
Proceedings of Machine Learning Research 246:1–12, 2024 Probabilistic Graphical Models (PGM)

Time–Approximation Trade-Offs for Learning Bayesian Networks

Madhumita Kundu MADHUMITA.KUNDU@UIB.NO

University of Bergen
Pekka Parviainen PEKKA.PARVIAINEN@UIB.NO

University of Bergen
Saket Saurabh SAKET@IMSC.RES.IN

University of Bergen, The Institute of Mathematical Sciences

Editors: J.H.P. Kwisthout & S. Renooij

Abstract
Bayesian network structure learning is an NP-hard problem. Furthermore, the problem remains
hard even for various subclasses of graphs. Motivated by the hardness of exact learning, we
study approximation algorithms for learning Bayesian networks. First, we propose a moderately
exponential time algorithm with running time O(2

`
kn) that has an approximation ratio `

k where
n is the number of vertices and ` and k are user-defined parameters with ` ≤ k. That is, we give
time–approximation trade-offs for learning Bayesian networks. Second, we present a polynomial
time algorithm with an approximation ratio 1

d to find an optimal graph whose connected components
have size at most d.
Keywords: Bayesian Network Structure Learning, Parameterized Algorithms, Approximation
Algorithms.

1. Introduction

Bayesian networks are widely-used to represent joint distributions of several random variables.
Bayesian networks have two parts: the structure and the parameters. The structure of a Bayesian
network is a directed acyclic graph (DAG) and it expresses conditional independencies in the
joint distribution. The parameters, on the other hand, specify conditional probability distributions
associated with each vertex.

One is often interested in learning the structure of a Bayesian network from data. Two main
approaches for learning Bayesian networks are constraint-based and score-based. In this work, we
take the score-based approach in which one assigns each DAG a score based on how well it fits the
data and the goal is to find a DAG that maximizes the score. Typically, one uses a scoring function
that is decomposable, that is, the score of a DAG is a sum of local scores for vertex-parent set pairs.

Finding an optimal DAG is a challenging task. Indeed, finding an optimal DAG is an NP-hard
problem (Chickering et al., 2004; Chickering, 1996). The NP-hardness remains in more restricted
settings such as finding an optimal polytree (Dasgupta, 1999) or chain (Meek, 2001). A notable
exception is finding an optimal tree which can be found in polynomial time (Chow and Liu, 1968).

Given that the structure learning problem is NP-hard, there has been lots of studies developing
heuristic algorithms. However, research in approximation algorithms that give quality guarantees
has been surprisingly scarce. To our knowledge, only Ziegler (2008) has studied this problem. He
presents a polynomial time algorithm that provides a 1

m -approximation where m is the maximum

c© 2024 M. Kundu, P. Parviainen & S. Saurabh.

KUNDU PARVIAINEN SAURABH

in-degree of the DAG. Motivated by this scarcity, we develop approximation algorithms for learning
Bayesian network structures and open avenues for research in two directions.

First, we study structure learning without any additional structural constraints. The fastest known
(in the worst-case) exact algorithm for this problem runs in time O(2n) (Silander and Myllymäki,
2006). We present a moderately exponential time algorithm with running time O(2

`
k
n) that has an

approximation ratio `
k where n is the number of vertices and ` and k are user-defined parameters

with ` ≤ k (Theorem 5). By selecting ` and k, one can trade between speed and approximation ratio.
This algorithm is based on the algorithm by Parviainen and Koivisto (2013). While the proposed
algorithm is slower than Ziegler’s algorithm, it can achieve a better approximation ratio and it does
not require an assumption of bounded indegree.

Our second contribution is an approximation algorithm for more constrained Bayesian networks.
Finding Bayesian networks whose structure satisfies some structural constraints can be an interesting
task. For example, inference in Bayesian networks is NP-hard in general but tractable in networks
with bounded treewidth1. Thus, if one desires to perform exact inference fast, one should find a
high-scoring network whose treewidth is bounded by a small constant. Unfortunately, structure
learning remains NP-hard for all treewidth bounds larger than 1 (Korhonen and Parviainen, 2013).
On the positive side, many constrained graph classes admit naturally parameterised algorithms.
It has been shown that learning an optimal Bayesian network with bounded vertex cover number
can be done in polynomial time for any constant vertex cover number (Korhonen and Parviainen,
2015). Recently, this result has been extended by proving that finding an optimal Bayesian network
with bounded dissociation number is polynomial time for any constant bound (Grüttemeier and
Komusiewicz, 2020). Both problems are W[1]-hard.

