, and NP-completeness proofs. In addition to these basic
concepts, to describe the complexity of various problems we will use the proba-
bilistic class PP, oracle machines, and some basic principles from parameterized
complexity theory. The interested reader is referred to [10] for more background
on complexity issues in Bayesian networks, and to [12] for an introduction in
parameterized complexity theory.

The class PP contains languages L that are accepted in polynomial time by
a Probabilistic Turing Machine. This is a Turing Machine that augments the
more traditional non-deterministic Turing Machine with a probability distribu-
tion associated with each state transition. Acceptance of an input x is defined
as follows: the probability of arriving in an accept state is strictly larger than
1/2 if and only if x ∈ L. This probability of acceptance, however, is not fixed
and may (exponentially) depend on the input, e.g., a problem in PP may ac-
cept ‘yes’-instances with size |x| with probability 1/2+1/2|x|. This means that the
probability of acceptance cannot in general be amplified by repeating the compu-
tation a polynomial number of times and making a decision based on a majority
count, ruling out efficient randomized algorithms. Therefore, PP-complete prob-
lems are considered to be intractable. The canonical PP-complete problem is
Majsat: given a Boolean formula φ, does the majority of the truth assignments
satisfy φ? In Bayesian networks, the canonical problem of determining whether
Pr(h | e) > q for a given rational q and joint variable assignments h and e
(known as the Inference problem) is PP-complete.

1 Conform the definition of the Kullback-Leibler divergence, we will interpret the term
0 log 0 as 0 when appearing in this formula, as limx→0 x log x = 0. The KL divergence
is undefined if for any p, PrObs(p) = 0 while PrPred(p) 6= 0.



A Turing Machine M has oracle access to languages in the class C, denoted
asMC, if it can decide membership queries in C (“consult the oracle”) in a single
state transition. For example, NPPP is defined as the class of languages which
are decidable in polynomial time on a non-deterministic Turing Machine with
access to an oracle deciding problems in PP.

Sometimes problems are intractable (i.e., NP-hard) in general, but become
tractable if some parameters of the problem can be assumed to be small. Infor-
mally, a problem is called fixed-parameter tractable for a parameter k (or a set
{k1, . . . , kn} of parameters) if it can be solved in time, exponential only in k and
polynomial in the input size |x|, i.e., in time O(f(k) · |x|c) for a constant c and
an arbitrary function f . In practice, this means that problem instances can be
solved efficiently, even when the problem is NP-hard in general, if k is known to
be small.

Finally, a word on the representation of numerical values. In the complexity
proofs we assume that all parameter probabilities are rational numbers (rather
than reals), and we assume that logarithmic functions are approximated when
needed with sufficient precision, yet polynomial in the length of the problem
instance. All logarithms in this paper have base 2.

2.2 Previous Work

The computational complexity of various problems in Bayesian networks is well
studied. Interestingly, such problems tend to be complete for complexity classes
with few other “real-life” complete problems. For example, deciding upon the
MAP distribution is NPPP-complete [24], as well as deciding whether the param-
eters in a network can be tuned to satisfy particular constraints [21]. Deciding
whether a network is monotone is co− NPPP-complete [27], and computing the
same-decision probability of a network has a PPPP-complete decision variant
[11]. Some results are known on the complexity of entropy computations: In [8]
it was established #P-hardness of computing the (total) entropy of a Bayesian
network; computing the relative entropy between two arbitrary probability dis-
tributions is PP-hard [20]. In [2] it was proved that no approximation algorithm
can compute a bounded approximation on the entropy of arbitrary distributions
using a polynomial amount of samples.

While concerns with respect to the computational complexity of inferences in
(unconstrained) HPC models have been raised in [3] and [22], and acknowledged
in [6], this paper is (to the best of our knowledge) the first to explicitly address
the complexity of minimizing relative entropy in the context of HPC.

3 The Complexity of Computing Relative Entropy in
HPC

The first computational problem we will discuss is the computation of the en-
tropy of a prediction, and the relative entropy between a prediction and an



observation. While complexity results are known for the computation of the en-
tropy of an entire network [8], respectively the relative entropy between two
arbitrary distributions [20], we will here show that decision variants of both
problems remain PP-complete even for singleton and binary hypothesis, predic-
tion, and observation variables. The proof construct we introduce in this proof
will be reused, with slight modifications, in subsequent proofs.

