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Abstract

Inferring the most probable explanation to a set of variables, given a par-
tial observation of the remaining variables, is one of the canonical compu-
tational problems in Bayesian networks, with widespread applications in AI
and beyond. This problem, known as MAP, is computationally intractable
(NP-hard) and remains so even when only an approximate solution is sought.
We propose a heuristic formulation of the MAP problem, denoted as Infer-
ence to the Most Frugal Explanation (MFE), based on the observation that
many intermediate variables (that are neither observed nor to be explained)
are irrelevant with respect to the outcome of the explanatory process. An
explanation based on few samples (often even a singleton sample) from these
irrelevant variables is typically almost as good as an explanation based on
(the computationally costly) marginalization over these variables. We show
that while MFE is computationally intractable in general (as is MAP), it
can be tractably approximated under plausible situational constraints, and
its inferences are fairly robust with respect to which intermediate variables
are considered to be relevant.

Keywords: Bayesian Abduction, Parameterized Complexity,
Approximation, Heuristics, Computational Complexity

1. Introduction1

Abduction or inference to the best explanation refers to the process of2

finding a suitable explanation (the explanans) of observed data or phenom-3
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ena (the explananda). In the last decades, Bayesian notions of abduction4

have emerged due to the widespread popularity of Bayesian or probabilistic5

techniques for representing and reasoning with knowledge [5, 26, 30, 47, 52].6

They are used in decision support systems in a wide range of problem domains7

[e.g., 7, 11, 21, 23, 32, 45, 64] and as computational models of economic, so-8

cial, or cognitive processes [10, 25, 33, 48, 58, 60]. The natural interpretation9

of ‘best’ in such models is ‘most probable’: the explanation that is the most10

probable one given the evidence, i.e., that has maximum posterior proba-11

bility, is seen as the hypothesis that best explains the available evidence;12

this explanation is traditionally referred to as the MAP explanation and the13

computational problem of inferring this explanation as the MAP problem.114

However, computing or even approximating the MAP explanation is com-15

putationally costly (i.e., NP-hard), especially when there are many interme-16

diate (neither observed nor to be explained) variables that may influence17

the explanation [1, 4, 51, 56]. To compute the posterior probability distri-18

bution of the explanation variables, all these intermediate variables need to19

be marginalized over. One way of dealing with this intractability might be20

by assuming modularity of knowledge representations, i.e., by assuming that21

these representations are informationally encapsulated and do not have ac-22

cess to background knowledge. However, this is problematic as we cannot23

know beforehand which elements of background knowledge or observations24

may be relevant for determining the best explanation [17, 19].25

Fortunately, even when a full Bayesian computation may not be feasible26

in large networks, we need not constrain inferences only to small or dis-27

connected knowledge structures. It is known that in general the posterior28

probability distribution of a (discrete) Bayesian network is skewed, i.e., a29

few joint value assignments cover most of the probability space [13], and30

that typically only few of the variables in a network are relevant for a par-31

1Other relationships have been proposed that compete in providing ‘sufficiently ratio-
nal’ relations between observed phenomena and their explanation that can be used to
describe why we judge one explanation to be preferred over another [28, 44]. Examples
include maximum likelihood [29], which does not take the prior probabilities of the hy-
potheses into account, the conservative Bayesian approach [6], generalized Bayes factor
[66], and various Bayesian formalisms of coherence theory [5, 15, 26, 49]. While the poste-
rior probability of such explanations is not the deciding criterion to prefer one explanation
over another, it is typically so that explanations we consider to be good for other reasons
also have a high posterior probability compared to alternative explanations [27, 44].
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ticular inference query [14]. We propose to utilize this property of Bayesian32

networks in order to make tractable (approximate) inferences to the best33

explanation over large and unencapsulated knowledge structures. We in-34

troduce a heuristic formulation of MAP, denoted as Inference to the Most35

Frugal Explanation (MFE), that is explicitly designed to reflect that only36

few intermediate variables are typically relevant in real-world situations. In37

this formulation we partition the set of intermediate variables in the network38

into a set of ‘relevant’ intermediate variables that are marginalized over, and39

a set of ‘irrelevant’ intermediate variables that we sample from in order to40

estimate an explanation.41

Note that in the MFE formalism there is marginalization over some of the42

intermediate variables (the variables that are considered to be relevant), but43

not over those intermediate variables that are not considered to be relevant.44

Thus, MFE can be seen as a ‘compromise’ between computing the expla-45

nation with maximum posterior probability, where one marginalizes over all46

intermediate variables, and the previously proposed Most Simple Explana-47

tion (MSE) formalism [35] where there is no marginalization at all, i.e., all48

intermediate variables are seen as irrelevant. We want to emphasize that the49

notions ‘relevant’ and ‘irrelevant’ in the problem definition denote subjective50

partitions of the intermediate variables; we will revisit this issue in Section51

3.1.52

We claim that this heuristic formalism of the MAP problem exhibits the53

following desirable properties:54

1. The knowledge structures are isotropic, i.e., they are such that, po-55

tentially, everything can be relevant to the outcome of an inference56

process. They are also Quinean: candidate explanations are sensitive57

to the entire belief system [17, 18].58

2. The inferences are provably computationally tractable (either to com-59

pute exactly or to approximate) under realistic assumptions with re-60

spect to situational constraints [43, 53].61

3. The resulting explanations have an optimal or close-to-optimal poste-62

rior probability in many cases, i.e., MFE actually ‘tracks truth’ in the63

terms of Glass [28].64

In the remainder of this paper, we will discuss some needed preliminaries65

in Section 2. In Section 3 we discuss MFE in more detail. We give a more66
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formal definition, including a formal definition of relevance in the context of67

Bayesian networks, and show how MFE can be tractably approximated under68

realistic assumptions despite computational intractability of the problem in69

general. In Section 4 we show that MFE typically gives an explanation70

that has a close-to-optimal posterior probability, even if only a subset of71

the relevant variables is considered. We discuss how MFE performs under72

various scenarios (e.g., when there are few or many relevant variables, when73

there are many hypotheses that are almost equally likely, or when there is74

a misalignment between the actual relevant variables and the variables that75

are mistakenly presumed to be relevant). We conclude our paper in Section76

5.77

2. Preliminaries78

In this section we will introduce some preliminaries from Bayesian net-79

works, in particular the MAP problem as standard formalization of Bayesian80

abduction. We will discuss the ALARM network which we will use as a81

running example throughout this paper. Lastly, we introduce some needed82

concepts from complexity theory, in particular the complexity class PP, ora-83

cles, and fixed parameter tractability.84

2.1. Bayesian networks and Bayesian abduction85

A Bayesian or probabilistic network B is a graphical structure that mod-86

els a set of stochastic variables, the conditional independences among these87

variables, and a joint probability distribution over these variables [52]. B88

includes a directed acyclic graph GB = (V,A), modeling the variables and89

conditional independences in the network, and a set of parameter probabil-90

ities Pr in the form of conditional probability tables (CPTs), capturing the91

strengths of the relationships between the variables. The network models a92

joint probability distribution Pr(V) =
∏n

i=1 Pr(Vi | π(Vi)) over its variables,93

where π(Vi) denotes the parents of Vi in GB. We will use upper case letters94

to denote individual nodes in the network, upper case bold letters to denote95

sets of nodes, lower case letters to denote value assignments to nodes, and96

lower case bold letters to denote joint value assignments to sets of nodes. We97

will sometimes write Pr(x | y) as a shorthand for Pr(X = x | Y = y) if no98

ambiguity can occur.99

In a Bayesian abduction task there are three types of variables: the evi-100

dence variables, the explanation variables, and a set of variables called inter-101
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mediate variables that are neither evidence nor explanation variables. The102

evidence variables are instantiated, i.e., have been assigned a value; the joint103