However, extending these results seems difficult as Grüttemeier and Komusiewicz (2020) have
shown that finding an optimal Bayesian network whose connected components have size at most d is
NP-hard for any d ≥ 3. We provide an approximation algorithm for finding an optimal Bayesian
network whose moralised graph can be transformed into connected components of size at most d by
deleting at most k vertices. Note that while this graph class may sound artificial, the above-mentioned
graphs with bounded vertex cover number and bounded dissociation number are special cases of
this class with d = 1 and d = 2, respectively. Our algorithm is based on maximum weighted d-set
packing and has approximation ratio 1

d (Theorem 6, Corollary 7).
One challenge with approximation algorithms for Bayesian network structure learning is that it

is difficult the assess whether the approximation ratios give meaningful bounds in practice. In our
results, we assume that the local scores are non-negative. However, a typical score is a logarithm of
some probability and thus negative. Technically, this does not pose problems as the negative local
scores can be transformed into non-negative ones by adding a sufficiently large constant to each of
them and in a sense “shifting” them. However, the approximation ratios apply to the shifted scores
and it is not straightforward to see what it means in terms of the original score.

Let us consider a simple example to illustrate the interpretation of approximation ratios in this
context. Suppose we have five vertices and local scores vary between −10 and −20. Now the local
scores can be made non-negative by adding the constant 20 to each of them. After the shift, shifted
local scores are between 0 and 10. Suppose further that we run an algorithm with approximation
ratio 1/2 and find a DAG with shifted score 10. As the algorithm has on approximation ratio 1/2,

1. To be exact, the moralised graph of the Bayesian network has bounded treewidth.

2

TIME–APPROXIMATION TRADE-OFFS FOR LEARNING BAYESIAN NETWORKS

we know that the DAG we found has a score that is at least 1/2 of the score of the optimal DAG.
That is, the shifted score of the optimal DAG is at most 20.

Now, we can invert the shift and get bounds in terms of the original score. As we have added a
constant 20 to each local score and there are five vertices, we know that the found DAG has score
10− (5 ∗ 20) = −90 using the original local scores. Similarly, the optimal DAG has a score at most
20− (5 ∗ 20) = −80.

2. Preliminaries

2.1. Notation

A directed graph D = (V,A) is defined as a set of vertices V with |V | = n and a set of arcs
A ⊆ V × V . An arc (v1, v2) in D is called incoming at v2 and outgoing at v1. Also, v2 is called
child of v1. The total number of incoming arcs of any vertex v in D is called in-degree and total
number of outgoing arcs is called out-degree. The set PaDv := {vi ∈ D : (vi, v) ∈ A} is called the
parent set of v in D. A directed graph D is called a directed acyclic graph (DAG) if it has no directed
cycles. A directed graph is called a tournament if for every pair of vertices v1, v2, precisely one of
the arcs (v1, v2) or (v2, v1) is present. Let G = (V,E) be an undirected graph with n vertices in
V and |E| edges. The graph G is termed as connected if there exists a path between every pair of
vertices v1 and v2 in G. A subgraph of G is a graph formed by deleting some vertices or edges from
G. We represent the subgraph obtained by removing the vertex set V ′ (or the edge set E′) from G as
G′ = G − V ′ (or G − E′ respectively). A connected component C of G is a maximal connected
subgraph, which means that adding any additional vertex to C would disconnect the subgraph.

2.2. Bayesian Network Structural Learning (BNSL)

We consider the score-based approach to learn Bayesian networks: we assign a score to each
DAG and try to find the one that maximises the score. The score of a DAG D is defined as
f(D) =

∑
v∈V fv(Pa

D
v) where fv : 2V \{v} → R is called a local score. In other words, the local

score of a vertex depends on its parent set and the score of a DAG is the sum of local scores of all the
vertices. Now the learning problem can be defined as follows:

Vanilla-BNSL
Input: A family of local scores F =

{
fv : 2V \{v} → R|v ∈ V

}
Question: Find a DAG D = (V,A) that maximises the score f(D).