We start with defining a decision variant of Entropy.

Entropy
Instance: A Bayesian network B with designated variable subsets Pred and
Hyp; rational number q.
Question: Is the entropy E(Pred) = − ∑

p∈Ω(Pred)

Pr(p) log Pr(p) < q?

We will reduce Entropy from Minsat, defined as follows:

Minsat
Instance: A Boolean formula φ with n variables.
Question: Does the minority of truth assignments to φ satisfy φ?

Note that Minsat is the complement problem of the PP-complete Majsat prob-
lem; as PP is closed under complement, Minsat is PP-complete by a trivial re-
duction. In order to change as little as possible to the construct in subsequent
proofs, we will sometimes reduce from Minsat and sometimes from Majsat.

We will illustrate the reduction form Minsat to Entropy using the exam-
ple Boolean formula φex = ¬x1 ∧ (x2 ∨ ¬x3); note that this is a ‘yes’-instance
to Minsat as three out of eight truth assignments satisfy φex. We construct a
Bayesian network Bφ from φ as follows. For every variable xi in φ, we construct
a binary variable Xi in Bφ, with values t and f and uniform probability distri-
bution. The set of all variables X1, . . . , Xn is denoted with X. For each logical
operator in φ, we create an additional variable in the network Bφ. The parents
of this variable are the variables that correspond with the sub-formulas joined
by the operator; its conditional probability table mimics the truth table of the
operator. The variable associated with the top-level operator of φ will be denoted
by Vφ. In addition, we include a binary hypothesis variable H, with uniformly
distributed values t and f , and a binary prediction variable P , with values t and
f . The parents of this variable are Vφ and H, and the conditional probability
table of this variable mimics an and-operator, i.e., Pr(P = t | Vφ, H) = 1 if and
only if both Vφ and H are set to t. In Figure 2 we illustrate how Bφex is thus
constructed from φex. We set Pred = P , Hyp = H, and q = 1/2− 3/4 log 3/4.

Theorem 1. Entropy is PP-complete, even for singleton binary variables Pred
and Hyp.

Proof. Membership proof in PP follows from a trivial modification of the proof
that computing the Kullback-Leibler divergence between two distributions is in
PP, such as presented in [20].

To prove PP-hardness, we will reduce Minsat to Entropy. Let φ be an
instance of Minsat and let Bφ be the Bayesian network constructed from φ as
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Fig. 2. The Bayesian network Bφex that is constructed from the Minsat example φex.
Note that we here have a single hypothesis node H (a source node) and a single
prediction node P (a sink node).

described above. Observe that in Bφ, the posterior probability Pr(Vφ = t | X =
x) = 1 if and only if the truth assignment corresponding with the joint value
assignment x satisfies φ, and 0 otherwise. In particular, if exactly half of the
truth assignments satisfy φ, then Pr(Vφ = t) = 1/2 and consequently Pr(P =
t) = 1/4. The entropy then equals E(P ) = −(Pr(P = t) log Pr(P = t) + Pr(P =
f) log Pr(P = f)) = −(1/4 log 1/4 + 3/4 log 3/4) = 1/2 − 3/4 log 3/4. The entropy
ranges from E(P ) = 0 in case φ is not satisfiable (and hence Pr(P = t) =
0) and E(P ) = 1 in case φ is a tautology (and hence Pr(P = t) = 1/2). In
particular, if and only if the minority of truth assignments to φ satisfies φ, then
E(P ) < 1/2− 3/4 log 3/4 = q. Note that the reduction can be done in polynomial
time, given our assumptions on the tractable approximation of the logarithms
involved; hence, Entropy is PP-complete. ut

Computing the relative entropy between a prediction and an observation is de-
fined as a decision problem as follows.

RelativeEntropy
Instance: A Bayesian network B with designated variable subset Pred, where
Pr(Pred) denotes the posterior distribution over Pred; an observed distribution
Pr(Obs) over Pred; a rational number q.
Question: Is the relative entropy DKL < q?

