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Abstract 

Many theoretical and empirical contributions to the Predictive Processing account emphasize 

the important role of precision modulation of prediction errors. Recently it has been proposed 

that the causal models used in human predictive processing are best formally modeled by 

categorical probability distributions. Crucially, such distributions assume a well-defined, 

discrete state space. In this paper we explore the consequences of this formalization. In 

particular we argue that the level of detail of generative models and predictions modulates 

prediction error. We show that both increasing the level of detail of the generative models 

and decreasing the level of detail of the predictions can be suitable mechanisms for lowering 

prediction errors. Both increase precision, yet come at the price of lowering the amount of 

information that can be gained by correct predictions. Our theoretical result establishes a key 

open empirical question to address: How does the brain optimize the trade-off between high 

precision and information gain when making its predictions? 

 

Keywords: predictive processing; precision; level of detail; structured representations; formal 

modeling; causal Bayesian networks  
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To be precise, the details don’t matter: 

On predictive processing, precision, and level of detail of predictions 

 

Introduction 

The predictive processing account has received widespread attention. Building on 

pioneering hierarchical predictive coding models of perception (Rao & Ballard, 1999; Lee & 

Mumford, 2003; Friston, 2005), recent literature proposes that the whole of perception, 

cognition, and action (Clark, 2013a) or even the entire operation of the brain (Hohwy, 2013) 

can be summarized by a simple, unifying principle. Rather than processing inputs in a mere 

bottom-up fashion, the brain is assumed to predict its inputs in a hierarchical manner by 

generative (causal) models and to process only that part of the input that is yet unexplained–

the so-called prediction error. Sometimes prediction errors stem from the inherent stochastic 

nature of the world. To illustrate, take for instance, the observation of the outcome of a coin 

toss. We will have high confidence in our prediction that the coin will either land on heads or 

that it will land on tails, each event having a probability of 0.5; the observation of the actual 

outcome–while generating one bit of information–will normally not surprise us, as both 

events are fully consistent with our experience and knowledge of tossing a (fair) coin. One’s 

generative models will therefore presumably not be changed as a consequence of this 

prediction error. 

However, sometimes prediction errors are the result of an incomplete, immature, or 

just plain wrong generative model; think of trying an unknown dish in a restaurant or 

standing on skates for the first time. The uncertainty here is due to a lack of knowledge, and 

the prediction error will have impact: It allows the brain to update and improve its generative 

models (Yu & Dayan, 2005; Payzan-LeNestour & Bossaerts, 2011). These different roles of 

prediction errors, depending on the source of the uncertainty (irreducible, i.e., due to the 
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inherent (known) stochastic nature of the world; or reducible, i.e., due to our lack of 

knowledge) are captured by the precision of the prediction error: A context-specific 

weighting of the prediction error that drives less or more attention to prediction errors. The 

net effect of the observation is thus a function of the precision of the prediction (capturing the 

uncertainty of the outcome) and the precision of the prediction error (capturing the model 

confidence). 

Traditionally, computational operationalizations of the predictive processing account 

formulate the generative models (i.e., the stochastic relation between hypothesized causes and 

the predicted effects thereof) as Gaussian densities. Recently, however, Friston, Rigoli, 

Ognibene, Mathys, FitzGerald, & Pezzulo (2015) propose to use categorical (discrete) 

probability distributions to describe the stochastic generative models that give rise to the 

predictions. An important distinction between Gaussian densities and categorical probability 

distributions is that in the latter the state space granularity (how detailed are the generative 

models and the predictions that follow from them) is crucial. Whereas the amount of 

uncertainty (or precision) in a Gaussian density can be adequately described by its variance, 

the precision in a categorical distribution must be described by its entropy (Shannon, 1948), 

which is a function of both the state space granularity and the nonuniformity of the 

distribution (Kwisthout & van Rooij, 2015).  

Note that this state space granularity is context-dependent. Crucial in the coin-tossing 

example is that we describe the outcome of ‘tossing a coin’ in terms of the side of the coin to 

land on top, disregarding all other information in the outcome (such as the amount of rotation 

of the coin in the plane) as irrelevant. Compare this with throwing a regular die. As all sides 

of the die are equally likely to land on top, one can expect an odd number to fall just as often 

as an even number. When the outcome of a die is predicted in terms of whether the number 

will be odd or even (and the result interpreted likewise), the precision of that prediction is 
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equal to the precision of tossing a coin. However, if the outcome of a die is predicted in terms 

of the number of pips, and the result interpreted likewise, the prediction is more uncertain – 

simply, because there are more possible events (‘1’, …, ‘6’; rather than ‘odd’ or ‘even’) and 

each event is equally likely – therefore, the prediction will have lower precision because a 

prediction was made (and the outcome interpreted) at a higher level of detail (Figure 1). The 

precision of a prediction, hence, is indeed a function of both state space and nonuniformity. 

 

----------- Figure 1 about here ----------- 

 

 Disentangling precision into level of detail and nonuniformity becomes necessary 

when cognitive (neuro) scientists aim to describe predictions and observable outcomes in 

terms of discrete, categorical events (Kwisthout & van Rooij, 2015). Such outcomes may be 

the result of a coin flip (heads, tails) or of a die throw (odd, even; or 1…6, depending on how 

detailed our prediction is); they may describe the next action of a car in front of us (turn left, 

turn right, park, brake, or just keep driving), or of our spouse’s emotions (sad, frustrated, 

happy, angry, bored; or whatever distinctions one makes); it may be a description of what one 

expects to see in a forest (‘trees and other life forms’; or, when looking more closely, a 

chestnut tree, a squirrel, moss, bugs, etcetera). The appropriate level of detail that describes 

such outcomes is typically highly context-specific and depends on the epistemic and practical 

goals of the observing agent. 