value assignment constitutes the explananda (what is to be explained, viz.,104

the observations, data, or evidence). The explanation variables together form105

the hypothesis space: a set of possible explanations for the observations; a106

particular joint value assignment to these variables constitutes an explanans107

(the actual explanation of the observations). When determining what is the108

best explanation, typically we also need to consider other variables that are109

not directly observed, nor are to be explained: the intermediate variables. By110

convention, we will use E, H, and I, to denote the sets of evidence variables,111

explanation variables, and intermediate variables, respectively. We will use112

e to denote the evidence, viz., the (observed) joint value assignment to the113

evidence variables.114

The problem of inferring the most probable explanation, i.e., the joint115

value assignment for the explanation set that has maximum posterior prob-116

ability given the evidence, is defined as MAP, or also Partial MAP or117

Marginal MAP to emphasize that the probability of any such joint value118

assignment is computed by marginalization over the intermediate variables.119

MAP is formally defined as follows.120

Maximum A Posteriori Probability (MAP)121

Instance: A Bayesian network B = (GB,Pr), where V is partitioned into122

evidence variables E with joint value assignment e, explanation variables123

H, and intermediate variables I.124

Output: The joint value assignment h to the nodes in H that has125

maximum posterior probability given the evidence e.126

2.2. The ALARM network127

The ALARM network (Figure 1) will be used throughout this paper as a128

running example. This network is constructed as a part of the ALARMmoni-129

toring system, providing users with text messages denoting possible problems130

in anesthesia monitoring [2]. It consists of thirty-seven discrete random vari-131

ables. Eight of these variables are designed as diagnostic variables that are to132

be explained, indicating problems like pulmonary embolism or a kinked tube;133

another sixteen variables indicate measurable or observable findings. The re-134

maining thirteen variables are intermediate variables, i.e., they are neither135

diagnostic variables, nor can be observed (in principle or in practice). Apart136

from its practical use in the system described above, the ALARM network137
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is one of the most prominent benchmark networks in the Bayesian network138

community.2139
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Figure 1: The ALARM network [2]

As an example, consider that a high breathing pressure was detected140

(PRSS = high) and that minute ventilation was low (MINV = low); all141

other observable variables take their default (i.e., non-alarming) value. From142

these findings a probability of 0.92 for the diagnosis ‘kinked tube’ (KINK =143

2See, e.g., http://www.cs.huji.ac.il/site/labs/compbio/Repository/
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true) can be computed. Likewise, we can compute that the most probable144

joint explanation for the diagnostic variables, given that PCWP (pulmonary145

capillary wedge pressure) and BP (blood pressure) are high, is that HYP146

= true (hypovolemia, viz., loss of blood volume) and all other diagnostic147

variables are negative. This joint value assignment has probability 0.58. The148

second-best explanation (all diagnostic variables are negative, despite the149

two alarming conditions) has probability 0.11.150

2.3. Complexity theory151

In the remainder, we assume that the reader is familiar with basic con-152

cepts of computational complexity theory, such as Turing Machines, the com-153

plexity classes P and NP, and intractability proofs. For more background we154

refer to classical textbooks like [22] and [50]. In addition to these basic con-155

cepts we will introduce concepts that are in particular relevant to Bayesian156

computations, in particular Probabilistic Turing Machines, Oracle Turing157

Machines, the complexity class PP and the Counting Hierarchy; the inter-158

ested reader will find more background in [34] or [8]. Finally, we will briefly,159

and somewhat informally, introduce parameterized complexity theory. A160

more thorough introduction can be found in [12] or [16].161

A Probabilistic Turing Machine (PTM) augments the more traditional162

Non-deterministic Turing Machine (NTM) with a probability distribution163

associated with each state transition. Without loss of generality we may164

assume that state transitions are binary and that the probability distribution165

at each transition is uniform. A PTM accepts a language L if the probability166

of ending in an accepting state when given some input x is strictly larger than167

1/2 if and only if x ∈ L. Given uniformly distributed binary state transitions168

this is exactly the case if the majority of computation paths accepts. The169

complexity class PP is defined as the class of languages accepted by some170

PTM in polynomial time. Observe that NP ⊆ PP; the inclusion is thought to171

be strict. PP contains complete problems, the canonical one being Majsat:172

given a Boolean formula ϕ, does the majority of truth assignments to the173

variables satisfy it?174

An Oracle Turing Machine (OTM) is a Turing Machine enhanced with175

a so-called oracle tape and an oracle O for deciding membership queries176

for a particular language LO. Apart from its usual operations, the OTM177

can write a string y on the oracle tape and ‘summon the oracle’. In the178

next state, the OTM will have either replaced the string with 1 if y ∈ LO,179

or 0 if y ̸∈ LO. The oracle can thus be seen as a ‘black box’ that answers180
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membership queries in constant time. Note that both accepting and rejecting181

answers of the oracle can be used. Various complexity classes are defined182

using oracles; for example, the class NPPP includes exactly those languages183

that can be decided on an NTM with an oracle for PP-complete languages.184

Using the class PP and hierarchies of oracles the Counting Hierarchy [61] can185

be defined as a generalization of the Polynomial Hierarchy [59], including186

classes as NPPP, PNPPP
, or NPPPPP

. Canonical complete problems for such187

classes include various Satisfiability variants, using the quantifiers ∀, ∃,188

and Maj to bind subsets of variables [61, 63].189

Sometimes problems are intractable (i.e., NP-hard) in general, but be-190

come tractable if some parameters of the problem can be assumed to be191

small. Informally, a problem is called fixed-parameter tractable for a pa-192

rameter k (or a set of parameters {k1, . . . , km}) if it can be solved in time,193

exponential (or even worse) only in k and polynomial in the input size |x|.194

In practice, this means that problem instances can be solved efficiently, even195

when the problem is NP-hard in general, if k is known to be small. If an196

NP-hard problem Π is fixed-parameter tractable for a particular parameter197

set k then k is denoted a source of complexity [53] of Π: bounding k renders198

the problem tractable, whereas leaving k unbounded ensures intractability199

under usual complexity-theoretic assumptions like P ̸= NP. On the other200

hand, if Π remains NP-hard independent of the value of parameter k, then Π201

is para-NP-hard with respect to k: bounding k does not render the problem202

tractable. The notion of fixed-parameter tractability can be extended to deal203

with rational, rather than integer, parameters [36]. Informally, if a problem204

is fixed-rational tractable for a (rational) parameter k, then the problem can205

be solved tractably if k is close to 0 (or, depending on the definition, to 1).206

For readability, we will liberally mix integer and rational parameters in the207

remainder.208

3. Most Frugal Explanations209

In real-world applications there are many intermediate variables that are210

neither observed nor to be explained, yet may influence the explanation.211

Some of these variables can considerably affect the outcome of the abduction212

process. Most of these variables, however, are irrelevant as they are not213

expected to influence the outcome of the abduction process in all but maybe214

the very rarest of cases [14]. To compute the most probable explanation of215

the evidence, however, one needs to marginalize over all these variables, that216
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is, take their prior or conditional probability distribution into account. This217

seems like a waste of computing resources in cases where we might as well218

have assigned an arbitrary value to these variables and still arrive at the219

same explanation.220

One way of ensuring tractability of inference may be by ‘weeding out’221

the irrelevant aspects in the knowledge structure prior to inference, reducing222

the network to a simplified version. For example, one might try to iden-223

tify intermediate variables in the network that are conditionally independent224

of the explanation variables, given the evidence. While this can be done225

tractably in principle [24], it may still leave us with many variables that are226