To prove PP-completeness, we use the same construction as above, but now we
set q = 3/4 log 3/2− 1/4. In addition, we set Pr(Obs) to Pr(P = t) = 1/2.

Theorem 2. RelativeEntropy is PP-complete, even for singleton binary vari-
ables Pred and Hyp.



Proof. Membership in PP of the more general problem of computing the Kullback-
Leibler divergence between two arbitrary probability distributions was estab-
lished in [20]. To prove PP-hardness, we reduce Majsat to RelativeEntropy.
Let φ be an instance of Majsat and let Bφ be the Bayesian network constructed
from φ as described above. Observe that in Bφ DKL decreases when Pr(Vφ = t)
increases; in particular, when Pr(Vφ = t) = p (and hence Pr(P = t) = p/2),

DKL = p/2 log(
p/2
1/2 ) + (2− p)/2 log(

(2 − p)/2
1/2 ). Note that Pr(Vφ = t) = 1/2 if exactly

half of the truth assignments to φ satisfy φ. Hence, if and only if a majority

of truth assignments to φ satisfies φ, then DKL < 1/4 log(
1/4
1/2 ) + 3/4 log(

3/4
1/2 ) =

3/4 log 3/2−1/4 = q. As the reduction can be done in polynomial time, this proves
that RelativeEntropy is PP-complete. ut

In subsequent sections we will discuss the complexity of lowering the relative
entropy DKL by means of belief revision, model revision, or by passive or active
intervention.

4 Revision of Beliefs

In this section we discuss belief revision, i.e., changing the probability distribu-
tion over the hypothesis variables, as a means to reduce relative entropy. We
formulate two decision problems that capture this concept; the first one focuses
on lowering the relative entropy to some threshold, the second one on lowering
the relative entropy by some amount.

BeliefRevision1
Instance: A Bayesian network B with designated variable subsets Hyp and Pred,
where Pr(Hyp) denotes the prior distribution over Hyp, and Pr(Pred) denotes the
posterior distribution over Pred; an observed distribution Pr(Obs) over Pred; a
rational number q.
Question: Is there a (revised) prior probability distribution Pr(Hyp)′ over Hyp
such that DKL[Hyp′] < q?

BeliefRevision2
Instance: As in BeliefRevision1.
Question: Is there a (revised) prior probability distribution Pr(Hyp)′ over Hyp
such that DKL[Hyp]−DKL[Hyp′] > q?

We prove that both problems are PP-hard via a reduction from Majsat, again
using the construct that we used in the proof of Theorem 1, but we redefine
the conditional probability distribution Pr(P | Vφ, H) and we redefine Pr(Hyp),
Pr(Obs), and q. Let Pr(P | Vφ, H) be defined as follows:

Pr(P = t | Vφ, H) =


3/8 if Vφ = t,H = t
0 if Vφ = t,H = f
1/8 if Vφ = f,H = t
0 if Vφ = f,H = f



We set Pr(Hyp) to Pr(H = t) = 0 and Pr(Obs) to Pr(P = t) = 15/16. For Be-

liefRevision1, we redefine q = q1 = 1/4 log(
1/4

15/16 )+3/4 log(
3/4
1/16 ). For BeliefRe-

vision2, we redefine q = q2 = 4− 1/4 log(
1/4

15/16 )− 3/4 log(
3/4
1/16 ). We now claim the

following.

Theorem 3. BeliefRevision1 and BeliefRevision2 are PP-hard, even for
singleton binary variables Pred and Hyp.

Proof. To prove PP-hardness, we reduce BeliefRevision from Majsat. Let φ
be an instance of Majsat and let Bφ be the Bayesian network constructed from
φ as described above. Observe that in Bφ DKL[Hyp] is independent of Pr(Vφ) as
Pr(P = t | Vφ, H) = 0 (as Pr(H = t) = 0) and thus DKL[Hyp] = 0+log( 1

1/16 ) = 4.