In this paper, we explore the computational and theoretical consequences of 

formalizing predictive processing in categorical probability distributions. After describing the 

predictive processing account more specifically, we introduce level of detail as a concept that 

intuitively captures the state space granularity, and together with the nonuniformity of the 

distribution describes its precision or entropy. We define the key computational processes in 
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predictive processing in terms of (hierarchical, dynamical, multi-dimensional) causal 

Bayesian networks (Pearl, 2000). We show that manipulating the level of detail of generative 

models and/or predictions allows for the modulation of precision: For example, we can 

increase the precision of a prediction by decreasing the level of detail of the prediction. This, 

however, comes at the loss of information that can be gained by correct predictions. How this 

trade-off between predictions with high precision and predictions with high information gain 

is resolved in the brain is a key open theoretical (and empirical) question to address.  

 

Predictive Processing 

The Predictive Processing (hereafter PP) account is becoming more and more popular 

as a unifying theory of what drives our cortical processes.1 It encompasses key concepts such 

as the Bayesian brain (the brain encodes probability measures and balances prior expectations 

to sensory evidence according to the laws of probability theory, in particular Bayes’ theorem; 

Knill & Pouget, 2004), the brain as prediction machine (the brain continuously makes 

predictions about future sensory evidence based on its current best model of the causes of 

such evidence; Dayan, Hinton, & Neal, 1995; Hohwy, 2007), the free energy principle (the 

brain minimizes overall expected prediction error as a proxy to minimize free energy; Friston, 

2010) and the hierarchical organization of the brain (Friston, 2005; 2008). In particular it is 

claimed that the PP account applies to the entire cortex (Clark, 2013a) and that the same 

generic apparatus and mechanisms are used for both lower and higher cognition, e.g., both 

low-level vision and high-level intention attribution (Clark, 2013b; Kilner, Friston, & Frith, 

2007; Koster-Hale & Saxe, 2013). However, to account for “higher cognitive phenomena 

such as thought, imagery, language, social cognition, and decision-making” there is still 

                                                            
1 An illustration of this might be the observation that a separate outlet (Cleeremans & Edelman, 2013) was 
created to allow for the large number of commentaries to Clark’s (2013a) target article in Behavioral and Brain 
Sciences. Also indicative is that a search on “predictive coding” and “predictive processing” on Google Scholar 
together found about 2,500 papers published in 2014. 
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“plenty of work to do” (Hohwy, 2013, p. 3). In particular it is as yet unknown “What […] the 

local approximations to Bayesian reasoning look like as we depart further and further from 

the safe shores of basic perception and motor control? What new forms of representation are 

then required, and how do they behave in the context of the hierarchical predictive coding 

regime?” (Clark, 2013a, p. 201). 

PP can be understood as a cascading hierarchy of increasingly abstract (e.g., in time 

scale or space) hypotheses about the world, where the predictions on one level of the 

hierarchy are identified with the hypotheses at the subordinate level. The inference process, 

i.e., inferring assumed causes from stimuli, is presumed to be facilitated by having 

predictions (stemming from the generative, top-down process) at each level of the hierarchy, 

comparing these predictions with the observed (or inferred) observations, and using the 

prediction error to update both the current hypothesis and to learn for future predictions. 

For example, in the action understanding domain, the hierarchy can include the actual 

visual, auditory, tactile, or olfactory inputs, like a series of visual inputs, at the lowest level; 

one level above we may situate the kinematics, like a grasping movement of the hand, 

followed by the more abstract object-oriented actions (picking up a cup). Eventually, the 

hierarchy may include complex social cognitive constructs such as future intentions, social 

conventions, world knowledge, context etcetera (Kilner, Friston, & Frith, 2007). However, 

the PP account is currently computationally fleshed out predominantly at the basic perception 

and motor control level (Clark, 2013a; see also Hohwy, 2013). In particular, computational 

implementations of PP (typically grouped under the denominator hierarchical predictive 

coding or HPC), such as those suggested by Rao and Ballard (1998), Lee and Mumford 

(2003), and Friston (2005; 2010), reside at that level. 

In a probabilistic interpretation, making a prediction based on the current hypothesis 

in any of the assumed levels corresponds to computing a posterior probability distribution 
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P(Pred | Hyp) over a space of candidate predictions, given the current estimated distribution 

over a space of hypotheses.2 Computing (the magnitude of) a prediction error corresponds to 

computing the relative entropy or Kullback-Leibler divergence DKL(Obs ||Pred) between the 

actual and the predicted observation3,4 (Friston, 2010). This prediction error is weighted with 

its precision; a parameter that reflects the amount of reducible uncertainty (or estimation 

uncertainty; Payzan-LeNestour & Bossaerts, 2011) in the current context. Which precision is 

warranted in a particular context depends on so-called hyperpriors defined as “prior beliefs 

about the precision of beliefs about the state of the world” (Friston, Lawson, & Frith, 2012, 

p.1; see also Friston, 2005). The precision-weighted prediction error is used to bring 

prediction and observation closer to each other; either by revising the original hypothesis 

with an updated hypothesis (typically implemented by some form of gradient descent (Friston, 

2002) or variational Bayes (Friston & Kiebel, 2009)), by revising the parameters of the 

generative model that generated the predictions (Friston, 2003), by obtaining additional 

information, i.e., by sampling the world (Friston et al., 2012), or by manipulating the state of 

the world, i.e., by active inference (Brown, Friston, & Bestmann, 2011). Which strategy is 

employed depends on various aspects, for example the amount of reducible versus irreducible 

uncertainty in the environment (Yu & Dayan, 2005). On a longer time scale, prediction errors 

(or the relative absence thereof) also shape the generative models, including hyperpriors, to 

improve future predictions (Dayan, 2012). 