conditionally dependent, yet do not influence the most probable explanation227

of the evidence. These variables are still in a sense redundant for finding228

explanations, as illustrated in the following example.229

Example 1. Consider in the ALARM network the observations that PCWP230

and BP are high and the other observable variables take their non-alarming231

states. The actual value of ACO2 does not influence the most probable value232

of the observable variables in the network, i.e., argmaxhPr(h, e, i,ACO2 =233

high) = argmaxhPr(h, e, i,ACO2 = mid) = argmaxhPr(h, e, i,ACO2 =234

low) for every joint value assignment i to the intermediate variables other235

than ACO2. However, ACO2 is not conditionally independent of (e.g.) KINK236

given the observed evidence variables.237

An alternative to only selecting those intermediate variables that are con-238

ditionally dependent on the explanation variables is to apply a stronger cri-239

terion for relevance, e.g., selecting only those variables whose value may240

potentially change the most probable explanation. However, finding these241

variables itself would require potentially intractable computations as we will242

illustrate in Section 3.1 and formally prove in the Appendix. Furthermore,243

we might want to even constrain the number of variables to select even more244

by demanding not only that their value might change the most probable ex-245

planation (e.g., in some extraordinary combination of values for the other246

variables), but in fact actually does change the most probable explanation247

in a non-trivial number of situations. In addition, it is preferable to have a248

means of trading off the quality of a solution and the time needed to obtain249

a solution.250

Example 2 (Adapted from [35]). Mr. Jones typically comes to work by251

train. Today Mr. Jones is late while he has been seen to leave his house at252
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the usual time. One explanation can be that the train is delayed. However, it253

might also be the case that Mr. Jones was the unlucky individual who walked254

through 11th Street at 8.03 AM and was shot during an armed bank robbery,255

while mistakenly taken for a police constable. When trying to explain why256

Mr. Jones is not at his desk on 8.30 AM, there are a number of variables257

we might take into account, for example whether he has to change trains.258

A whole lot of variables are typically not taken into account because they259

are normally not relevant in most of the cases, for example the color of Mr.260

Jones’s coat, or whether walked on the left or right pavement in 11th Street.261

Only in the awkward coincidence that Mr. Jones was in the wrong place at262

the wrong time they become relevant to explain why he is not at work.263

Our approach is not to reduce the network to only include those interme-264

diate variables we consider to be relevant and do inference on the resulting265

pruned network. In contrast, we propose that (the computationally costly)266

marginalization is done only on a subset of the intermediate variables (the267

variables that are considered to be relevant), and that a sampling strategy268

is used for the remaining intermediate variables that are not considered to269

be relevant. Such a sampling strategy may be very simple (‘decide using a270

singleton sample’) or more complex (‘compute the best explanation on N271

samples and take a majority vote’). This allows for a trade-off between time272

to compute a solution and the quality of the result obtained, by having both273

a degree of freedom on which variables to include in the set of relevant inter-274

mediate variables and a degree of freedom on how many samples to take on275

the remaining intermediate variables. In Section 4 we will discuss the effects276

of such choices using computer simulations on random networks.277

We now formally define the Most Frugal Explanation problem as follows3:278

Most Frugal Explanation (MFE)279

Instance: A Bayesian network B, partitioned into a set of observed280

evidence variables E, a set of explanation variables H, a set of ‘relevant’281

3To improve readability, this formulation does not explicate how to deal with the fol-
lowing borderline cases: a) for any given joint value assignment to the irrelevant interme-
diate variables, multiple hypotheses have the same posterior probability; and b) multiple
hypotheses are most probable for the same maximum number of (possibly distinct) hy-
potheses. The implementation of the algorithm described in Section 3.3 dealt with both
these borderline cases by randomly selecting one of the competing hypotheses in case of a
tie.
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intermediate variables I+ that are marginalized over, and a set of282

‘irrelevant’ intermediate variables I− that are not marginalized over.283

Output: The joint value assignment to the variables in the explanation set284

that is most probable for the maximum number of joint value assignments285

to the irrelevant intermediate variables.286

The approach sketched above guarantees that, as in the MAP problem,287

the knowledge structures remain both isotropic and Quinean, i.e., everything288

still can be relevant to the outcome of the inference process and the candi-289

date explanations remain sensitive to the entire belief system, as claimed in290

Section 1. For example, when new evidence arises (say, that we learn of a291

bank robbery where an innocent passerby was shot), the color of Mr. Jones’s292

coat suddenly may become relevant to explaining his absence. We will elab-293

orate on the tractability claim in Section 3.2 and on the tracking truth claim294

in Section 4.2.295

Example 3. As in the previous example, we assume that in the ALARM296

network PCWP and BP have been observed to be high and the other ob-297

servable variables take their non-alarming states. Furthermore, let us assume298

that we consider VTUB, SHNT, VLNG, VALV and LVV to be relevant in-299

termediate variables, and VMCH, PVS, ACO2, CCHL, ERLO, STKV, HR,300

and ERCA to be irrelevant variables. The most frugal joint explanation for301

the diagnostic variables is still that HYP = true while all other diagnostic302

variables are negative: in 31% of the joint value assignments to these irrele-303

vant intermediate variables, this is the most probable explanation. In 16% of304

the assignments ‘all negative’ is the most probable explanation, and in 24%305

of the assignments HYP = true and INT = one sided (one sided intubation,306

rather than normal) is the most probable explanation of the observations.307

If, in addition, we also consider VMCH, PVS, and STKV to be relevant,308

then every joint value assignment to ACO2, CCHL, ERLO, HR, and ERCA309

will have HYP = true as the most probable explanation for the observations.310

In other words, rather than marginalizing over these variables, we might311

have assigned just an arbitrary joint value assignment to these variables, de-312

creasing the computational burden. If we had considered less intermediate313

variables to be relevant, this strategy may still often work, but has a chance314

of error, if we pick a sample for which a different explanation is the most315

probable one. We can decrease this error by taking more samples and take316

a majority vote.317
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Note that MFE is not guaranteed to give the MAP explanation, unless we318

marginalize over all intermediate variables (i.e., consider all variables to be319

relevant). When the set of irrelevant variables is non-empty, the most frugal320

explanation may differ from the MAP explanation, even when using a voting321

strategy based on all joint value assignments to the irrelevant intermediate322

variables, since both explanations are computed differently. Take for example323

the small network with two ternary variables H with values {h1, h2, h3} and324

I with values {i1, i2, i3}, with I uniformly distributed and H conditioned on325

I as follows:326

Pr(h1 | i1) = 0.4 Pr(h2 | I = i1) = 0.3 Pr(h3 | i1) = 0.3
Pr(h1 | i2) = 0.4 Pr(h2 | I = i2) = 0.3 Pr(h3 | i2) = 0.3
Pr(h1 | i3) = 0.1 Pr(h2 | I = i3) = 0.6 Pr(h3 | i3) = 0.3

Now, the most probable explanation of H, marginalized on I, would be H =327

h2, but the most frugal explanation of H with irrelevant variable I would be328

H = h1 as this is the most probable explanation for two out of three value329

assignments to I. Only in borderline cases MAP and MFE are guaranteed330

to give the same results independent of the number of samples taken and331

the partition in relevant and irrelevant intermediate variables. This will, for332

example, be the case when the MAP explanation has a probability of 1 and333

all the intermediate variables are uniformly distributed. In this case, every334

joint value assignment to any subset of the intermediate variables gives the335

MAP explanation as most frugal explanation.4336

3.1. Relevance337

Until now, we have quite liberally used the notion ‘relevance’. It is im-338

portant here to note that we consider the relevance of intermediate variables.339