We now investigate the effect of revising the hypothesis distribution Pr(Hyp)

to Pr(Hyp)′ . For every probability distribution Pr(Vφ),DKL increases when Pr(H =
t) goes to 0, and decreases when Pr(H = t) goes to 1. That is, DKL[Hyp′] is min-
imal for Pr(Hyp)′ = Pr(H = t) = 1. In general, for Pr(H = t) = 1 and Pr(Vφ) =

p, Pr(P = t | Vφ, H) = (2p+ 1)/8 and DKL[Hyp′] = (2p+ 1)/8 log(
(2p + 1)/8

15/16 ) +

(7− 2p)/8 log(
(7 − 2p)/8

1/16 ). For Pr(Vφ) = 1/2 and Pr(Hyp)′ = Pr(H = t) = 1, Pr(P =

t | Vφ, H) = 1/4 and DKL[Hyp′] = 1/4 log(
1/4

15/16 ) + 3/4 log(
3/4
1/16 ). We have in that

case that DKL[Hyp]−DKL[Hyp′] = 4− 1/4 log(
1/4

15/16 )− 3/4 log(
3/4
1/16 ).

In particular if and only if Pr(Vφ) > 1/2 there exists a revised hypothesis
distribution Pr(Hyp)′ (i.e., Pr(H = t) = 1) such that DKL[Hyp′] < q1 and that
DKL[Hyp]−DKL[Hyp′] > q2. Now, Pr(Vφ) > 1/2 if and only if there is a majority
of truth assignments to φ that satisfies φ. Given that the reduction can be
done in polynomial time, this proves PP-hardness of both BeliefRevision1
and BeliefRevision2. ut

Note that these problems are not known or believed to be in PP, as we need
to determine a revised probability distribution Pr(Hyp)′ as well as computing
the relative entropy. In case Hyp is a singleton binary variable (as in our con-
strained proofs), the probability Pr(Pred) depends linearly on this distribution
[4], but the complexity of this dependency grows when the distribution spans
multiple variables. This makes a polynomial sub-computation of Pr(Hyp)′ , and
thus membership in PP, unlikely. However, we can non-deterministically guess
the value of Pr(Hyp)′ and then decide the problem using an oracle for Rela-
tiveEntropy; for this reason, the problems are certainly in the complexity
class NPPP.

5 Revision of Models

In the previous section we defined belief revision as the revision of the prior
distribution over Hyp. We can also revise the stochastic dependences in the
model, i.e., how Pred depends on Hyp (and Int). However, a naive formulation



of model revision will give us a trivial algorithm for solving it, yet unwanted side
effects.

NaiveModelRevision
Instance: A Bayesian network B with designated variable subsets Hyp and
Pred, where Pr(Pred) denotes the posterior distribution over Pred; an observed
distribution Pr(Obs) over Pred; a rational number q.
Question: Is there a probability distribution Prnew over the variables in B such
that DKL[new] < q?

Note that this problem can be solved rather trivially by reconfiguring the
CPTs such that Pr(Pred) = Pr(Obs) and thus DKL[new] = 0. This has of course
consequences for previous experiences—we are likely to induce unexplained past
prediction errors. However, we cannot assume that we have access to (all) previ-
ous predictions and observations, making it close to impossible to minimize joint
prediction error over all previous predictions and observations. As we do want to
constrain the revisions in some way or another, we propose to revise the current
model by allowing modification only of a designated subset of parameters in the
model. So, we reformulate model revision to decide whether we can decrease
DKL by a change in a subset p of parameter probabilities in the network.2 As
in belief revision, we define two variants of the decision problem.

ModelRevision1
Instance: A Bayesian network B with designated variables Hyp and Pred, where
Pr(Pred) denotes the posterior distribution over Pred; an observed distribution
Pr(Obs) over Pred; a subset P of the parameter probabilities represented by PrB;
a rational number q.
Question: Is there a combination of values p to P such that DKL[p] < q?

ModelRevision2
Instance: As in ModelRevision1.
Question: Is there a combination of values p to P such that DKL −DKL[p] > q?

We will show that these problems are NPPP-complete, that is, as least as hard
as Partial MAP [24] and Parameter Tuning [21]. To prove NPPP-hardness,
we reduce from the following NPPP-complete problem:

E-Majsat
Instance: A Boolean formula φ with n variables, partitioned into sets XE =
x1, . . . , xk and XM = xk+1, . . . , xn for 1 ≤ k ≤ n.
Question: Is there a truth assignment xE to XE such that the majority of truth
assignments to XM together with xE satisfy φ?