                                                            
2 There appears to be some ambiguity in the literature about whether a prediction (hypothesis) refers to a 
distribution over candidate predictions (hypotheses), or the mode of that distribution; see, e.g., Kilner et al. 
(2007, p. 161), Hohwy, Roepstorff, & Friston (2008, p. 691), and Hohwy (2013, p. 61) for examples that 
suggest the latter. In this paper we adhere to the view (e.g., Lee & Mumford, 2003; Knill & Pouget, 2004; 
Friston, 2009) that suggests that whole distributions (or approximations thereof) are maintained, without 
claiming that this debate has fully settled yet. In the remainder, unless explicitly noted, hypothesis refers to a 
probability distribution over a space of candidate hypotheses, and similar for predictions. 
3 We make the assumption that the observation is a joint probability distribution over the prediction variables 
that may be deterministic. Our formalism allows for both uncertain and certain observations; the latter is 
represented with a deterministic probability distribution that assigns a probability of 1 to the observed joint 
value assignment of the joint distributions.  
4 The difference between the predicted and observed distribution is also referred to as the complexity in the 
model comparison literature, and is also known as Bayesian surprise (Itti & Baldi, 2009). 
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The PP account has traditionally focused on visual perception (Rao and Ballard, 

1998); for example, it has been used to explain binocular rivalry (Hohwy, Roepstorff, & 

Friston, 2008) and perceptual categorization (Kiebel, von Kriegstein, Daunizeau, & Friston, 

2009). One step further is the entanglement of perception and motor control, known as active 

inference (Friston, Daunizeau, Kilner, & Kiebel, 2010; Brown, Friston, & Bestmann, 2011). 

Here, motor acts are seen as a consequence of proprioceptive prediction errors, i.e., motor 

acts actively change the sensory inputs in order to overcome errors between what is perceived 

and what is expected.  

However, PP has been proposed for domains that do extend from Clark’s “safe shores 

of basic perception and motor control”. For example, Kilner et al. (2007) proposed predictive 

processing as a mechanism for action understanding, suggesting that the mirror neuron 

system plays a role in making hierarchical predictions of other’s actions. Brown and Brüne 

(2012) extended this idea to incorporate social interaction in a broader context, pointing at 

emerging evidence of a shared neural representation and internal models of other’s actions 

that allows us to understand the other’s goals and intentions. Koster-Hale and Saxe (2013) 

reviewed evidence for key signatures of the PP framework in brain areas that are associated 

with theory of mind, such as the superior temporal sulcus (STS), temporo-parietal junction 

(TPJ) and medial prefrontal cortex (mPFC).  

Proposed applications of PP at such higher levels of cognitive processing, however, 

do not yet postulate the “new forms of representation” Clark called for. They tend to focus on 

more conceptual or verbal models (e.g., the Dr. Jekyll and Mr. Hyde-example in Kilner et al. 

(2007, p. 164)) or seek to find evidence for key characteristics of PP (such as the inhibition of 

predicted signals in particular brain areas like STS and TPJ (Koster-Hale & Saxe, 2013) and 

the anterior insular cortex (AIC; Seth, Suzuki, & Critchley, 2012), or a beta/gamma 

dissociation in the Granger-causal connectivity in the Action-Observation Network (AON; 
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Van Pelt, Heil, Kwisthout, Ondobaka, van Rooij, & Bekkering, in press). While no 

computational models at these higher levels have been proposed yet, Koster-Hale and Saxe 

(2013) indeed argued that such models “must be quite abstract, and include expectations that 

actions will be rational and efficient, and consistent with, for example, the individual’s beliefs, 

personality traits, and social norms.” (Koster-Hale & Saxe, 2013, p. 839).  

In cognitive science it is well known that higher-order cognitive processing requires 

some form of structured representations (Dietrich & Markman, 2003; Griffiths et al., 2010; 

Markman, 1999), i.e., representations that can encode not only lists of features or variables 

but also (higher-order) relations between them. Here, we propose a formal version of PP for 

cognitive processing using structure representations suited for the PP framework, specifically 

causal Bayesian networks (Pearl, 2000). Such networks allow for complex, structured, and 

categorical stochastic dependences between hypotheses and predictions at various levels of 

detail, as a required for cognitive processing (Griffiths et al., 2010). In the next section we 

will discuss how the basic concepts of the PP account can be defined in this computational 

framework. 

 

Predictive Processing in causal Bayesian networks 

Causal Bayesian networks are graphical models that represent stochastic causal 

relationships between discrete random variables. They extend ‘ordinary’ Bayesian networks 

in that the arcs in the graph reflect not merely bidirectional stochastic dependences in the 

probability distribution, but causal interactions between random variables. The formal theory 

is built on the notion of interventions in probability distributions (Pearl, 2000). An 

intervention do(X = x) intervenes ‘from outside the model’ by forcing the random variable X 

to take on the value x; the effect on a variable Y, i.e., Pdo(X = x)(Y) is to be distinguished from 

the conditional probability P(Y | X = x). The former represents the probability distribution of 
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Y, given that X is (externally) forced to take on the value x; the latter represents the 

conditional probability distribution of Y if X were observed to be x. The distinction between 

these notions may be illustrated with the following example. Assume that a light switch 

operates a light bulb: Putting the light switch to the On position causes the light bulb to go on. 