This is in contrast with Shimony’s well-known account [55] where relevance340

is a property of explanation variables, i.e., the relevance criterion partitions341

the non-observed variables in MAP variables—that are to be explained—and342

intermediate variables that do not need to be assigned a value in the expla-343

nation. In this paper we assume that the partition between the explanation344

variables H and the intermediate variables I is already made. However, in345

our model we again partition the intermediate variables I and perform full346

inference only on the relevant intermediate variables I+.347

4We thank one of the anonymous reviewers for this observation.
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It will be clear that the formal notion of (conditional) independence is348

too strong to capture relevance as we understand it: even if an intermediate349

variable is formally not independent of all the explanation variables, condi-350

tioned on the observed evidence variables, its influence may still be too small351

to have an impact on which explanation to select as the most probable as we352

saw in the previous sub-section. In contrast, we define relevance as a statis-353

tical property of an intermediate variable that is partly based on Druzdzel354

and Suermondt’s [14] definition of relevance of variables in a Bayesian model,355

and partly on Wilson and Sperber’s [65] relevance theory, and is related to356

the definition in [37]. According to Druzdzel and Suermondt a variable in357

a Bayesian model is relevant for a set T of variables, given an observation358

E, if it is “needed to reason about the impact of observing E on T” [14,359

p.60]. Our operationalization of “needed to reason” is inspired by Wilson360

and Sperber, who state that “an input is relevant to an individual when its361

processing in a context of available assumptions yields (. . . ) a worthwhile362

difference to the individual’s representation of the world” [65, p.608]. The363

term ‘worthwhile difference’ in this quote refers to the balance between the364

actual effects of processing that particular input and the effort required to365

do so. We therefore define the relevance of an intermediate variable as a366

measure, indicating how sensitive explanations are to changes in its value367

assignment. Informally, an intermediate variable I has a low relevance when368

there are only few possible worlds in which the most probable explanation369

changes when the value of I changes.5370

Definition 4. Let B = (GB,Pr) be a Bayesian network partitioned into371

evidence nodes E with joint value assignment e, intermediate nodes I, and372

an explanation set H. Let I ∈ I, and let Ω(I \ {I}) denote the set of joint373

value assignments to the intermediate variables other than I. The relevance374

of I, denoted as R(I), is the fraction of joint value assignments i in Ω(I\{I})375

for which argmaxhPr(h, e, i, i) is not identical for all i ∈ Ω(I).376

As computing the relevance of a variable I is NP-hard, i.e., intractable377

in general (see the Appendix for a formal proof), we introduce the notion378

estimated relevance of I as a subjective assessment ofR(I) which may or may379

not correspond to the actual value. Such a subjective assessment might be380

5Note that the size of the effect on the probability distribution of H is not taken into
account here, only that the distribution alters sufficiently enough for the most probable
joint value assignment to ‘flip over’ to a different value.
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based on heuristics, previous knowledge, or by approximating the relevance,381

e.g., by sampling a few instances of Ω(I\{I}). Where confusion may arise, we382

will use the term intrinsic relevance to refer to the actual statistical property383

‘relevance’ of I, in contrast to the subjective assessment thereof. Note that384

both intrinsic and estimated relevance of a variable are relative to a particular385

set of candidate explanations H, and conditional on a particular observation,386

i.e., a value assignment e to the evidence nodes E.387

Example 5. Let, in the ALARM network, pulmonary capillary wedge pres-388

sure and blood pressure be high, and let all other observable variables take389

their non-alarming default values. The intrinsic relevance of the intermediate390

variables for the diagnosis is given in Figure 2.391

When solving an MFE problem, we marginalize over the ‘relevant inter-392

mediate variables’. This assumes some (subjective) threshold on the (esti-393

mated or intrinsic) relevance of the intermediate variables that determine394

which variables are considered to be relevant and which are considered to395

be irrelevant. For example, if the threshold would be 0.85 then only SHNT396

and LVV would be relevant intermediate variables in the ALARM network,397

but if the threshold would be 0.40 then also VMCH, VTUB, VLNG, VALV,398

and STKV would be relevant variables. That influences the results, as the399

distribution of MFE explanations tends to be flatter when less variables are400

marginalized over. With a threshold of 0.85 there are 24 explanations that401

are sometimes the most probable explanation, with the actual MAP expla-402

nation occurring most often (26%). With a threshold of 0.40 there are just403

three such explanations, with the MAP explanation occurring in 75% of the404

cases. Thus, the distribution of MFE explanations is typically more ‘skewed’405

towards one explanation when more variables are considered to be relevant.406

3.2. Complexity Analysis407

To assess the computational complexity of MFE, we first define a decision408

variant.409

Most Frugal Explanation (MFE)410

Instance: A Bayesian network B = (GB,Pr), where V is partitioned into a411

set of evidence nodes E with a joint value assignment e, an explanation set412

H, a set of relevant intermediate variables I+, and a set of irrelevant413

intermediate variables I−; a rational number 0 ≤ q < 1 and an integer414

0 ≤ k < |Ω(I−)|.415
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Figure 2: The intrinsic relevance of the intermediate variables of the ALARM network
for the diagnostic variables given PCWP = true and BP = true. Note that the left
ventricular end-diastolic blood volume (LVV) is highly relevant for the diagnosis, while
the amount of catecholamines in the blood (CCHL) is irrelevant given these observations

Question: Is there a joint value assignment h to the nodes in H such that416

for more than k disjoint joint value assignments i to I−, Pr(h, i, e) > q?417

It will be immediately clear that MFE is intractable, as it has the NPPP-418

complete MAP [51] and MSE [35] problems as special cases for I− = ∅,419

respectively I+ = ∅. In this section we show that MFE happens to be even420

harder, viz., that it is NPPPPP
-complete, making it one of few real world-421

problems that are complete for that class6. The canonical Satisfiability-422

6Informally, one could imagine that for solving MFE one needs to counter three sources
of complexity: selecting a joint value assignment out of potentially exponentially many
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variant that is complete for this class is E-MajMajsat, defined as follows423

[61].424

EMajMajsat425

Instance: A Boolean formula ϕ whose n variables x1 . . . xn are partitioned426

into three sets E = x1 . . . xk, M1 = xk+1 . . . xl, and M2 = xl+1 . . . xn for427

some numbers k, l with 1 ≤ k ≤ l ≤ n.428

Question: Is there a truth assignment to the variables in E such that for429

the majority of truth assignments to the variables in M1 it holds, that the430

majority of truth assignments to the variables in M2 yield a satisfying431

truth instantiation to E ∪M1 ∪M2?432

As an example, consider the formula ϕex = x1 ∧ (x2 ∨ x3) ∧ (x4 ∨ x5) with433

E = {x1}, M1 = {x2, x3} and M2 = {x4, x5}. This is a yes example of E-434

MajMajsat: for x1 = true, three out of four truth assignments to {x2, x3}435

(all but x2 = x3 = false) are such that the majority of truth assignments436

to {x4, x5} satisfy ϕex.437

To prove NPPPPP
-completeness of the MFE problem, we construct a438

Bayesian network Bϕ from an E-MajMajsat instance (ϕ,E,M1,M2). For439

each propositional variable xi in ϕ, a binary stochastic variable Xi is added440

to Bϕ, with uniformly distributed values true and false. These stochastic441

variables in Bϕ are three-partitioned into sets XE, XM1 , and XM2 according442

to the partition of ϕ. For each logical operator in ϕ an additional binary443

variable in Bϕ is introduced, whose parents are the variables that correspond444

to the input of the operator, and whose conditional probability table is equal445

to the truth table of that operator. The variable associated with the top-446

level operator in ϕ is denoted as Vϕ, the set of variables associated with the447

remaining operators is denoted as Opϕ. Figure 3 shows the graphical struc-448

ture of the Bayesian network constructed for the example E-MajMajsat449

instance given above.450

Theorem 6. MFE is NPPPPP
-complete.451

candidate assignments to the explanation set; solving an inference problem over the vari-
ables in the set I+, and deciding upon a threshold of the joint value assignments to the
set I−. While the ‘selecting’ aspect is typically associated with problems in NP, ‘infer-
ence’ and ‘threshold testing’ are typically associated with problems in PP. Hence, as these
three sub-problems work on top of each other, the complexity class that corresponds to

this problem is NPPPPP

.
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XE XM1 XM2

∧

X5

∨
∨

∧ Vφ

Opφ

Figure 3: Example of the construction of Bϕex for the Boolean formula ϕex = x1 ∧ (x2 ∨
x3) ∧ (x4 ∨ x5)