Input Representation. Throughout this work, we let n := |V | denote the number of vertices given
in an instance of a BNSL problem. Furthermore, we assume that for V = {v1, . . . , vn}, the local
scores F are given as a two-dimensional array F := [Q1, Q2, . . . , Qn], where each Qi is an array
containing all triples (fvi(Pa), |Pa| , Pa) where fvi(Pa) > 0 or Pa = ∅. Note that typically the
sets Qi do not contain all possible parent sets; one may, for example, compute scores for only
parent sets with bounded number of parent sets or prune scores. Thus, only some of the possible
triples (fvi(Pa), |Pa| , Pa) are part of the input. This input representation is known as non-zero
representation (Ordyniak and Szeider, 2013)2. The size |F| is defined as the number of bits we need
to store this two-dimensional array. Hence the size of input, I we define |I| := |F|.

2. This is a slightly misleading naming convention as the scores for empty parent sets may be zeros.

3

KUNDU PARVIAINEN SAURABH

Learning with graph classes. In this paper, we are interested in learning an optimal DAG
within a specific graph class. More precisely, we add constraints on the moralised graph
of the DAG. For a given DAG D = (V,A), the undirected graph M(D) := M(V,E =
E1 ∪ E2) is called as moralised graph of D where E1 := {{u, v}|(u, v) ∈ A} and E2 ={
{u, v} | ∃ w(6= u, v) such that {u, v} ⊆ PaDw

}
.

We define a graph class to be a family of undirected graphs, denoted as Π. We are going to work
with the following graph class: A graphG is called a bounded component graph (in short bcg), if its ev-
ery connected component has size bounded by d. We denote this class by Πd := {G : G is a bcg}. We
also extend our study to graphs that can be made members of another graph class by deleting a small
number of vertices or edges. Let Π + kv := {G | ∃V ′ ⊆ V such that |V ′| ≤ k and G− V ′ ∈ Π} be
the family of graphs that can be transformed into a graph in Π by deleting no more than k vertices.

Now we define the general problem as follows:

(Π + kv)-BNSL Parameter: k
Input: A set of vertices V of size n, family of local scores F
Question: Find a DAG D = (V,A) that maximises f(D) =

∑
v∈V fv(Pa

D
v) such that

M(D) ∈ Π + kv.

Intuitively, (Π + kv)-BNSL is the VANILLA-BNSL problem with an additional constraint to
the moralised graph of the resulting network i.e. its goal is to find a directed acyclic graph which
maximises the total score and whose moralised graph can be transformed into graph of Π by removing
at most k vertices.

2.3. Parameterised Complexity

The framework of parameterised complexity was introduced by Downey and Fellows (1995). Pa-
rameterised complexity is an area where in addition to the overall input size n, one studies how a
relevant secondary measurement affects the computational complexity of problem instances. Parame-
terised decision problems are defined by specifying the input, the parameter, and the question to be
answered. A problem is called slicewise polynomial (XP) for a parameter k if it can be solved in
time O(|I|f(k)) for a computable function f where |I| is the size of the input. That is, the problem is
solvable in polynomial time when k is constant. A problem is called fixed parameter tractable (FPT)
for a parameter k if it can be solved in time f(k) · |I|O(1) for a computable function f .

3. Moderately exponential-time approximation algorithms for BNSL

We will present an approximation algorithm that allows us to trade between time and approximation
ratio. Our algorithm is based on the partial order approach by Koivisto and Parviainen (Koivisto and
Parviainen, 2010; Parviainen and Koivisto, 2013) that was used to trade between space and time.
They showed that, given a partial order, a highest-scoring DAG compatible with the order can be
found “fast”. Then an optimal DAG can be found by constructing a family of partial orders that
“covers” all linear orders and learning a DAG for each order. We drop the requirement of covering all
linear orders which speeds up the algorithm but in the same time we lose the guarantee of finding an
optimal DAG. However, we prove that our algorithm still has approximation guarantees.

Let us start by reviewing the partial order approach.

4

TIME–APPROXIMATION TRADE-OFFS FOR LEARNING BAYESIAN NETWORKS

3.1. Partial Orders

To get started, we need definitions of some concepts related to partial orders. A partial order P on a
base-set V is a subset of V × V such that for all x, y, z ∈ V it holds that

1. xx ∈ P (reflexivity)

2. xy ∈ P and yx ∈ P imply y = x (antisymmetry), and

3. xy ∈ P and yz ∈ P imply xz ∈ P (transitivity).

