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Abstract
Many theoretical and empirical contributions to the Predictive Processing account emphasize
the important role of precision modulation of prediction errors. Recently it has been proposed
that the causal models used in human predictive processing are best formally modeled by
categorical probability distributions. Crucially, such distributions assume a well-defined,
discrete state space. In this paper we explore the consequences of this formalization. In
particular we argue that the level of detail of generative models and predictions modulates
prediction error. We show that both increasing the level of detail of the generative models
and decreasing the level of detail of the predictions can be suitable mechanisms for lowering
prediction errors. Both increase precision, yet come at the price of lowering the amount of
information that can be gained by correct predictions. Our theoretical result establishes a key
open empirical question to address: How does the brain optimize the trade-off between high

precision and information gain when making its predictions?

Keywords: predictive processing; precision; level of detail; structured representations; formal

modeling; causal Bayesian networks
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To be precise, the details don’t matter:

On predictive processing, precision, and level of detail of predictions

Introduction

The predictive processing account has received widespread attention. Building on
pioneering hierarchical predictive coding models of perception (Rao & Ballard, 1999; Lee &
Mumford, 2003; Friston, 2005), recent literature proposes that the whole of perception,
cognition, and action (Clark, 2013a) or even the entire operation of the brain (Hohwy, 2013)
can be summarized by a simple, unifying principle. Rather than processing inputs in a mere
bottom-up fashion, the brain is assumed to predict its inputs in a hierarchical manner by
generative (causal) models and to process only that part of the input that is yet unexplained—
the so-called prediction error. Sometimes prediction errors stem from the inherent stochastic
nature of the world. To illustrate, take for instance, the observation of the outcome of a coin
toss. We will have high confidence in our prediction that the coin will either land on heads or
that it will land on tails, each event having a probability of 0.5; the observation of the actual
outcome-while generating one bit of information-will normally not surprise us, as both
events are fully consistent with our experience and knowledge of tossing a (fair) coin. One’s
generative models will therefore presumably not be changed as a consequence of this
prediction error.

However, sometimes prediction errors are the result of an incomplete, immature, or
just plain wrong generative model; think of trying an unknown dish in a restaurant or
standing on skates for the first time. The uncertainty here is due to a lack of knowledge, and
the prediction error will have impact: It allows the brain to update and improve its generative
models (Yu & Dayan, 2005; Payzan-LeNestour & Bossaerts, 2011). These different roles of

prediction errors, depending on the source of the uncertainty (irreducible, i.e., due to the
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inherent (known) stochastic nature of the world; or reducible, i.e., due to our lack of
knowledge) are captured by the precision of the prediction error: A context-specific
weighting of the prediction error that drives less or more attention to prediction errors. The
net effect of the observation is thus a function of the precision of the prediction (capturing the
uncertainty of the outcome) and the precision of the prediction error (capturing the model
confidence).

Traditionally, computational operationalizations of the predictive processing account
formulate the generative models (i.e., the stochastic relation between hypothesized causes and
the predicted effects thereof) as Gaussian densities. Recently, however, Friston, Rigoli,
Ognibene, Mathys, FitzGerald, & Pezzulo (2015) propose to use categorical (discrete)
probability distributions to describe the stochastic generative models that give rise to the
predictions. An important distinction between Gaussian densities and categorical probability
distributions is that in the latter the state space granularity (how detailed are the generative
models and the predictions that follow from them) is crucial. Whereas the amount of
uncertainty (or precision) in a Gaussian density can be adequately described by its variance,
the precision in a categorical distribution must be described by its entropy (Shannon, 1948),
which is a function of both the state space granularity and the nonuniformity of the
distribution (Kwisthout & van Rooij, 2015).

Note that this state space granularity is context-dependent. Crucial in the coin-tossing
example is that we describe the outcome of “tossing a coin’ in terms of the side of the coin to
land on top, disregarding all other information in the outcome (such as the amount of rotation
of the coin in the plane) as irrelevant. Compare this with throwing a regular die. As all sides
of the die are equally likely to land on top, one can expect an odd number to fall just as often
as an even number. When the outcome of a die is predicted in terms of whether the number

will be odd or even (and the result interpreted likewise), the precision of that prediction is
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equal to the precision of tossing a coin. However, if the outcome of a die is predicted in terms
of the number of pips, and the result interpreted likewise, the prediction is more uncertain —
simply, because there are more possible events (‘1’, ..., ‘6’; rather than ‘odd’ or ‘even’) and
each event is equally likely — therefore, the prediction will have lower precision because a
prediction was made (and the outcome interpreted) at a higher level of detail (Figure 1). The

precision of a prediction, hence, is indeed a function of both state space and nonuniformity.