Proof. Membership in NPPPPP
follows from the following algorithm: non-452

deterministically guess a value assignment h, and test whether there are at453

least k joint value assignments i− to I− such that Pr(h, i−, e) > q. This454

inference problem can be decided (for given value assignment h and i−) us-455

ing a PTM capable of deciding Inference (marginalizing over the variables456

in I+). We can decide whether there are at least k such joint value assign-457

ments i− using an PTM capable of threshold counting. Thus, as both decid-458

ing Inference and threshold counting are PP-complete problems, we can459

solve this problem by augmenting an NTM with an oracle for PPPP-complete460

problems; note that we cannot ‘merge’ both oracles as the ‘threshold’ oracle461

machine must accept inputs for which the Inference oracle answers ‘no’ as462

well as inputs for which the oracle answers ‘yes’.463

To prove NPPPPP
-hardness, we reduce MFE from E-MajMajsat. We464

fix q = 1/2 and k = |Ω(I−)|/2. Let (ϕ,E,M1,M2) be an instance of E-465

MajMajsat and let Bϕ be the network constructed from that instance as466

shown above. We claim the following: If and only if there exists a satisfying467

solution to (ϕ,E,M1,M2), there is a joint value assignment to xE such that468

Pr(Vϕ = true,xE,xM2) > 1/2 for the majority of joint value assignments469

xM2 to XM2 .470

⇒ Let (ϕ,E,M1,M2) denote the satisfiable E-MajMajsat instance. Note471

that in Bϕ any particular joint value assignment xE ∪ xM1 ∪ xM2 to472
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XE ∪XM1 ∪XM2 yields Pr(Vϕ = true,xE,xM1 ,xM2) = 1, if and only473

if the corresponding truth assignment to E∪M1 ∪M2 satisfies ϕ, and474

0 otherwise. When marginalizing over xM1 (and Opϕ) we thus have475

that a joint value assignment xE ∪ xM2 to XE ∪XM2 yields Pr(Vϕ =476

true,xE,xM2) > 1/2 if and only if the majority of truth assignments477

to M1, together with the given truth assignment to E∪M2, satisfy ϕ.478

Thus, given that this is the case for the majority of truth assignments479

to M2, we have that Pr(Vϕ = true,xE,xM2) > 1/2 for the majority480

of joint value assignments xM2 to XM2 . We conclude that the corre-481

sponding instance (Bϕ, Vϕ = true,XE,XM1∪Opϕ,XM2 , 1/2, |Ω(XM2 )|/2)482

of MFE is satisfiable.483

⇐ Let (Bϕ, Vϕ = true,XE,XM1 ∪Opϕ,XM2 , 1/2, |Ω(XM2
)|/2) be a satisfiable484

instance of MFE, i.e., there exists a joint value assignment xE to XE485

such that for the majority of joint value assignments xM2 to XM2 ,486

Pr(Vϕ = true,xE,xM2) > 1/2. For each of these assignments xM2 to487

XM2 , Pr(Vϕ = true,xE,xM2) > 1/2 if and only if the majority of joint488

value assignments xM1 to XM1 satisfy ϕ.489

Since the reduction can be done in polynomial time, this proves that MFE490

is NPPPPP
-complete.491

Given the intractability of MFE for unconstrained domains, it may not be492

clear how MFE as a heuristic mechanism for Bayesian abduction can scale493

up to task situations of real-world complexity. One approach may be to494

seek to approximate MFE, rather than to compute it exactly. Unfortunately,495

approximating MFE is NP-hard as well. Given that MFE has both MAP and496

MSE as special cases (for I− = ∅, respectively I+ = ∅), it is intractable to497

infer an explanation that has a probability that is close to optimal [51], that498

is similar to the most frugal explanation [40], or that is likely to be the most499

frugal explanation with a bounded margin of error [42]. By and of itself,500

for unconstrained domains, approximation of MFE does not buy tractability501

[43].502

3.3. Parameterized Complexity503

An alternative approach to ensure computational tractability is to study504

how the complexity of MFE depends on situational constraints. This ap-505

proach has firm roots in the theory of parameterized complexity as described506

in Section 2. Building on known fixed parameter tractability results for MAP507
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[36] and MSE [42], we will consider the parameters treewidth and cardinality508

of the Bayesian network, the size of I+, and a decisiveness measure on the509

probability distribution. An overview is given in Table 1.510

Parameter Description

Treewidth (t) A measure on the network topology [see, e.g., 3].
Cardinality (c) The maximum number of values any variable can take.
#Relevants (|I+|) The number of relevant intermediate variables that we

marginalize over.
Decisiveness (d) A measure on the probability distribution [42], denot-

ing the probability that for a given evidence set E with
evidence e and explanation set H, two random joint
value assignments i1 and i2 to the irrelevant variables
I− would yield the same most probable explanations.
Decisiveness is high if a robust majority of the joint
value assignments to I− yields a particular most prob-
able explanation.

Table 1: Overview of parameters for MFE.

For I+ = ∅, MAP can be solved in O(ct ·n) for a network with n variables,511

and since Pr(X = x) =
∑

y∈Ω(Y ) Pr(X = x, Y = y), we have that MAP can512

be solved in O(ct ·c|I+| ·n). Note that even when we can tractably decide upon513

the most probable explanation for a given joint value assignment i to I− (i.e.,514

when c, t, and |I+| are bounded) we still need to test at least ⌊c|I−|/2⌋+1 joint515

value assignments to |I−| to decide MFE exactly, even when d = 1. However,516

in that case we can tractably find an explanation that is very likely to be the517

MFE if d is close to 1. Consider the following algorithm for MFE (adapted518

from [35]):519
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Algorithm 1 Compute the Most Frugal Explanation

Sampled-MFE(B,H, I+, I−, e, N)

1: for n = 1 to N do
2: Choose i ∈ I− at random
3: Determine h = argmaxhPr(H = h, i, e)
4: Collate the joint value assignments h
5: end for
6: Decide upon the joint value assignment hmaj that was picked most often
7: return hmaj

This randomized algorithm repeatedly picks a joint value assignment520

i ∈ I− at random, determines the most probable explanation, and at the end521

decides upon which explanation was found most often. Due to its stochas-522

tic nature, this algorithm is not guaranteed to give correct answers all the523

time. However, the error margin ϵ can be made sufficiently low by choosing524

N large enough. If there are only two competing most probable explana-525

tions, the threshold value of N can be computed using the Chernoff bound:526

N ≥ 1
(p−1/2)2

ln 1/√ϵ (more sophisticated methods are to be used to compute527

or approximate N when there are more than two competing explanations).528

Assume we require an error margin of less than 0.1, then the number of re-529

peats depends on the probability p of picking a joint value assignment i for530

which hmaj is the most probable explanation. This probability corresponds531

to the decisiveness parameter d that was introduced in Table 1. If decisive-532

ness is high (say d = 0.85), then N can be fairly low (N ≥ 10), however, if533

the distribution of explanations is very flat, and consequently, decisiveness is534

low, then an exponential number of repetitions is needed.535

If d is bounded (i.e., larger than a particular fixed threshold) we thus need536

only polynomially many repetitions to obtain any constant error rate. When537

in addition determining the most probable explanation is easy—in particular,538

when the treewidth and cardinality of B are low and there are few relevant539

variables in the set I+—the algorithm thus runs in polynomial time, and thus540

MFE can be decided in polynomial time, with a small possibility of error.541

3.4. Discussion542

In the previous subsections we showed that MFE is intractable in general,543

both to compute exactly and to approximate, yet can be tractably approxi-544

mated (with a so-called expectation-approximation [42]) when the treewidth545
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of the network is low, the cardinality of the variables is small, the number of546