2 One of the anonymous made the interesting observation that changing the network
structure (i.e., removing or adding arcs) can also be seen as model revision. We do
not address that aspect here.
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Fig. 3. The Bayesian network Bφex that is constructed from the E-Majsat example
φex.

We will use the following E-Majsat instance (φex,XE,XM) as a running exam-
ple in the construction: φex = (¬(x1∨x2))∧(¬(x3∨¬x4)),XE = {x1, x2},XM =
{x3, x4}; note that this is a ‘yes’-instance to E-Majsat: for x1 = x2 = f , three
out of four truth assignments to XM satisfy φex.

We construct Bφex from φex in a similar way as in the proof of Theorem 3,
but we add another binary variable X0 as an additional parent of P , with prior
probability distribution Pr(X0 = t) = 0 (Figure 3). We define Pr(P | Vφ, H,X0)
as follows:

Pr(P = t | Vφ, H,X0) =


3/8 if Vφ= t,H=X0 = t
1/8 if Vφ=f,H=X0 = t
0 otherwise

We redefine Pr(Hyp) to Pr(H = t) = 1/2 and Pr(Obs) to Pr(P = t) = 31/32.
In addition, we designate the sets of variables XE and XM in the network,

and we set P = XE ∪ {X0}. We set q = q1 = 1/8 log(
1/8

31/32 ) + 7/8 log(
7/8
1/32 ) and

q = q2 = 5− 1/8 log(
1/8

31/32 )− 7/8 log(
7/8
1/32 ).

We now claim the following.

Theorem 4. ModelRevision1 and ModelRevision2 are NPPP-complete, even
for singleton binary variables Pred and Hyp.

Proof. Membership follows from the following algorithm: non-deterministically
guess a combination of values p and compute the (change in) relative entropy.



This can be done in polynomial time using a non-deterministic Turing Machine
with access to an oracle for problems in PP.

To prove NPPP-hardness, we reduce ModelRevision from E-Majsat. Let
(φ,XE,XM) be an instance of Majsat and let Bφ be the Bayesian network
constructed from φ as described above. Observe that in Bφ, given the prior
probability distribution of X0, we have that Pr(P = t | Vφ, H,X0) = 0 indepen-
dent of the probability distribution of Vφ, and thus DKL = 0 + log(1/32) = 5. If
we revise the prior probability distribution of X0, we observe that DKL decreases
when Pr(X0 = t) goes to 1; DKL[Pr(X0=t)] is minimal for Pr(X0 = t) = 1. In that
case, for Pr(Vφ) = p, Pr(P = t | Vφ, H,X0) = (2p+ 1)/16 and DKL[Pr(X0=t)=1] =
(2p+ 1)/16 log(

(2p + 1)/16
31/32 ) + (15− 2p)/16 log(

(15 − 2p)/16
1/32 ).

For Pr(Vφ) = 1/2, Pr(P = t | Vφ, H,X0) = 1/8 and DKL[Pr(X0=t)=1] =
1/8 log(

1/8
31/32 ) + 7/8 log(

7/8
1/32 ). We have in that case that DKL −DKL[Pr(X0=t)=1] =

5− 1/8 log(
1/8

31/32 )− 7/8 log(
7/8
1/32 ).

If there exists a truth assignment xE to XE such that the majority of truth
assignments to XM satisfies φ, then there exists a combination of values p to
P = XE ∪ {X0} such that Pr(Vφ) > 1/2 and thus DKL[Pr(X0=t)=1] < q1 and
DKL −DKL[Pr(X0=t)=1] > q2; namely, the combination of values to XE that sets
Pr(Xi = t) to 1 if Xi ∈ XE is set to t, and Pr(Xi = t) to 0 if Xi ∈ XE is set
to f , together with setting Pr(X0 = t) to 1. Vice versa, if we can revise P such
that DKL[Pr(X0=t)=1] < q1 and that DKL − DKL[Pr(X0=t)=1] > q2, then there
exists a truth assignment xE to XE such that the majority of truth assignments
to XM satisfies φ, namely, the truth assignment that sets Xi ∈ XE to t if
Pr(Xi = t) ≥ 1/2 and to f otherwise.