Disentangling precision into level of detail and nonuniformity becomes necessary
when cognitive (neuro) scientists aim to describe predictions and observable outcomes in
terms of discrete, categorical events (Kwisthout & van Rooij, 2015). Such outcomes may be
the result of a coin flip (heads, tails) or of a die throw (odd, even; or 1...6, depending on how
detailed our prediction is); they may describe the next action of a car in front of us (turn left,
turn right, park, brake, or just keep driving), or of our spouse’s emotions (sad, frustrated,
happy, angry, bored; or whatever distinctions one makes); it may be a description of what one
expects to see in a forest (“trees and other life forms’; or, when looking more closely, a
chestnut tree, a squirrel, moss, bugs, etcetera). The appropriate level of detail that describes
such outcomes is typically highly context-specific and depends on the epistemic and practical
goals of the observing agent.

In this paper, we explore the computational and theoretical consequences of
formalizing predictive processing in categorical probability distributions. After describing the
predictive processing account more specifically, we introduce level of detail as a concept that
intuitively captures the state space granularity, and together with the nonuniformity of the

distribution describes its precision or entropy. We define the key computational processes in
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predictive processing in terms of (hierarchical, dynamical, multi-dimensional) causal
Bayesian networks (Pearl, 2000). We show that manipulating the level of detail of generative
models and/or predictions allows for the modulation of precision: For example, we can
increase the precision of a prediction by decreasing the level of detail of the prediction. This,
however, comes at the loss of information that can be gained by correct predictions. How this
trade-off between predictions with high precision and predictions with high information gain

is resolved in the brain is a key open theoretical (and empirical) question to address.

Predictive Processing

The Predictive Processing (hereafter PP) account is becoming more and more popular
as a unifying theory of what drives our cortical processes.” It encompasses key concepts such
as the Bayesian brain (the brain encodes probability measures and balances prior expectations
to sensory evidence according to the laws of probability theory, in particular Bayes’ theorem;
Knill & Pouget, 2004), the brain as prediction machine (the brain continuously makes
predictions about future sensory evidence based on its current best model of the causes of
such evidence; Dayan, Hinton, & Neal, 1995; Hohwy, 2007), the free energy principle (the
brain minimizes overall expected prediction error as a proxy to minimize free energy; Friston,
2010) and the hierarchical organization of the brain (Friston, 2005; 2008). In particular it is
claimed that the PP account applies to the entire cortex (Clark, 2013a) and that the same
generic apparatus and mechanisms are used for both lower and higher cognition, e.g., both
low-level vision and high-level intention attribution (Clark, 2013b; Kilner, Friston, & Frith,
2007; Koster-Hale & Saxe, 2013). However, to account for “higher cognitive phenomena

such as thought, imagery, language, social cognition, and decision-making” there is still

! An illustration of this might be the observation that a separate outlet (Cleeremans & Edelman, 2013) was
created to allow for the large number of commentaries to Clark’s (2013a) target article in Behavioral and Brain
Sciences. Also indicative is that a search on “predictive coding” and “predictive processing” on Google Scholar
together found about 2,500 papers published in 2014.
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“plenty of work to do” (Hohwy, 2013, p. 3). In particular it is as yet unknown “What [...] the
local approximations to Bayesian reasoning look like as we depart further and further from
the safe shores of basic perception and motor control? What new forms of representation are
then required, and how do they behave in the context of the hierarchical predictive coding
regime?” (Clark, 2013a, p. 201).

PP can be understood as a cascading hierarchy of increasingly abstract (e.g., in time
scale or space) hypotheses about the world, where the predictions on one level of the
hierarchy are identified with the hypotheses at the subordinate level. The inference process,
i.e., inferring assumed causes from stimuli, is presumed to be facilitated by having
predictions (stemming from the generative, top-down process) at each level of the hierarchy,
comparing these predictions with the observed (or inferred) observations, and using the
prediction error to update both the current hypothesis and to learn for future predictions.