relevant intermediate variables is low, and the probability distribution for a547

given explanation set H, evidence e and relevant intermediate variables I+548

is fairly decisive, i.e., skewed towards a single MFE explanation. We also549

know that MAP can be tractably computed exactly7 when the treewidth of550

the network is low, the cardinality of the variables is small, and either the551

MAP explanation has a high probability, or the total number of intermediate552

variables is low [36]. How do these constraints compare to each other?553

For MAP, the constraint on the total number of intermediate variables554

seems implausible. In real-world knowledge structures there are many inter-555

mediate variables, and while only some of them may contribute to the MAP556

explanation, we still need to marginalize over all of them to compute MAP.557

Likewise, when there are many candidate hypotheses, it is not obvious that558

the most probable one has a high (i.e., close to 1) probability. Note that the559

actual fixed-parameter tractable algorithm [4, 36] has a running time with560

log p
log 1−p

in the exponent, where p denotes the probability of the MAP explana-561

tion. This exponent quickly grows with decreasing p. Furthermore, treewidth562

and cardinality actually refer to the treewidth of the reduced junction tree,563

where observed variables are absorbed in the cliques. Given that we sample564

over the set I− in MFE, but not in MAP, both parameters (treewidth and565

cardinality) will typically have much lower values in MFE as compared to566

MAP. That is, it is more plausible that these constraints are met in MFE567

than that they are met in MAP.568

Given the theoretical considerations in [14] it seems plausible that the569

decisiveness constraint is met in many practical situations. Surely, one could570

argue that the fixed parameter tractability of MFE is misguided, as the set571

of candidate hypotheses and the observations are given in the input of the572

formal problem, and it is known beforehand what the relevant variables are.573

Thus, the problem of finding candidate hypotheses, the problem of deciding574

what counts as evidence, and the problem of deciding which variables are575

relevant are left out of the problem definition. We acknowledge that this576

is indeed the case, and that the problem of non-demonstrative inference is577

much broader than ‘merely’ inferring the best explanation out of a set of578

7There are to the best of our knowledge no stronger (or even different) fixed parameter
tractable results for approximate MAP than the results listed above for exact computa-
tions.
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candidate explanations [39]; yet, this is no different for MAP, at least when579

it comes to deciding upon the candidate hypotheses and the observations.580

With respect to the partition between irrelevant and relevant intermediate581

variables we will show in Section 4 that MFE is fairly robust: including even582

a few variables with a high intrinsic relevance will suffice to find relatively583

good MFE explanations.584

4. Simulations585

In Section 3 we illustrated, using the ALARM example, that computing586

MFE can give similar results as when MAP is computed, while requiring587

less variables to be marginalized over. In this section, we will simulate MFE588

on random graphs to obtain empirical results to support that claim. We589

will also illustrate that, in order to obtain a good explanation using only590

few samples, the decisiveness of the probability distribution indeed must be591

high. Finally we show how MFE behaves under various scenarios where592

the intrinsic and estimated relevance of the intermediate variables (i.e., the593

actual relevance and the subjective assessment thereof) do not match. As594

the goal of these simulations is to explore how MFE behaves under scenarios595

that can be considered either natural (occurring in real-world networks) or596

artificial, we use randomly generated networks, rather than an existing set597

of benchmark networks, like the ALARM network, in our simulations.598

4.1. Method599

We generated 100 random Bayesian networks, each consisting of 40 vari-600

ables, using the (second) method described in [51]. Each variable had ei-601

ther two, three, or four possible values, and the in-degree of the nodes was602

limited to five. With each variable, a random conditional probability dis-603

tribution was associated. We randomly selected five explanation variables604

and five evidence variables, and set a random joint value assignment to the605

evidence variables. Given the variation on the cardinality of the variables,606

the number of candidate joint value assignments to the explanation variables607

could vary from 25 to 45; in practice, it ranged from 48 to 576 (mean 208.5,608

standard deviation 107.4). See also the on-line supplementary materials:609

http://www.dcc.ru.nl/∼johank/MFE/.610

Using the Bayes Net Toolbox for MATLAB [46] we computed, for each611

network, the posterior distribution over the explanation variables, approx-612

imated the relevance of each intermediate variable, and approximated the613
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MFE distribution under various conditions. The results presented below are614

based on 91 random networks. The MATLAB software was unable to com-615

pute the MAP of seven networks due to memory limitations, and the results616

of two networks were lost due to hardware failure. In Figures 4 and 5 some617

typical results are given for illustrative purposes.618
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Figure 4: MAP distribution and MFE results for the 16 most probable joint value assign-
ments of one of the random networks (#99) for a particular set of relevant intermediate
variables, using 1000 samples. The light gray bar denotes the cumulative MFE result of
the five most probable joint value assignments. Note that the most probable joint value
assignment (which has a probability of 0.0131) is also the most frugal explanation, as it
is the MAP for about 40% of the joint value assignments to the irrelevant intermediate
variables. The ‘second-best MAP’, while it has a relative high posterior probability, is
always ‘second-best’: there are no joint value assignments to the irrelevant intermediate
variables in which this particular explanation has the highest probability. There are other
explanations, with a lower posterior probability, that become the most probable explana-
tion for some particular value assignments to these irrelevant intermediate variables. Note
that in this situation there is no error as the most probable and most frugal explanation
are identical.

4.2. Tracking Truth619

We compared the MAP explanation with the MFE explanation using 100620

samples of the irrelevant variables, varying the I+/I− partition. In particular621
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Figure 5: A similar plot as in Figure 4, but in this random network (#68) the most
frugal explanation is the second most probable explanation, yielding a difference between
the ‘marginalizing’ and the ‘sampling’ approach. Note, however, that both explanations
are almost as good: they differ in a single variable, and the probability ratio is 0.965,
meaning that the probability of the most frugal explanation is only slightly lower than the
probability of the most probable explanation.

we compared the explanations where all variables are deemed irrelevant (I+ =622

∅), where I+ consisted of the five intermediate variables with the highest623

relevance, and where I+ consisted of the intermediate variables that have a624

relevance of more than 0.00, 0.05, 0.10, 0.25, respectively 0.50. To assess625

how similar the most frugal explanations are to the MAP results, we used626

three different error measures: (1) the structural deviation from MAP (how627

many variables have different values, i.e., the Hamming distance between628

the MFE and MAP explanations), (2) the rank k of the MFE explanation,629

indicating that the MFE explanation is the k-th MAP instead of the most630

probable explanation, and (3) the ratio of the MFE probability and the MAP631

probability, indicating the proportion of probability mass that was allocated632

to the MFE explanation.633

Furthermore, we estimated how often the MFE was picked relative to634

other explanations, indicating how likely it is that a singleton sample over635

the irrelevant variables would yield this particular explanation. This yields a636
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measure on how many samples are needed to arrive at a confident decision.637

Lastly, we estimated the likelihood of picking the MAP explanation and one638

of the five most probable explanations using a single sample. This indicates639

how likely it is that an arbitrary singleton sample will yield an explanation640

with the maximum, respectively a relatively high, posterior probability.641

The results are summarized in Table 2 and Figure 6. The scatter plots642

in Figure 6 illustrate the spread of the errors along different networks. In643

general one can conclude that MFE explanations are reasonably close to the644

MAP explanations, when there is marginalization over those variables that645

are ‘sufficiently relevant’. From the results it follows that including the five646

most relevant variables gives fairly good results, and that including variables647

that have a relevance of less than 0.25 does not significantly improve the648

average MFE results. Including no relevant variables at all (i.e., computing649

the Most Simple Explanation [35]) gives considerably worse results, however.650

Cond. I+ size ratio rank dist. % mfe % map % 5-map

None 0 0.66 25.90 2.05 0.08 0.03 0.14
Best 5 5 0.82 10.73 1.30 0.13 0.08 0.27
> 0.50 11.32 0.87 5.36 0.87 0.25 0.17 0.46
> 0.25 14.93 0.91 4.59 0.79 0.38 0.25 0.58
> 0.10 15.79 0.91 5.56 0.81 0.39 0.25 0.60
> 0.05 15.99 0.91 6.09 0.75 0.41 0.27 0.60
> 0.00 16.35 0.92 4.12 0.75 0.41 0.26 0.61

Table 2: Overview of simulation results. In this simulation the partition between relevant
and irrelevant variables was varied and ranged from ‘none’ (all variables are irrelevant),
‘best 5’ (the five variables with the highest relevance are deemed relevant, to a relevance
threshold between 0.50 and 0.00, yielding an average I+ size between 11.32 and 16.35.