If we observe the light bulb to be on, we can infer that the light switch is most probably in the 

On position (rather than there being a short circuit etc.), and vice versa, if we observe the 

light switch to be in the On position, we can infer that the light bulb is most probably on. 

Intervention works a bit different. If we intervene in the system by putting the light switch on, 

we can again infer that the light bulb is most probably on; however, if we intervene by 

throwing a stone at the light bulb and scattering it, nothing can reasonably be inferred about 

the state of the light switch: interventions on effects do not influence causes. 

In our implementation of PP, every level of the hierarchical model is depicted by a 

causal Bayesian network B, where the variables of this network are partitioned into 

hypothesis variables Hyp (jointly representing the set of working hypotheses in this level), 

prediction variables Pred (jointly representing the predictions that are based on these 

hypotheses), and intermediate variables Int that are neither hypothesis nor prediction 

variables but do influence the outcome of the predictive process. These intermediate variables 

may, e.g., represent contextual effects, lateral connections (e.g., between different modalities), 

or latent variables. The arcs in the network represent causal relations.5 The network is 

dynamic, in the sense that the current probability distribution over the variables is not only 

statically dependent on the causal relationships, but also on dynamic interactions in time. For 

example, the current prediction depends not only on the current hypothesis, but also on the 

prediction one time slice ago. This dynamical process is represented by inter-time slice 

connections between (some of) the variables in each level of the hierarchy. We do not impose 
                                                            
5 While our theory is worked out for discrete causal Bayesian networks, it can be in principle generalized to 
other formalizations. For example, one can model non-causal relationships, e.g., stochastic co-occurrences 
between visual and auditory inputs, using so-called chain graphs (Lauritzen & Richardson, 2002). 
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structural constraints on the network structure, other than that we require that all prediction 

variables within a (static) time-slice of the dynamic network are sinks (have no outgoing arcs) 

and all hypothesis variables within a time-slice are sources (have no incoming arcs). The 

prediction variables at each level are identified with the hypothesis variables at the 

subordinate level. The hierarchical structure is depicted in Figure 2a, while an example level 

is illustrated in Figure 2b.  

 

----------- Figure 2a and 2b about here ----------- 

 

Hypothesis, prediction, observation and prediction error are defined in our 

formalization as follows. A hypothesis is simply the prior joint probability distribution PHyp 

over the hypothesis variables Hyp. We define a prediction as the posterior probability 

distribution PPred over the prediction variables, an observation as a (possibly deterministic) 

probability distribution PObs over the prediction variables that corresponds to observed or 

inferred information about the state of these variables, the prediction error (PPred, PObs) as the 

net residual of subtracting PPred from PObs, and the size of the prediction error as the 

Kullback-Leibler divergence DKL(PObs || PPred) between the two distributions6.  

So far, the mathematical formalizations of prediction and prediction error in our 

formalization are defined quite similarly as in the (non-structural) Gaussian models that 

characterize conventional predictive coding formalizations. A crucial distinction, however, is 

that in our formalization the precision of hypotheses and predictions is not defined by 

variance but by entropy, viz., the combination of level of detail and non-uniformity. In the 

next section we will describe both aspects of precision in our formalization. 

 

                                                            
6 But see Thornton (this issue) for a different characterization of prediction errors and their sizes. 
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Uncertainty and level of detail in Predictive Processing 

A prediction in Predictive Processing always refers to a probability distribution over a 

set of candidate predictions. The precision of a prediction refers to the entropy of the 

distribution, that is, the amount of uncertainty, given a particular state space. The more 

precise a prediction is at a given state space, the lower the entropy. The prediction error 

depends on the precision of the prediction and on the actual observation: If a coin that is 

biased towards tails falls on heads nevertheless the prediction error is much larger than when 

it indeed falls on tails; the prediction error of a fair coin falling on either heads or tails would 

be in between the two extremes (Figure 3). 

Orthogonal to the precision of the prediction is the precision of the prediction error. 

Whereas the precision of the prediction is a measure of the amount of uncertainty with 

respect to the prediction, the precision of the prediction error is a measure of the nature of the 

uncertainty; that is, whether it is reducible (can be decreased by learning) or irreducible (is 

due to the inherent stochastic nature of the world). When we have confidence in the 

generative model that generated the prediction, all uncertainty in the prediction can be fully 

explained by the inherent stochastic nature of the many-to-many mapping between causes 

and effects. In contrast, if we do not have confidence in the model – for example, because we 

are still learning its statistical regularities – then part of the uncertainty in the prediction 

cannot be explained.  

 

----------- Figure 3 about here ----------- 

 

In contrast to the common use of the term ‘precise’, a precise prediction is not 

necessarily a detailed prediction, despite what the term ‘precision’ may suggest in everyday 

usage. For example, “the visual stimulus is a robin” is a prediction on a fairly high level of 
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detail, whereas “the visual stimulus is a bird” is a prediction on a lower level of detail; both 

predictions can have a high or a low precision, depending on the entropy of these predictions. 

For example, typically we will recognize a bird when it flies in front of us, but we may be 

uncertain when we perceive fluttering in the visual periphery (Friston et al., 2012). Precision 

thus can be specified for predictions at various levels of detail, such as illustrated in Table 1. 