For example, in the action understanding domain, the hierarchy can include the actual
visual, auditory, tactile, or olfactory inputs, like a series of visual inputs, at the lowest level,
one level above we may situate the kinematics, like a grasping movement of the hand,
followed by the more abstract object-oriented actions (picking up a cup). Eventually, the
hierarchy may include complex social cognitive constructs such as future intentions, social
conventions, world knowledge, context etcetera (Kilner, Friston, & Frith, 2007). However,
the PP account is currently computationally fleshed out predominantly at the basic perception
and motor control level (Clark, 2013a; see also Hohwy, 2013). In particular, computational
implementations of PP (typically grouped under the denominator hierarchical predictive
coding or HPC), such as those suggested by Rao and Ballard (1998), Lee and Mumford
(2003), and Friston (2005; 2010), reside at that level.

In a probabilistic interpretation, making a prediction based on the current hypothesis

in any of the assumed levels corresponds to computing a posterior probability distribution
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P(Pred | Hyp) over a space of candidate predictions, given the current estimated distribution
over a space of hypotheses.” Computing (the magnitude of) a prediction error corresponds to
computing the relative entropy or Kullback-Leibler divergence Dk, (Obs ||Pred) between the
actual and the predicted observation®** (Friston, 2010). This prediction error is weighted with
its precision; a parameter that reflects the amount of reducible uncertainty (or estimation
uncertainty; Payzan-LeNestour & Bossaerts, 2011) in the current context. Which precision is
warranted in a particular context depends on so-called hyperpriors defined as “prior beliefs
about the precision of beliefs about the state of the world” (Friston, Lawson, & Frith, 2012,
p.1; see also Friston, 2005). The precision-weighted prediction error is used to bring
prediction and observation closer to each other; either by revising the original hypothesis
with an updated hypothesis (typically implemented by some form of gradient descent (Friston,
2002) or variational Bayes (Friston & Kiebel, 2009)), by revising the parameters of the
generative model that generated the predictions (Friston, 2003), by obtaining additional
information, i.e., by sampling the world (Friston et al., 2012), or by manipulating the state of
the world, i.e., by active inference (Brown, Friston, & Bestmann, 2011). Which strategy is
employed depends on various aspects, for example the amount of reducible versus irreducible
uncertainty in the environment (Yu & Dayan, 2005). On a longer time scale, prediction errors
(or the relative absence thereof) also shape the generative models, including hyperpriors, to

improve future predictions (Dayan, 2012).

2 There appears to be some ambiguity in the literature about whether a prediction (hypothesis) refers to a
distribution over candidate predictions (hypotheses), or the mode of that distribution; see, e.g., Kilner et al.
(2007, p. 161), Hohwy, Roepstorff, & Friston (2008, p. 691), and Hohwy (2013, p. 61) for examples that
suggest the latter. In this paper we adhere to the view (e.g., Lee & Mumford, 2003; Knill & Pouget, 2004;
Friston, 2009) that suggests that whole distributions (or approximations thereof) are maintained, without
claiming that this debate has fully settled yet. In the remainder, unless explicitly noted, hypothesis refers to a
probability distribution over a space of candidate hypotheses, and similar for predictions.

* We make the assumption that the observation is a joint probability distribution over the prediction variables
that may be deterministic. Our formalism allows for both uncertain and certain observations; the latter is
represented with a deterministic probability distribution that assigns a probability of 1 to the observed joint
value assignment of the joint distributions.

* The difference between the predicted and observed distribution is also referred to as the complexity in the
model comparison literature, and is also known as Bayesian surprise (Itti & Baldi, 2009).
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The PP account has traditionally focused on visual perception (Rao and Ballard,
1998); for example, it has been used to explain binocular rivalry (Hohwy, Roepstorff, &
Friston, 2008) and perceptual categorization (Kiebel, von Kriegstein, Daunizeau, & Friston,
2009). One step further is the entanglement of perception and motor control, known as active
inference (Friston, Daunizeau, Kilner, & Kiebel, 2010; Brown, Friston, & Bestmann, 2011).
Here, motor acts are seen as a consequence of proprioceptive prediction errors, i.e., motor
acts actively change the sensory inputs in order to overcome errors between what is perceived
and what is expected.

However, PP has been proposed for domains that do extend from Clark’s “safe shores
of basic perception and motor control”. For example, Kilner et al. (2007) proposed predictive
processing as a mechanism for action understanding, suggesting that the mirror neuron
system plays a role in making hierarchical predictions of other’s actions. Brown and Briine
(2012) extended this idea to incorporate social interaction in a broader context, pointing at
emerging evidence of a shared neural representation and internal models of other’s actions
that allows us to understand the other’s goals and intentions. Koster-Hale and Saxe (2013)
reviewed evidence for key signatures of the PP framework in brain areas that are associated
with theory of mind, such as the superior temporal sulcus (STS), temporo-parietal junction
(TPJ) and medial prefrontal cortex (mPFC).