Given that the reduction can be done in polynomial time, this proves NPPP-
completeness of both ModelRevision1 and ModelRevision2. ut

6 Adding Additional Observations to the Model

Apart from revising the probability distribution of the hypotheses and from re-
vising the parameters in the model, we can also lower relative entropy by some
action that influences either the outside world or our perception of it. By observ-
ing previously unobserved variables in the model (i.e., changing our perception of
the world), the posterior probability of the prediction can be influenced; similarly,
we can intervene in the outside world, thus influencing the posterior probability
over the observation. In both cases, we will need to decide on which observations
to gather, respectively which variables to intervene on. Again we assume that the
set of allowed observations, respectively interventions, is designated. We will first
focus on the question which candidate observations to make. As in the previous
two problems, we formulate two decision problems that capture this question.

AddObservation1
Instance: A Bayesian network B with designated variables Hyp and Pred, where
Pr(Pred) denotes the posterior distribution over Pred; an observed distribution



Pr(Obs) over Pred; and rational number q. Let O ⊆ Int denote the set of observ-
able variables in B.
Question: Is there a joint value assignment o to O such that DKL[o] < q?

AddObservation2
Instance: As in AddObservation1.
Question: Is there a joint value assignment o to O such that DKL −DKL[o] > q?

While these problems are conceptually different from the ModelRevision prob-
lems, from a complexity point of view they are very similar: the effect of setting
a prior probability of a variable Xi in the proof construct to 1, and observing
its value to be t, are identical; the same holds for setting it to 0, respectively
observing its value to be f . This allows us to prove NPPP-completeness of Ad-
dObservation using essentially the same construct as in the proof of Theorem
4; however, we must take care that the prior probability distribution of X0 is
such that no inconsistencies in the network emerge as a result of observing its
value to t. In particular, if Pr(X0 = t) = 0, then we cannot observe X0 to be t
without creating an inconsistency in the network.

So, we redefine Pr(X0 = t) = 1/2; now, Pr(P = t | Vφ, H,X0) (and thus also
DKL) becomes dependent of the probability distribution of Vφ. In particular, for
Pr(Vφ) = p we have that Pr(P = t | Vφ, H,X0) = (2p+ 1)/32 and consequently,

DKL = (2p+ 1)/32 log(
(2p + 1)/32

31/32 ) + (31− 2p)/32 log(
(31 − 2p)/32

1/32 ). We therefore rede-

fine q2 = 1/16 log(
1/16
31/32 ) + 15/16 log(

15/16
1/32 ) − q1 = 1/16 log(

1/16
31/32 ) + 15/16 log(

15/16
1/32 ) −

1/8 log(
1/8

31/32 )− 7/8 log(
7/8
1/32 ). We set O = XE ∪ {X0}.

Theorem 5. AddObservation1 and AddObservation2 are NPPP-complete.

Proof. Membership follows from a similar argument as for ModelRevision. To
prove NPPP-hardness, we again reduce from E-Majsat. Let (φ,XE,XM) be an
instance of E-Majsat and let Bφ be the Bayesian network constructed from φ
as described above. The probability distribution Pr(P = t | Vφ, H,X0) depends
as follows on the observed value of X0: Pr(P = t | Vφ, H,X0 = t) = (2p+ 1)/16
and Pr(P = t | Vφ, H,X0 = f) = 0. In particular, if Pr(Vφ) > 1/2, then Pr(P =

t | Vφ, H,X0 = t) > 1/8 and hence DKL[X0=t] < 1/8 log(
1/8

31/32 ) + 7/8 log(
7/8
1/32 ).

Similarly, Pr(P = t | Vφ, H,X0 = f) = 0 and hence DKL[X0=f ] = 5. So, only
if X0 is observed to be t and Pr(Vφ) > 1/2 we have that DKL[X0=t] < q1 and
DKL −DKL[X0=t] > q2.