 

Table 1: Illustration of probability distributions at a high and low level of detail, with high 
and low uncertainty 
 
 High level of detail Low level of detail 
   
High 
uncertainty 

Pr(robin) = 0.20,  
Pr(nightingale) = 0.15,  
Pr(lark) = 0.19,  
Pr(brimstone) = 0.22, 
Pr(Peacock butterfly) = 0.24 

Pr(bird) = 0.54 
Pr(butterfly) = 0.46 

   
Low 
uncertainty 

Pr(robin) = 0.91,  
Pr(nightingale) = 0.01,  
Pr(lark) = 0.03,  
Pr(brimstone) = 0.02, 
Pr(Peacock butterfly) = 0.03 

Pr(bird) = 0.95 
Pr(butterfly) = 0.05 

   
 

 

Formally, we define the uncertainty of a prediction as the entropy (Shannon, 1948) of 

the distribution corresponding with that prediction, we define the nonuniformity of a 

prediction as the relative Shannon redundancy (Shannon, 1948) of the distribution7, and we 

define the level of detail of a prediction as the state space granularity (Kwisthout, 2013) of 

the distribution. The entropy H(Pred) of a prediction Pred (described in bits) is –(xPred) 

P(x)log2P(x), where x denotes a (concrete) candidate prediction from the probability 

distribution. The relative Shannon redundancy R(Pred) of a prediction Pred is defined as 

H(Pred) / log2 |(Pred)|, where (.) describes a state space and |(.)| describes the size of 

                                                            
7 We are indebted to one of the reviewers for suggesting this measure to us. 
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that state space. For example, the entropy of the predictions with various level of detail, such 

as depicted in Table 1 would be as follows: H(high detail, high uncertainty) = 2.30, H(high 

detail, low uncertainty) = 0.61, H(low detail, high uncertainty) = 1.00, H(low detail, low 

uncertainty) = 0.29. The corresponding relative Shannon redundancy is R(high detail, high 

uncertainty) = 0.99, R(high detail, low uncertainty) = 0.26, R(low detail, high uncertainty) = 

1.00, R(low detail, low uncertainty) = 0.29; capturing that the nonuniformity of the 

distributions is similar in the high detail and in the low detail cases. 

Level of detail, in contrast, is a measure on how fine-grained a probability distribution 

is. From a given distribution at the highest level of detail we can ‘zoom out’ by aggregating 

or clustering the values that the distribution can take. This can be done both for hypotheses 

and for predictions (or observations) at any level of the hierarchy. Zooming in or out does not 

influence a particular hypothesis–prediction relation; it just describes this relation (including 

probabilistic dependencies), at a different level of abstraction. This is illustrated in Figure 4 

using a conditional probability table describing P(Pred | Hyp), i.e., the probability distribution 

over the prediction variables, given a particular distribution over the hypothesis variables for 

both high and low detailed hypothesis and prediction state spaces. 

 

----------- Figure 4 about here ----------- 

 

The precision of a prediction at a particular level of detail can be seen as a (statistical) 

property of the generative model at that level of detail. Which levels of detail are identified, 

and what level of detail is appropriate in a particular context, is described by a family of 

causal Bayesian networks, and a context-dependent hyperprior, respectively. Describing level 

of detail both for the hypothesis and prediction and partially ordering the networks in a lattice, 
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such as in Figure 4, gives us a mathematically elegant way of formulating the modulation of 

level of detail both on the hypothesis level and on the prediction level.  

 

Dealing with prediction errors 

In the face of a prediction error, the brain can achieve a decrease of this prediction error 

in a number of different ways (Friston, 2010; Friston et al., 2012; see also Kwisthout, 2014). 

In particular, the brain could revise the hypothesized causes; revise the causal model that 

generated the predictions from the hypothesized causes; it may lower prediction error by 

observation of latent variables, or by intervention in the world (i.e., acting). In addition, the 

brain may bring prediction and observation closer to each other by lowering the level of 

detail of both, or by increasing the level of the hypothesis space. In this section, we explore 

and formalize these different ways of dealing with prediction error in the context of the 

lattices of causal Bayesian networks we described in the previous section. These different 

ways are summarized in Figure 5.  

 

----------- Figure 5 about here ----------- 

 

Revising the hypotheses 

Prediction error can be lowered by changing the distribution over the hypothesis variables 

while keeping the model intact. It is typically appropriate in a situation where we encounter a 

situation that may be unexpected, but which is perfectly possible within our world model and 

no reason to update this model. This can be seen as a situation in which all uncertainty is 

irreducible (Yu & Dayan, 2005) – the environment’s statistics are fully known. An example 

might be the situation where we throw three dice that all land with sixes on top. It may be 

rather unexpected, but it is nevertheless consistent with our generative model of the outcome 
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of throwing dice. This hypothesis revision is formally defined as the computation of the 

posterior probability P(Hyp|Pred), that is, updating the prior probability over Hyp in the light 

of the (observed or inferred) distribution PObs(Pred). Note that this distribution PObs(Pred) is 

fully determined by the prediction PPred(Pred) and the prediction error (PPred, PObs) as the 

latter is defined as the result of subtracting PPred from PObs. 

 

 

Revising the causal model 

Prediction error can also be lowered by changing the model or some of its parameter 

probabilities. This would be appropriate in a situation where prediction error is caused by a 

change in the environmental properties, an apparent misrepresentation of the environment, or 

simply ignorance with respect to the environment. This situation can be seen as unexpected 

uncertainty respectively estimation uncertainty (Nassar et al., 2010; Payzan-LeNestour & 

Bossaerts, 2011; Yu & Dayan, 2005). For example, we might expect two persons to shake 

hands when they greet each other, but we may learn a different cultural experience like a fist 

bump. This would require us to update the causal model by altering the stochastic 

dependences and/or introducing new (values of) variables. Formally, this corresponds to 

adding new variables to the Bayesian networks, increasing or decreasing the number of 

values that a variable can take, or updating the conditional probability distributions in the 

networks. 