Proposed applications of PP at such higher levels of cognitive processing, however,
do not yet postulate the “new forms of representation” Clark called for. They tend to focus on
more conceptual or verbal models (e.g., the Dr. Jekyll and Mr. Hyde-example in Kilner et al.
(2007, p. 164)) or seek to find evidence for key characteristics of PP (such as the inhibition of
predicted signals in particular brain areas like STS and TPJ (Koster-Hale & Saxe, 2013) and
the anterior insular cortex (AIC; Seth, Suzuki, & Critchley, 2012), or a beta/gamma

dissociation in the Granger-causal connectivity in the Action-Observation Network (AON;
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Van Pelt, Heil, Kwisthout, Ondobaka, van Rooij, & Bekkering, in press). While no
computational models at these higher levels have been proposed yet, Koster-Hale and Saxe
(2013) indeed argued that such models “must be quite abstract, and include expectations that
actions will be rational and efficient, and consistent with, for example, the individual’s beliefs,
personality traits, and social norms.” (Koster-Hale & Saxe, 2013, p. 839).

In cognitive science it is well known that higher-order cognitive processing requires
some form of structured representations (Dietrich & Markman, 2003; Griffiths et al., 2010;
Markman, 1999), i.e., representations that can encode not only lists of features or variables
but also (higher-order) relations between them. Here, we propose a formal version of PP for
cognitive processing using structure representations suited for the PP framework, specifically
causal Bayesian networks (Pearl, 2000). Such networks allow for complex, structured, and
categorical stochastic dependences between hypotheses and predictions at various levels of
detail, as a required for cognitive processing (Griffiths et al., 2010). In the next section we
will discuss how the basic concepts of the PP account can be defined in this computational

framework.

Predictive Processing in causal Bayesian networks

Causal Bayesian networks are graphical models that represent stochastic causal
relationships between discrete random variables. They extend ‘ordinary” Bayesian networks
in that the arcs in the graph reflect not merely bidirectional stochastic dependences in the
probability distribution, but causal interactions between random variables. The formal theory
is built on the notion of interventions in probability distributions (Pearl, 2000). An
intervention do(X = x) intervenes ‘from outside the model’ by forcing the random variable X
to take on the value x; the effect on a variable Y, i.e., Pyox = »(Y) is to be distinguished from

the conditional probability P(Y | X = x). The former represents the probability distribution of
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Y, given that X is (externally) forced to take on the value x; the latter represents the
conditional probability distribution of Y if X were observed to be x. The distinction between
these notions may be illustrated with the following example. Assume that a light switch
operates a light bulb: Putting the light switch to the On position causes the light bulb to go on.
If we observe the light bulb to be on, we can infer that the light switch is most probably in the
On position (rather than there being a short circuit etc.), and vice versa, if we observe the
light switch to be in the On position, we can infer that the light bulb is most probably on.
Intervention works a bit different. If we intervene in the system by putting the light switch on,
we can again infer that the light bulb is most probably on; however, if we intervene by
throwing a stone at the light bulb and scattering it, nothing can reasonably be inferred about
the state of the light switch: interventions on effects do not influence causes.

In our implementation of PP, every level of the hierarchical model is depicted by a
causal Bayesian network B, where the variables of this network are partitioned into
hypothesis variables Hyp (jointly representing the set of working hypotheses in this level),
prediction variables Pred (jointly representing the predictions that are based on these
hypotheses), and intermediate variables Int that are neither hypothesis nor prediction
variables but do influence the outcome of the predictive process. These intermediate variables
may, e.g., represent contextual effects, lateral connections (e.g., between different modalities),
or latent variables. The arcs in the network represent causal relations.” The network is
dynamic, in the sense that the current probability distribution over the variables is not only
statically dependent on the causal relationships, but also on dynamic interactions in time. For
example, the current prediction depends not only on the current hypothesis, but also on the
prediction one time slice ago. This dynamical process is represented by inter-time slice

connections between (some of) the variables in each level of the hierarchy. We do not impose

® While our theory is worked out for discrete causal Bayesian networks, it can be in principle generalized to
other formalizations. For example, one can model non-causal relationships, e.g., stochastic co-occurrences
between visual and auditory inputs, using so-called chain graphs (Lauritzen & Richardson, 2002).
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structural constraints on the network structure, other than that we require that all prediction
variables within a (static) time-slice of the dynamic network are sinks (have no outgoing arcs)
and all hypothesis variables within a time-slice are sources (have no incoming arcs). The
prediction variables at each level are identified with the hypothesis variables at the
subordinate level. The hierarchical structure is depicted in Figure 2a, while an example level

is illustrated in Figure 2b.