4.3. Number of Samples651

As shown in Section 3.3, approximating the MFE (i.e., finding the ex-652

planation which is very likely the MFE) can be done by sampling, where653

the number of samples needed to guarantee a particular confidence level is654

related to the decisiveness of the network. When decisiveness is low, and con-655

sequently the MFE distribution is flat (many competing explanations, none656

of which has a high probability of being the most probable explanation for a657

random joint value assignment to the irrelevant intermediate variables), we658
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Figure 6: On the left: Three error indicators of MFE versus MAP explanations: The ratio
between their probabilities, rank of the MFE explanation, and Hamming distance between
MFE and MAP for various I+/I− settings. On the right: Scatter plots of ratio and rank,
and stacked box plot for Hamming distance. In the scatter plots, results of all random
networks are shown, for the conditions where all variables are irrelevant (‘None’, square),
the five variables with the highest relevancy were deemded relevant (‘best 5’, triangle) and
where all variables with non-zero relevancy where relevant (‘> 0.00’, circle). The stacked
box plot illustrates the distribution of the Hamming distance between MFE and MAP
explanation, where darker colors indicate a higher Hamming distance. Error bars indicate
standard error of the mean.
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need much more samples to make confident decisions. This is illustrated by659

the following figures. In Figure 7 we see a typical result for a random network660

which is highly skewed towards a singleton explanation, and in Figure 8 the661

results of a random network with a low decisiveness are shown.662
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Figure 7: This plot shows part of the MAP distribution and MFE results using 1000 sam-
ples for a random network (#93) with a very steep distribution of the MFE explanations.
This network is strongly skewed towards the most probable explanation which is picked
in 83% of the samples, so that an arbitrary singleton sample is quite likely to be the
MFE; we can be guaranteed to obtain the most frugal explanation with 95% confidence
by generating thirteen samples and decide which explanation is most often picked. Even
a single sample is guaranteed to correspond to one of the five most probable examples.

However, even when there is no explanation which stands out, the sam-663

pling algorithm can still give good results. In Figure 9 we show a typical664

result when there are a few competing explanations that all have a relatively665

high probability. While it may take many samples to decide on which of666

them is the MFE, we still can be quite sure that a singleton sample of the667

irrelevant intermediate variables would yield one of them as the most prob-668

able explanation; here, sampling seems like a reasonable strategy to obtain669

an explanation that is likely to have a reasonably high probability.670
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Figure 8: This plot shows part of the MAP distribution and MFE results using 1000
samples for a random network (#89) with a very flat distribution of the MFE explanations.
No explanation really stands out; the most frugal explanation being picked in just over
3% of the samples. In this network, that is not at all skewed towards any particular
explanation, an arbitrary sample can have a low posterior probability, and we will need a
massive number of samples to decide with reasonable confidence about which explanation
is the MFE.

4.4. Other parameters671

Obviously, the I+/I− partition influences the quality of the MFE solution672

in terms of the three error measures introduced in Section 4.2. We also in-673

vestigated whether the size of the hypothesis space, the number of relevant674

variables, or the probability of the most probable explanation influences this675

quality. First we observe that these parameters are not independent. There676

is a strong negative correlation (-.65) between the size of the explanation set677

and the probability of the most probable explanation. This can be explained678

by the random nature of the networks and the probability distribution they679

capture: on average, if there are more candidate explanations in the explana-680

tion set, the average probability of each of them is lower, and so it is expected681

that the average probability of the most probable explanation is also lower.682

The results of the correlation analysis are shown in Table 3, and can be683

summarized as follows. Neither explanation set size, intrinsic relevance, or684
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Figure 9: This plot shows part of the MAP distribution and MFE results using 1000
samples for a random network (#70) where three explanations are often picked as the
most probable, and quite some samples are needed to decide on the most frugal explanation
with confidence. However, since one of these three (almost equally probable) most probable
explanations is picked in 61% of the samples, we can expect that few samples, possibly
just a singleton sample, may return a quite good explanation.

probability of the most probable explanation (MPE) correlates with the ratio685

between probability of MPE and probability of MFE. There is a weak corre-686

lation between explanation set size and rank, and a weak negative correlation687

between probability of MPE and rank: the bigger the explanation size, the688

larger the average rank k. Neither explanation set size, intrinsic relevance, or689

probability of MPE correlates (or correlates only very weakly) with distance690

errors.691

4.5. Wrong judgments692

Obviously, taking more intermediate variables into account (i.e., consider-693

ing more variables to be relevant) helps to obtain better results; still, we can694

make reasonable good inferences using only the five most relevant interme-695

diate variables. But what if ones subjective assessment of what is relevant696

does not match the intrinsic relevance of these variables? Figure 10 illus-697

trates what typically happens when there is a mismatch between intrinsic698
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Cond. explanation set size intrinsic relevance probability of MPE
ratio rank dist. ratio rank dist. ratio rank dist.

MSE −.01 .15 .15 −.09 .02 .18 −.11 −.23∗ −.20
Best 5 −.16 .22∗ .27∗ .13 .18 .07 −.15 −.35∗∗ −.40∗∗
> 0.50 .08 .12 .02 −.11 .01 .18 −.04 −.17 −.16
> 0.25 −.09 .24∗ .12 −.11 .05 −.02 .06 −.22∗ −.12
> 0.10 −.10 .26∗ .21∗ −.08 .01 −.06 .05 −.17 −.18
> 0.05 −.08 .22∗ .10 −.08 .01 −.02 .02 −.13 −.11
> 0.00 .06 .17 .03 −.20 .11 .01 −.01 −.19 −.03

Table 3: Overview of correlations (Pearson’s r) with significance levels. ∗ indicates signif-
icance at the p < .05 level, ∗∗ indicates significance at the p < .01 level

and estimated relevance. Here we plotted the results of the > 0.00 (top left)699

and Best 5 (bottom right) conditions, as well as some conditions in which700

there is a mismatch between intrinsic and expected relevance. In particu-701

lar, we omitted the two (top right), five (middle left), ten (middle right),702

respectively fifteen (bottom left) most relevant variables.703

This example illustrates a graceful degradation of the results, especially704

when the cumulative results of the five most probable joint value assignments705

are compared. Observe that including the twenty-five least relevant variables706

leads to comparable results as including the five most relevant variables.707

Clearly, it helps to know what is relevant, yet there is margin for error.708

4.6. Discussion709

The simulation results, as illustrated by Table 2 and Figure 6, clearly710

show that MFE ‘tracks truth’ quite well, even when only part of the relevant711

intermediate variables are taken into account. However, when more interme-712

diate variables are marginalized over, we can be more confident of the results.713

In these cases the distribution of explanations typically is narrower and it is714

more likely that a majority vote using few samples, or even a singleton sam-715

ple, results in an explanation that is close to the most probable explanation.716