 

Evidence gathering  

One may be able to reduce prediction error by gathering additional observations, or maybe 

reconsideration of observations we already have. A typical example could be when one is 

sitting in a train that is standing still at a railway station. When there is a train next to us at the 



TO BE PRECISE, THE DETAILS DON’T MATTER     18 
 

opposite platform, and we observe movement, there is ambiguity whether we move or the 

opposite train moves. This can be seen as a prediction error as the (more or less) uniform 

hypothesis distribution leads to ambiguous or contradictory perceptual and vestibular 

predictions. A natural way of resolving this ambiguity is by seeking evidence that can 

discriminate between these hypotheses, in particular by looking at a stationary point, e.g., the 

railway station, in order to lower prediction error.  

Technically, we can formalize this by seeking observations for previously unobserved 

intermediate variables in the network. For example, the singleton hypothesis node Hyp with 

uniformly distributed values h1 and h2 connects to both the prediction variable Pred with 

values p1 and p2 and the intermediate variable Int with values i1 and i2; P(Pred = p1 | Hyp = h1) 

= 1, (Pred = p2 | Hyp = h2) = 1, P(Int = i1 | Hyp = h1) = 1, and (Int = i2 | Hyp = h2) = 1. Now, 

P(Pred) is uniformly distributed if P(Hyp) is uniformly distributed, but the observation Int = 

i1 will influence the distribution of Pred via the distribution of Hyp; P(Pred = p1 | Int = i1) = 1, 

and likewise (but in the other direction) will the observation Int = i2. 

 

Intervention in the world 

Prediction error between observation and prediction can be lowered by bringing prediction 

closer to match the observation, but also by intervening in the world, thus changing the actual 

inputs. The canonical example here is active inference (Brown, Friston, & Bestmann, 2011): 

if there is a proprioceptive prediction error between the expected and actual position of one’s 

limb, we engage in motor acts that intervene such as to bring the actual position closer to the 

expected position. 

Technically this can be formalized by an intervention in the generative causal model: 

rather than (passively) observing the value a particular intermediate variable, we actively set 

it (by external intervention) to its desired value (Pearl, 2000). 
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Modulation of level of detail 

Finally, we may be able to reduce prediction error by increasing the level of detail of the 

hypotheses or by lowering the level of detail of the predictions and actual observations. For 

example, when you observe me leaving the office with a coffee mug in my hand you may 

predict that I desire to get some coffee and that I will place my cup in the coffee machine. An 

observed movement towards the sink will lead to prediction error if you predicted a 

movement towards the coffee machine. One way of lowering the prediction error is by re-

interpreting the prediction and observation in a less precise, more abstract manner, i.e., by 

expecting “activities related to coffee making (such as cleaning one’s mug)” and interpreting 

the observations accordingly. Alternatively, you may increase the level of detail of the model, 

taking into account that I am holding a filthy coffee mug, yielding a different prediction. 

Technically we can formalize this by changing the current causal Bayesian network in 

the family that corresponds to the current layer to a different network, either with a more 

fine-grained hypothesis space (to increase the level of detail of hypotheses) or with a less 

fine-grained prediction space (to decrease the level of detail of predictions). 

 

Summary 

The causal Bayesian network framework allows for the representation of complex 

relationships in generative models, including contextual influences, non-monotone relations, 

and related models with varying state space granularity. Prediction, precision, prediction error, 

and prediction error minimization can be elegantly described as computational processes that 

operate on these structures. 
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Conclusion and further work 

In the previous sections we described how to formulate making predictions, computing 

prediction errors, and lowering prediction errors by various means in a causal Bayesian 

network formalization of PP. We thus proposed a concrete computational-level (Marr, 1982) 

characterization of the representations and processes crucial in the predictive processing 

account that allow this account to be explanatory when we focus on higher cognition, 

affording the PP framework to gain formal application beyond the scope of low-level 

perception and motor control. A crucial aspect of this formalization is level of detail, 

capturing the state space granularity of the generative models; the level of detail and the 

entropy of a distribution together describe its precision (Kwisthout & Van Rooij, 2015). 

We identified six computational mechanisms for lowering prediction error. Four of 

them have been proposed in the literature before, but have not previously been formalized for 

categorical probability distributions. Perceptual inference (Friston & Stephan, 2007) 

corresponds in our formalization with hypothesis revision, i.e., changing the current 

probability distribution over the hypothesis variables without altering the generative model. 

Active inference (Brown, Friston, & Bestmann, 2011) corresponds to active intervention, i.e., 

intervening in the generative model by clamping some variables to their desired values. 

Sampling the world (Friston et al, 2012) corresponds to passive intervention, i.e., observing 

the values of some of the variables in the generative model. Finally, learning (Friston, 2003) 

is captured by model revision, i.e., by structurally ‘rewiring’ the generative model, adding 

new candidate hypotheses or updating the causal relationships. We thus have a tight coupling 

between psychological explanations in the predictive processing account and computational-

level processing in our formalization. 