Hypothesis, prediction, observation and prediction error are defined in our
formalization as follows. A hypothesis is simply the prior joint probability distribution Py,
over the hypothesis variables Hyp. We define a prediction as the posterior probability
distribution Ppreq OVer the prediction variables, an observation as a (possibly deterministic)
probability distribution Pops Over the prediction variables that corresponds to observed or
inferred information about the state of these variables, the prediction error 3(Ppred, Pobs) as the
net residual of subtracting Ppreq from Pops, and the size of the prediction error as the
Kullback-Leibler divergence Dk (Pobs || Pered) between the two distributions®.

So far, the mathematical formalizations of prediction and prediction error in our
formalization are defined quite similarly as in the (non-structural) Gaussian models that
characterize conventional predictive coding formalizations. A crucial distinction, however, is
that in our formalization the precision of hypotheses and predictions is not defined by
variance but by entropy, viz., the combination of level of detail and non-uniformity. In the

next section we will describe both aspects of precision in our formalization.

® But see Thornton (this issue) for a different characterization of prediction errors and their sizes.
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Uncertainty and level of detail in Predictive Processing

A prediction in Predictive Processing always refers to a probability distribution over a
set of candidate predictions. The precision of a prediction refers to the entropy of the
distribution, that is, the amount of uncertainty, given a particular state space. The more
precise a prediction is at a given state space, the lower the entropy. The prediction error
depends on the precision of the prediction and on the actual observation: If a coin that is
biased towards tails falls on heads nevertheless the prediction error is much larger than when
it indeed falls on tails; the prediction error of a fair coin falling on either heads or tails would
be in between the two extremes (Figure 3).

Orthogonal to the precision of the prediction is the precision of the prediction error.
Whereas the precision of the prediction is a measure of the amount of uncertainty with
respect to the prediction, the precision of the prediction error is a measure of the nature of the
uncertainty; that is, whether it is reducible (can be decreased by learning) or irreducible (is
due to the inherent stochastic nature of the world). When we have confidence in the
generative model that generated the prediction, all uncertainty in the prediction can be fully
explained by the inherent stochastic nature of the many-to-many mapping between causes
and effects. In contrast, if we do not have confidence in the model — for example, because we
are still learning its statistical regularities — then part of the uncertainty in the prediction

cannot be explained.

In contrast to the common use of the term “precise’, a precise prediction is not
necessarily a detailed prediction, despite what the term *precision’ may suggest in everyday

usage. For example, “the visual stimulus is a robin” is a prediction on a fairly high level of
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detail, whereas “the visual stimulus is a bird” is a prediction on a lower level of detail; both
predictions can have a high or a low precision, depending on the entropy of these predictions.
For example, typically we will recognize a bird when it flies in front of us, but we may be
uncertain when we perceive fluttering in the visual periphery (Friston et al., 2012). Precision

thus can be specified for predictions at various levels of detail, such as illustrated in Table 1.

Table 1: Illustration of probability distributions at a high and low level of detail, with high
and low uncertainty

High level of detail Low level of detail
High Pr(robin) = 0.20, Pr(bird) = 0.54
uncertainty Pr(nightingale) = 0.15, Pr(butterfly) = 0.46

Pr(lark) = 0.19,
Pr(brimstone) = 0.22,
Pr(Peacock butterfly) = 0.24

Low Pr(robin) = 0.91, Pr(bird) = 0.95
uncertainty Pr(nightingale) = 0.01, Pr(butterfly) = 0.05

Pr(lark) = 0.03,
Pr(brimstone) = 0.02,
Pr(Peacock butterfly) = 0.03

Formally, we define the uncertainty of a prediction as the entropy (Shannon, 1948) of
the distribution corresponding with that prediction, we define the nonuniformity of a
prediction as the relative Shannon redundancy (Shannon, 1948) of the distribution’, and we
define the level of detail of a prediction as the state space granularity (Kwisthout, 2013) of
the distribution. The entropy H(Pred) of a prediction Pred (described in bits) is —> (xcpreq)
P(x)log2P(x), where x denotes a (concrete) candidate prediction from the probability
distribution. The relative Shannon redundancy R(Pred) of a prediction Pred is defined as