If there exists a truth assignment xE to XE such that the majority of truth
assignments to XM satisfies φ, then there exists a joint value assignment to O =
XE∪{X0} such that Pr(Vφ) > 1/2 and DKL[o] < q1 and that DKL −DKL[o] > q2.
Namely, the joint value assignment that sets X0 to t and sets the variables in XE

according to xE. And vice versa, if there exists a joint value assignment o to O
such that DKL[o] < q1 and DKL −DKL[o] > q2, then there is a truth assignment
to XE such that the majority of truth assignments to XM satisfy φ, namely, the
truth assignment that sets Xi ∈ XE to t if Xi ∈ o is observed as t, and to f



otherwise. As this reduction can be done in polynomial time, this proves that
AddObservation1 and AddObservation2 are NPPP-complete. ut

7 Intervention in the Model

We can bring prediction and observation closer to each other by changing our
prediction (by influencing the posterior distribution of the prediction by revi-
sion of beliefs, parameters, or observing variables), but also by what in the HPC
framework is called active inference: actively changing the causes of the observa-
tion to let the observation (“the real world”) match the prediction (“the model of
the world”). This is a fundamental aspect of the theory, which is used to explain
how a desire of moving one’s arm—i.e., the expectation or prediction that one’s
arm will be in a different position two seconds from now—can yield actual motor
acts that establish the desired movement. We implement this as intervention in
the Bayesian framework, and the problem that needs to be resolved is to decide
how to intervene.

The predicted result of an action of course follows from the generative model,
which represents how (hypothesized) causes generate (predicted) effects, for ex-
ample, how motor commands sent to the arm will change the perception of the
arm. So, from a computational point of view, the decision variants of the In-
tervention problem are identical to the decision variants of the Observation
problem:

Intervention1
Instance: A Bayesian network B with designated variables Hyp and Pred, where
Pr(Pred) denotes the posterior distribution over Pred; an observed distribution
Pr(Obs) over Pred; and rational number q. Let A ⊆ Int denote the set of inter-
venable variables in B.
Question: Is there a joint value assignment a to A such that DKL[a] < q?

Intervention2
Instance: As in Intervention1.
Question: Is there a joint value assignment a to A such that DKL −DKL[a] > q?

Corollary 1. Intervention1 and Intervention2 are NPPP-complete.

8 Parameterized Complexity

What situational constraints can render the computations tractable? From the
intractability proofs above we can already infer what does not make prediction
error minimization tractable. Even for binary variables, singleton hypothesis and
prediction nodes, and at most three incoming arcs per variable, all problems re-
main intractable. It is easy to show that ModelRevision, AddObservation,



and Intervention remain PP-hard when there is just a single designated pa-
rameter, observable or intervenable variable. The complexity of these problems
is basically in the context that modulates the relation between hypothesis and
prediction.

AddObservation and Intervention are fixed-parameter tractable for the
parameter set {treewidth of the network, cardinality of the variables, size of
Pred} plus the size of O, respectively A. In that case, the computation of DKL

is tractable, and we can search joint value assignments to O, respectively A
exhaustively. Similarly, when the computation of DKL is tractable, one can use
parameter tuning algorithms to decide ModelRevision and BeliefRevision;
these problems are fixed-parameter tractable for the parameter set {treewidth
of the network, cardinality of the variables, size of Pred} plus the size of P,
respectively Hyp [5].

9 Conclusion

Hierarchical Predictive Coding (HPC) is an influential unifying theory in the-
oretical neuroscience, proposing that the brain continuously makes Bayesian
predictions about future states and uses the prediction error between prediction
and observation to update the hypotheses that drove the predictions. In this
paper we studied HPC from a computational perspective, formalizing the con-
ceptual ideas behind hypothesis updating, model revision, and active inference,
and studying the computational complexity of these problems. Despite rather
explicit claims on the contrary (e.g., [7, p.191]), we show that the Bayesian
computations that underlie the error minimization mechanisms in HPC are not
computationally tractable in general, even when hypotheses and predictions are
constrained to binary singleton variables. Even in this situation, rich contextual
modulation of the dependences between hypothesis and prediction may render
successful updating intractable. Further constraints on the structure of the de-
pendences (such as small treewidth and limited choice in which parameters to
observe or observations to make) are required.

In this paper, we focused on computations within a particular level of the
hierarchy and on error minimization. There is more to say about the compu-
tations that are postulated within HPC, for example how increasingly rich and
complex knowledge structures are learned from prediction errors. We leave that
for further research.
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