Two other mechanisms have, to the best of our knowledge, as of yet not found their 

way into the neuroscience literature. However, the relevance of introducing level of detail of 
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predictions in categorical distributions, and the modulation thereof as a means of lowering 

prediction error, has recently been recognized (Friston, 2015, in response to Kwisthout & van 

Rooij, 2015). As we argued elsewhere, there is a trade-off between making predictions that 

are very likely to be correct (due to their generality) but carry little relevant information, and 

predictions that allow for much information gain (due to their specificity) but are likely to be 

incorrect (Kwisthout & van Rooij, 2015).  

Which mechanism actually will be applied when faced with a prediction error? How is 

this trade-off between information gain and expected prediction error resolved? These are 

questions that can only be answered by subsequent empirical investigations and theory 

forming. At this point, we can only speculate that, for example, model revision will be more 

dominant than hypothesis revision when the precision of the prediction error is high, that in 

early development predictions are made with low detail (due to immature generative models), 

and that the information gain vs. prediction error trade-off may fall under the regime of free 

energy minimization (cfm. Friston, 2015). It is beyond the scope of the current paper to 

address these questions. Instead we hope that a precise articulation of them, as afforded by 

our computational-level characterization of Predictive Processing, will form an impetus for 

new empirical research addressing these questions. 

 

References 

Brown, E.C., & Brüne, M. (2012). The role of prediction in social neuroscience. Frontiers in 

Human Neuroscience, 6: e147. 

Brown, H., Friston, K., & Bestmann, S. (2011). Active inference, attention, and motor 

preparation. Frontiers in Psychology, 2: e218. 

Clark, A. (2013a). Whatever next? Predictive brains, situated agents, and the future of 

cognitive science. Behavioral and Brain Sciences, 36, 191-253. 



TO BE PRECISE, THE DETAILS DON’T MATTER     22 
 

Clark, A. (2013b). The many faces of precision (Replies to commentaries on “Whatever next? 

Neural prediction, situated agents, and the future of cognitive science”). Frontiers in 

Theoretical and Philosophical Psychology, 4: e270. 

Cleeremans, A., & Edelman, S. (Ed.). (2013). Forethought as an evolutionary doorway to 

emotions and consciousness [Special issue]. Frontiers in Theoretical and 

Philosophical Psychology, 4. 

Dayan, P. (2012). Twenty-Five lessons from computational neuromodulation. Neuron, 76(1), 

240-256. 

Dayan, P., Hinton, G.E., & Neal, R.M. (1995). The Helmholtz machine. Neural 

Computations, 7, 889-904. 

Dietrich, E., & Markman, A.B. (2003). Discrete Thoughts: Why cognition must use discrete 

representations. Mind and Language, 18(1), 95-119. 

Friston, K.J. (2002). Functional integration and inference in the brain. Progress in 

Neurobiology, 590, 1-31. 

Friston K.J. (2003). Learning and inference in the brain. Neural Networks, 16(9), 1325-1352. 

Friston, K.J. (2005). A theory of cortical responses. Philosophical Transactions of the Royal 

Society B: Biological Sciences, 360(1456), 815-836. 

Friston, K.J. (2008). Hierarchical models in the brain. PLoS Computational Biology, 4(11): 

e1000211. 

Friston, K.J. (2010). The free-energy principle: a unified brain theory? Nature Reviews 

Neuroscience, 11, 127-138. 

Friston, K.J. (2015). Response to commentaries: From complexity to epistemic emotions. 

Cognitive Neuroscience, 6(4), 225-227. 

Friston, K.J., Adams, R.A., Perrinet, L., & Breakspear, M. (2012). Perceptions as hypotheses: 

saccades as experiments. Frontiers in Psychology, 3, 151.  



TO BE PRECISE, THE DETAILS DON’T MATTER     23 
 

Friston, K.J., Daunizeau, J., Kilner, J., & Kiebel, S.J. (2010). Action and behavior: a free-

energy formulation. Biological  Cybernetics, 102(3), 227-260. 

Friston, K.J., & Kiebel, S. (2009). Predictive coding under the free-energy principle. 

Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 1211-

1221. 

Friston, K.J., Mattout, J., & Kilner, J. (2011). Action understanding and active inference. 

Biological Cybernetics, 104, 137-160. 

Friston, K.J., Rigoli, F., Ognibene, D., Mathys, C., Fitzgerald, T., & Pezzulo, G. (2015). 

Active inference and epistemic value. Cognitive Neuroscience, 13, 1-28. 

Friston, K.J., & Stephan, K. (2007). Free energy and the brain. Synthese, 159(3), 417-458. 

Griffiths, T. L., Chater, N., Kemp, C., Perfors, A., & Tenenbaum, J. B. (2010). Probabilistic 

models of cognition: Exploring representations and inductive biases. Trends in 

cognitive sciences, 14(8), 357-364. 

Hohwy, J. (2007). Functional integration and the mind. Synthese, 159(3), 315-328. 

Hohwy, J., Roepstorff, A., & Friston, K.L. (2008). Predictive coding explains binocular 

rivalry: An epistemological review. Cognition, 108, 671-701. 

Hohwy, J. (2013). The predictive mind. Oxford, UK: Oxford University Press. 

Itti, L., & Baldi, P. (2009). Bayesian surprise attracts human attention. Vision Research, 

49(10), 1295-1306. 

Kiebel, J., Von Kriegstein, K., Daunizeau, J., & Friston, K.J. (2009). Recognizing sequences 

of sequences. PLoS Computational Biology, 5(11): e1000464. 

Kilner, J.M., Friston, K.J., & Frith, C.D. (2007). Predictive coding: an account of the mirror 

neuron system. Cognitive Processing, 8(3), 159-166. 

Knill, D.C., & Pouget, A. (2004). The Bayesian brain: the role of uncertainty in neural coding 

and computation. TRENDS in Neurosciences 27(12), 712-719. 