H(Pred) / log, |Q2(Pred)|, where (.) describes a state space and |Q(.)| describes the size of

7 We are indebted to one of the reviewers for suggesting this measure to us.
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that state space. For example, the entropy of the predictions with various level of detail, such
as depicted in Table 1 would be as follows: H(high detail, high uncertainty) = 2.30, H(high
detail, low uncertainty) = 0.61, H(low detail, high uncertainty) = 1.00, H(low detail, low
uncertainty) = 0.29. The corresponding relative Shannon redundancy is R(high detail, high
uncertainty) = 0.99, R(high detail, low uncertainty) = 0.26, R(low detail, high uncertainty) =
1.00, R(low detail, low uncertainty) = 0.29; capturing that the nonuniformity of the
distributions is similar in the high detail and in the low detail cases.

Level of detail, in contrast, is a measure on how fine-grained a probability distribution
is. From a given distribution at the highest level of detail we can ‘zoom out’ by aggregating
or clustering the values that the distribution can take. This can be done both for hypotheses
and for predictions (or observations) at any level of the hierarchy. Zooming in or out does not
influence a particular hypothesis—prediction relation; it just describes this relation (including
probabilistic dependencies), at a different level of abstraction. This is illustrated in Figure 4
using a conditional probability table describing P(Pred | Hyp), i.e., the probability distribution
over the prediction variables, given a particular distribution over the hypothesis variables for

both high and low detailed hypothesis and prediction state spaces.

The precision of a prediction at a particular level of detail can be seen as a (statistical)
property of the generative model at that level of detail. Which levels of detail are identified,
and what level of detail is appropriate in a particular context, is described by a family of
causal Bayesian networks, and a context-dependent hyperprior, respectively. Describing level

of detail both for the hypothesis and prediction and partially ordering the networks in a lattice,
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such as in Figure 4, gives us a mathematically elegant way of formulating the modulation of

level of detail both on the hypothesis level and on the prediction level.

Dealing with prediction errors

In the face of a prediction error, the brain can achieve a decrease of this prediction error
in a number of different ways (Friston, 2010; Friston et al., 2012; see also Kwisthout, 2014).
In particular, the brain could revise the hypothesized causes; revise the causal model that
generated the predictions from the hypothesized causes; it may lower prediction error by
observation of latent variables, or by intervention in the world (i.e., acting). In addition, the
brain may bring prediction and observation closer to each other by lowering the level of
detail of both, or by increasing the level of the hypothesis space. In this section, we explore
and formalize these different ways of dealing with prediction error in the context of the
lattices of causal Bayesian networks we described in the previous section. These different

ways are summarized in Figure 5.

Revising the hypotheses

Prediction error can be lowered by changing the distribution over the hypothesis variables
while keeping the model intact. It is typically appropriate in a situation where we encounter a
situation that may be unexpected, but which is perfectly possible within our world model and
no reason to update this model. This can be seen as a situation in which all uncertainty is
irreducible (Yu & Dayan, 2005) — the environment’s statistics are fully known. An example
might be the situation where we throw three dice that all land with sixes on top. It may be

rather unexpected, but it is nevertheless consistent with our generative model of the outcome
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of throwing dice. This hypothesis revision is formally defined as the computation of the
posterior probability P(Hyp|Pred), that is, updating the prior probability over Hyp in the light
of the (observed or inferred) distribution Pops(Pred). Note that this distribution Pops(Pred) is
fully determined by the prediction Ppreg(Pred) and the prediction error 6(Ppred, Pobs) as the

latter is defined as the result of subtracting Ppreq from Pops.

Revising the causal model

Prediction error can also be lowered by changing the model or some of its parameter
probabilities. This would be appropriate in a situation where prediction error is caused by a
change in the environmental properties, an apparent misrepresentation of the environment, or
simply ignorance with respect to the environment. This situation can be seen as unexpected
uncertainty respectively estimation uncertainty (Nassar et al., 2010; Payzan-LeNestour &
Bossaerts, 2011; Yu & Dayan, 2005). For example, we might expect two persons to shake
hands when they greet each other, but we may learn a different cultural experience like a fist
bump. This would require us to update the causal model by altering the stochastic
dependences and/or introducing new (values of) variables. Formally, this corresponds to
adding new variables to the Bayesian networks, increasing or decreasing the number of
values that a variable can take, or updating the conditional probability distributions in the

networks.