The simulations also indicate that indeed the probability distribution must717

be skewed towards one or a few explanations for obtaining acceptable results718

with few samples - and that indeed many distributions are skewed, even in719

completely random networks.720
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Figure 10: This plot shows part of the MAP distribution and MFE results of a random
network (#78) with different partitions of the intermediate variables, where the subjective
assessment that yields the partition may not match the actual relevance of the variables.
Shown are the results when all variables with non-zero relevancy are deemed relevant (top
left, 19 variables in I+), all but the two most relevant variables (top right, 28 variables
in I+), all but the five most relevant variables (middle left, 25 variables in I+), all but
the ten most relevant variables (middle right, 20 variables in I+), only the fifteen least
relevant variables (bottom left, 15 variables in I+), and only the fivemost relevant variables
(bottom right, 5 variables in I+).
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5. Conclusion721

In this paper we proposed Most Frugal Explanation (MFE) as a tractable722

heuristic alternative to (approximate) MAP for deciding upon the best ex-723

planation in Bayesian networks. While the MFE problem is intractable in724

general—its decision variant is NPPPPP
-complete, and thus even harder than725

the NPPP-complete MAP problem [51], the PPPP-complete Same-Decision726

Probability problem [9], or the PPPPP
-complete k-th MAP problem [41]—it727

can be tractably approximated under situational constraints that are ar-728

guably more realistic in large real-world applications than the constraints729

that are needed to render MAP (fixed-parameter) tractable. Notably, the730

{c, tw, 1− p}-fixed-parameter tractable algorithm for MAP [4] has a running731

time with log p
log 1−p

in the exponent. In the random networks used in the simu-732

lations, the average probability of the most probable explanation was 0.0245,733

which would yield an unpractical exponent of log 0.0245
log 0.9755

≈ 150. In contrast,734

even when only half of the total set of intermediate variables are considered735

as relevant, for an arbitrary sample over the rest of the intermediate variables736

we will find the MFE in about 40% of the cases, and an explanation that is737

one of the five best in about 60% of the cases.738

In future work we wish to investigate the possible explanatory power739

of MFE in cognitive science. In recent years it has been proposed that740

human cognizers make decisions using (Bayesian) sampling [31, 57, 62] and741

approximate Bayesian inferences using exemplars [54]; studies show that we742

have a hard time solving problems with many relevant aspects [20]. The743

parameterized complexity results of the MFE framework may theoretically744

explain why such approaches work fine in practice and under what conditions745

the limits of our cognitive capacities are reached.746
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Appendix: Computing relevance is NP-hard764

In Definition 4 we formally defined the intrinsic relevance of an interme-765

diate variable as a measure indicating the sensitivity of explanations to its766

value. We here show that computing the intrinsic relevance of such a variable767

is NP-hard. The decision problem used in this proof is defined as follows:768

Intrinsic Relevance769

Instance: A Bayesian network B = (GB,Pr), where V is partitioned into770

evidence variables E with joint value assignment e, explanation variables771

H, and intermediate variables I, and a designated variable I ∈ I.772

Question: Is the intrinsic relevance R(I) > 0?773

We reduce from the following NP-complete decision problem [37]:774

IsA-Relevant Variable775

Instance: A Boolean formula ϕ with n variables, describing the776

characteristic function 1ϕ : {false,true}n → {1, 0}, designated variable777

xr ∈ ϕ.778

Question: Is xr a relevant variable in ϕ, that is, is779

1ϕ(xr = true) ̸= 1ϕ(xr = false)?780

Here, the characteristic function 1ϕ of a Boolean formula ϕ maps truth781

assignments to ϕ to {0, 1}, such that 1ϕ(x) = 1 if and only if x denotes a782

satisfying truth assignment to ϕ, and 0 otherwise. We will use the formula783

ϕex = ¬(x1 ∨ x2) ∧ x3 as a running example, where x3 is the variable of784

interest. Note that x3 is relevant, since for x1 = x2 = false, 1ϕ(x3 =785

true) ̸= 1ϕ(x3 = false).786
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We construct a Bayesian network Bϕ from ϕ as follows. For each propo-787

sitional variable xi ∈ ϕ we add a binary stochastic variable Xi ∈ Bϕ with788

uniformly distributed values true and false. We add an additional binary789

variable XT
r with observed value true. For each logical operator oj in ϕ,790

we add two binary stochastic variables Oj and OT
j in Bϕ. The parents of791

the variables Oj are the variables Ok that represent the sub-formulas bound792

by Oj; in case such a sub-formula is a literal, the corresponding parent is a793

variable Xi. In contrast, the parents of the variables OT
j are the variables794

OT
k (for sub-formula), Xi (for literals except xr), respectively XT

r (for the795

literal xr). The variables corresponding with the top-level operator in ϕ are796

denoted with Vϕ, respectively V T
ϕ .797

Furthermore, an additional binary variable C is introduced in Bϕ, acting798

as ‘comparator’ variable. C has both Vϕ and V T
ϕ as parents and condi-799

tional probability Pr(C = true | Vϕ, V
T
ϕ ) = 1 if Vϕ ̸= V T

ϕ and Pr(C =800

true | Vϕ, V
T
ϕ ) = 0 if Vϕ = V T

ϕ . An example of this construction is given in801

Figure 11 for the formula ϕex. We set H = C, E = XT
r , and I = Xr.802

X1 X2

∨

¬

∨

¬

∧ Vφ

X3 Xr

XT
r

T

∧ V T
φ

C

Figure 11: Example of the construction of Bϕex for the formula ϕex = ¬(x1 ∨ x2) ∧ x3
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Theorem 7. Intrinsic Relevance is NP-complete.803

Proof. Membership in NP follows from the following polynomial-time verify-804

ing algorithm for yes-instances: given a suitable joint value assignment i to I\805

{I} and assignments i1, i2 to I, we can easily check that argmaxhPr(h, e, i, I =806

i1) ̸= argmaxhPr(h, e, i, I = i2), and thus that R(I) > 0.807

To prove NP-hardness, we reduce IsA-Relevant Variable to Intrin-808

sic Relevance. Let (ϕ, xr) be an instance of IsA-Relevant Variable.809

From (ϕ, xr), we construct (Bϕ, I) as described above. If (ϕ, xr) is a yes-810

instance of IsA-Relevant Variable, then the characteristic function 1ϕ811

is not identical for xr = false and xr = true. In other words, there812

is at least one truth assignment t to the variables in ϕ \ {xr} such that813

either t ∪ {xr = true} is satisfying ϕ and t ∪ {xr = false} is not sat-814

isfying ϕ, or vice versa. Let i be the joint value assignment to I \ {Xr}815

that corresponds to the truth assignment t, and in addition fixes the val-816

ues of the operator variables OT
j and Oj according to their (determinis-817

tic) conditional probability tables. Now, we have that for the truth as-818

signment Xr = true, Pr(C = true | i, XT
r = true) = 1 and thus819

argmaxcPr(C = c, i, Xr = false) = true. By definition, we have that for820

the truth assignment Xr = false that Pr(C = true | i, XT
r = false) = 0821

and thus argmaxcPr(C = c, i, Xr = false) = false. Hence, the intrinsic822

relevance R(Xr) > 0 and thus (Bϕ, I) is a yes-instance of Intrinsic Rele-823

vance.824

Now we assume that R(I) > 0, implying that there is at least one825

truth assignment i to I{\Xr} such that Pr(C = true | i, XT
r = false) ̸=826

argmaxcPr(C = c, i, Xr = false) where the joint value assignment to the827

operator variables OT
j and Oj matches the deterministic conditional prob-828

abilities imposed by the joint value assignment to the variables Xi. This829

implies that the characteristic function 1ϕ is not identical for xr = false830

and xr = true, hence, that (ϕ, xr) is a yes-instance of IsA-Relevant831

Variable.832

As the reduction can be done in polynomial time, this proves that In-833

trinsic Relevance is NP-complete.834
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