TO BE PRECISE, THE DETAILS DON’T MATTER     24 
 

Koster-Hale, J., & Saxe, R. (2013). Theory of mind: A neural prediction problem. Neuron, 79, 

836-848. 

Kwisthout, J. (2013). Most inforbable explanations: Finding explanations in Bayesian 

networks that are both probable and informative. In L.C. van der Gaag (Ed.): 

Proceedings of the 12th European Conference on Symbolic and Quantitative 

Approaches to Reasoning with Uncertainty, Springer Lecture Notes in AI 7958, pp. 

328-339. 

Kwisthout, J. (2014). Minimizing relative entropy in Hierarchical Predictive Coding. In L.C. 

van der Gaag and A.J. Feelders (Eds.): Proceedings of the Seventh European 

Workshop on Probabilistic Graphical Models, Springer Lecture Notes in AI 8754, pp. 

254-270. 

Kwisthout, J., and Van Rooij, I. (2015). Free energy minimization and information gain: The 

devil is in the details. Commentary on Friston, K., Rigoli, F., Ognibene, D., Mathys, 

C., FitzGerald, T., and Pezzulo, G. (2015). Active Inference and epistemic value. 

Cognitive Neuroscience, 6(4), 216-218. 

Lauritzen, S.L. & Richardson, T.S. (2002), Chain graph models and their causal 

interpretations. Journal of the Royal Statistical Society: Series B (Statistical 

Methodology), 64, 321-348.  

Lee, T.S., & Mumford, D. (2003). Hierarchical Bayesian inference in the visual cortex. JOSA 

A, 20(7), 1434-1448. 

Markman, A.B. (1999). Knowledge representation. Mahwah, NJ: Lawrence Erlbaum 

Associates. 

Marr, D. (1982). Vision: A Computational Investigation into the Human Representation and 

Processing of Visual Information. New York: Freeman. 



TO BE PRECISE, THE DETAILS DON’T MATTER     25 
 

Nassar, M.R., Wilson, R.C., Heasly, B., & Gold, J.I. (2010). An approximately Bayesian 

Delta-rule model explains the dynamics of belief updating in a changing environment. 

The Journal of Neuroscience, 30(37), 12366-12378 

Payzan-LeNestour E., & Bossaerts, P. (2011). Risk, unexpected uncertainty, and estimation 

uncertainty: Bayesian learning in unstable settings. PLoS Computational Biology, 7(1): 

e1001048. 

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible 

inference. San Francisco, Ca: Morgan Kaufmann.  

Pearl, J. (2000). Causality: models, reasoning and inference. Cambridge, Ma: MIT press. 

Rao, R.P., & Ballard, D.H. (1999). Predictive coding in the visual cortex: a functional 

interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 

2(1), 79-87. 

Seth, A.K, Suzuki, K., & Critchley, H.D. (2012). An interoceptive predictive coding model of 

conscious presence. Frontiers in Consciousness Research, 2: e395. 

Shannon, C.R. (1948). A Mathematical Theory of Communication. The Bell System 

Technical Journal, 27, 379-423. 

Van Pelt, S., Heil, L., Kwisthout, J., Ondobaka, S., van Rooij, I., & Bekkering, H. (in press). 

Beta- and gamma activity reflect predictive coding in the processing of causal events. 

Social Cognitive and Affective Neuroscience. 

Yu, A.J., & Dayan, P. (2005). Uncertainty, neuromodulation, and attention. Neuron, 46(4), 

681-692. 

  



TO BE PRECISE, THE DETAILS DON’T MATTER     26 
 

 

Figure 1. We are typically inclined to see outcomes (a), (c), and (d) as belonging to the same 

category “Tails” and (b) and (e) to the category “Heads”; in contrast, outcomes (f) to (j) would 

normally each be categorized in a different category, even though we could group them by ‘odd’ and 

‘even’ and come out with the same number of distinct ‘events’ as for the coin. The choice of the 

appropriate state granularity or level of detail decides how much relevant information is conveyed in 

each outcome, and correspondingly, what the entropy (or uncertainty) of the predicted outcome will 

be. 
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Figure 2. Figure 2a illustrates the hierarchical and dynamical nature of Predictive Processing, where 

a prediction on level n is identified with a hypothesis at level n-1. When zooming in on a level (Figure 

2b), we see that the stochastic dependency of the prediction variables (Pred ={P1,P2,P3}) on the 

hypothesis variables (Hyp = {H1,H2,H3}) is mediated by intermediate variables (Int ={I1,…, I6}). 
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Figure 3. Prediction errors will be higher when we expected the coin to fall on tails (a) compared to 

when we expected the coin to fall on heads (c). For uniform expectations (b), prediction error will be 

somewhat in between. Note that there is a non-zero prediction error in either of the three cases a), b), 

and c) as there is always unpredicted information in the outcome. 
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Figure 4. When the level of detail of the hypothesis space decreases (i.e., the model of the causes 

becomes less fine-grained), the conditional probability of the prediction is averaged over the 

hypotheses that are aggregated. Likewise, if the level of detail of the prediction space decreases (i.e., 

the model of the predicted effects becomes less fine-grained), the conditional probability of the 

predictions that are aggregated is added.  
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Figure 5: six ways of lowering prediction error: by revising the model (a), revision the priors on the 

hypothesis space (b), by observing (c) or setting (d) the value of intermediate variables, by increasing 

the detail of the hypothesis space (e) or by lowering the detail of the prediction space (f). 

 