Evidence gathering
One may be able to reduce prediction error by gathering additional observations, or maybe
reconsideration of observations we already have. A typical example could be when one is

sitting in a train that is standing still at a railway station. When there is a train next to us at the
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opposite platform, and we observe movement, there is ambiguity whether we move or the
opposite train moves. This can be seen as a prediction error as the (more or less) uniform
hypothesis distribution leads to ambiguous or contradictory perceptual and vestibular
predictions. A natural way of resolving this ambiguity is by seeking evidence that can
discriminate between these hypotheses, in particular by looking at a stationary point, e.g., the
railway station, in order to lower prediction error.

Technically, we can formalize this by seeking observations for previously unobserved
intermediate variables in the network. For example, the singleton hypothesis node Hyp with
uniformly distributed values h; and h, connects to both the prediction variable Pred with
values p; and p, and the intermediate variable Int with values i; and i,; P(Pred = p; | Hyp = hy)
=1, (Pred=p2|Hyp=hy) =1, P(Int=1iy | Hyp =h;) = 1, and (Int =i | Hyp = hy) = 1. Now,
P(Pred) is uniformly distributed if P(Hyp) is uniformly distributed, but the observation Int =
i1 will influence the distribution of Pred via the distribution of Hyp; P(Pred = p; | Int = i) = 1,

and likewise (but in the other direction) will the observation Int = i,.

Intervention in the world
Prediction error between observation and prediction can be lowered by bringing prediction
closer to match the observation, but also by intervening in the world, thus changing the actual
inputs. The canonical example here is active inference (Brown, Friston, & Bestmann, 2011):
if there is a proprioceptive prediction error between the expected and actual position of one’s
limb, we engage in motor acts that intervene such as to bring the actual position closer to the
expected position.

Technically this can be formalized by an intervention in the generative causal model:
rather than (passively) observing the value a particular intermediate variable, we actively set

it (by external intervention) to its desired value (Pearl, 2000).
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Modulation of level of detail
Finally, we may be able to reduce prediction error by increasing the level of detail of the
hypotheses or by lowering the level of detail of the predictions and actual observations. For
example, when you observe me leaving the office with a coffee mug in my hand you may
predict that | desire to get some coffee and that | will place my cup in the coffee machine. An
observed movement towards the sink will lead to prediction error if you predicted a
movement towards the coffee machine. One way of lowering the prediction error is by re-
interpreting the prediction and observation in a less precise, more abstract manner, i.e., by
expecting “activities related to coffee making (such as cleaning one’s mug)” and interpreting
the observations accordingly. Alternatively, you may increase the level of detail of the model,
taking into account that | am holding a filthy coffee mug, yielding a different prediction.
Technically we can formalize this by changing the current causal Bayesian network in
the family that corresponds to the current layer to a different network, either with a more
fine-grained hypothesis space (to increase the level of detail of hypotheses) or with a less

fine-grained prediction space (to decrease the level of detail of predictions).

Summary

The causal Bayesian network framework allows for the representation of complex
relationships in generative models, including contextual influences, non-monotone relations,
and related models with varying state space granularity. Prediction, precision, prediction error,
and prediction error minimization can be elegantly described as computational processes that

operate on these structures.
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Conclusion and further work
In the previous sections we described how to formulate making predictions, computing
prediction errors, and lowering prediction errors by various means in a causal Bayesian
network formalization of PP. We thus proposed a concrete computational-level (Marr, 1982)
characterization of the representations and processes crucial in the predictive processing
account that allow this account to be explanatory when we focus on higher cognition,
affording the PP framework to gain formal application beyond the scope of low-level
perception and motor control. A crucial aspect of this formalization is level of detail,
capturing the state space granularity of the generative models; the level of detail and the
entropy of a distribution together describe its precision (Kwisthout & Van Rooij, 2015).

We identified six computational mechanisms for lowering prediction error. Four of
them have been proposed in the literature before, but have not previously been formalized for
categorical probability distributions. Perceptual inference (Friston & Stephan, 2007)
corresponds in our formalization with hypothesis revision, i.e., changing the current
probability distribution over the hypothesis variables without altering the generative model.
Active inference (Brown, Friston, & Bestmann, 2011) corresponds to active intervention, i.e.,
intervening in the generative model by clamping some variables to their desired values.
Sampling the world (Friston et al, 2012) corresponds to passive intervention, i.e., observing
the values of some of the variables in the generative model. Finally, learning (Friston, 2003)
is captured by model revision, i.e., by structurally ‘rewiring’ the generative model, adding
new candidate hypotheses or updating the causal relationships. We thus have a tight coupling
between psychological explanations in the predictive processing account and computational-
level processing in our formalization.

Two other mechanisms have, to the best of our knowledge, as of yet not found their

way into the neuroscience literature. However, the relevance of introducing level of detail of
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predictions in categorical distributions, and the modulation thereof as a means of lowering
prediction error, has recently been recognized (Friston, 2015, in response to Kwisthout & van
Rooij, 2015). As we argued elsewhere, there is a trade-off between making predictions that
are very likely to be correct (due to their generality) but carry little relevant information, and
predictions that allow for much information gain (due to their specificity) but are likely to be
incorrect (Kwisthout & van Rooij, 2015).

Which mechanism actually will be applied when faced with a prediction error? How is
this trade-off between information gain and expected prediction error resolved? These are
questions that can only be answered by subsequent empirical investigations and theory
forming. At this point, we can only speculate that, for example, model revision will be more
dominant than hypothesis revision when the precision of the prediction error is high, that in
early development predictions are made with low detail (due to immature generative models),
and that the information gain vs. prediction error trade-off may fall under the regime of free
energy minimization (cfm. Friston, 2015). It is beyond the scope of the current paper to
address these questions. Instead we hope that a precise articulation of them, as afforded by
our computational-level characterization of Predictive Processing, will form an impetus for

new empirical research addressing these questions.
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() (1) )]

Figure 1. We are typically inclined to see outcomes (a), (c), and (d) as belonging to the same
category “Tails™ and (b) and (e) to the category ““Heads’’; in contrast, outcomes (f) to (j) would
normally each be categorized in a different category, even though we could group them by ‘odd’ and
‘even’ and come out with the same number of distinct *events’ as for the coin. The choice of the
appropriate state granularity or level of detail decides how much relevant information is conveyed in
each outcome, and correspondingly, what the entropy (or uncertainty) of the predicted outcome will

be.
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Figure 2. Figure 2a illustrates the hierarchical and dynamical nature of Predictive Processing, where

a prediction on level n is identified with a hypothesis at level n-1. When zooming in on a level (Figure

2b), we see that the stochastic dependency of the prediction variables (Pred ={P;,P,,Ps}) on the
hypothesis variables (Hyp = {H,H,,Hs}) is mediated by intermediate variables (Int ={ls,..., l¢}).
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(a)
(b) (d)
(c)

Figure 3. Prediction errors will be higher when we expected the coin to fall on tails (a) compared to
when we expected the coin to fall on heads (c). For uniform expectations (b), prediction error will be
somewhat in between. Note that there is a non-zero prediction error in either of the three cases a), b),

and c) as there is always unpredicted information in the outcome.
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Figure 4. When the level of detail of the hypothesis space decreases (i.e., the model of the causes
becomes less fine-grained), the conditional probability of the prediction is averaged over the
hypotheses that are aggregated. Likewise, if the level of detail of the prediction space decreases (i.e.,
the model of the predicted effects becomes less fine-grained), the conditional probability of the

predictions that are aggregated is added.



TO BE PRECISE, THE DETAILS DON’T MATTER

Example

network = J:I_l:L Ppred(P) = DDDD

KH\

is P1 P2 P3 P

DDDD Poys(P) =

v hy hohs hy . P1 P2 P3P

A) Model revision

P(pi|hy,i1) =9// 0.4
P(pilha,ir) =04 0.3

P(pllhii-. 11) :9({ 0.5

B) Belief revision

ran - Uil mEal

hyhohghy  hy hohghy

C) Passive Intervention

P(I) = %

D) Active Intervention

P(I) = %

E

hi ho hy by

) Lower detail Pred

- D DU

pyﬁzm{); P12 P34

Pobs(P)=---

30

Figure 5: six ways of lowering prediction error: by revising the model (a), revision the priors on the
hypothesis space (b), by observing (c) or setting (d) the value of intermediate variables, by increasing

the detail of the hypothesis space (¢) or by lowering the detail of the prediction space (f).