If xy ∈ P we say that x precedes y. A partial order P is a linear order, if in addition, xy ∈ P
or yx ∈ P (but not both) for all x, y ∈ V, x 6= y (totality). A linear order L is a linear extension
of a partial order P if P ⊆ L. Recall that every permutation is in a one-to-one relationship with
a linear order. Thus, we say that a permutation σ is a linear extension of a partial order P if the
corresponding linear order of σ is a linear extension of P . So, we can use linear order and permutation
interchangeably when they represent each other.

For a DAG D, a topological order of D is extending D to a tournament, say T . For a set Y ⊆ V ,
an induced sub-topological order T [Y] is a topological order inside Y i.e. T [Y] = T ∩ (Y × Y).

A DAG D and a partial order P are said to be compatible with each other if there exists a linear
order L such that P ⊆ L and A ⊆ L. In other words, some topological order of D is a linear
extension of the partial order P .

A partial order B on base-set V is a bucket order if V can be partitioned into nonempty sets
B1, B2, . . . , Bl called buckets, such that xy ∈ B if and only if x = y or x ∈ Bi and y ∈ Bj for
some i < j.

It is known (Parviainen and Koivisto, 2013) that an optimal DAG compatible with a bucket order
can be found efficiently using a dynamic programming algorithm.

Lemma 1 ((Parviainen and Koivisto, 2013)) Let P be a bucket order over a set of n elements,
with bucket sizes b1, b2, . . . , bt. Then, there exists an algorithm to find an optimal DAG compatible
with P with running time O∗(|I|+ 2bmax), where bmax is the maximum bucket size, |I| is the size of
the input and O∗() hides polynomial factors in n.

3.2. Approximation Algorithm for BNSL

We are now ready to present the algorithm. The intuition behind our algorithm is as follows. We
define a bucket order P and find an optimal DAG compatible with P . Note that being compatible
with P limits the choice of potential parent set for the vertices. However, the vertices in the last
group are free to choose their parents as long as the induced subgraph within the bucket remains
acyclic. Now, with sufficiently large last bucket and covering enough partial orders, it is possible to
guarantee an approximation ratio.

Next, we present the algorithm. Integers ` and k (1 ≤ ` ≤ k ≤ n) are user-defined parameters
that can be used to control the trade-off between the running time and the approximation ratio of the
algorithm. We assume that the local scores are non-negative.

At a high-level, the algorithm is simple. First, the nodes are divided randomly into k equally-sizes
sets. Then a bucket order is created by merging ` sets to be the last bucket in the order and remaining
sets are placed in buckets in arbitrary order. Then an optimal DAG compatible with the bucket order

5

KUNDU PARVIAINEN SAURABH

is found. This procedure is repeated for all combinations of ` sets and the highest scoring DAG found
is returned.

Algorithm 1

1. Partition the vertex set V into k equally-sized sets V1, . . . , Vk.3

2. LetW1,W2, . . . ,Wt be the set of all combinations of ` sets (merged together into a set of
vertices) from V1, . . . , Vk, where t =

(
k
`

)
. For eachWi,

• Define a bucket order such thatWi is the last bucket and each Vj that is not contained in
Wi is placed in its own bucket in an arbitrary order. Now let PWi be the resulting partial
order on V .

• Learn an optimal DAG GWi compatible with PWi using the dynamic programming
algorithm from Parviainen and Koivisto (2013).

3. Return the highest scoring DAG found during Step 2

Next, we analyze the approximation ratio and the running time of Algorithm 1.
Let DOPT be an optimal DAG. Let s1, s2, . . . , sk be the scores corresponding to vertex sets

V1, V2, . . . Vk. That is, for each i ∈ {1, 2, . . . , k}, we have

si =
∑
v∈Vi

fv(Pa
DOPT
v).

It follows that

f(DOPT) =
k∑
i=1

si.

Let us sort scores s1, s2, . . . , sk in a non-increasing order. Without loss of generality we can
assume that s1, s2, . . . , sk be the sorted order. We pick the first ` buckets in this order, and let
WOPT =

⋃`
i=1 Vi. Because s1, . . . s` are the highest scores, the following observation follows via a

simple averaging argument.

Observation 2 Assuming that the local scores are non-negative,
∑`

i=1 si ≥
`
k · f(DOPT).

Let D∗ be the graph obtained from DOPT by doing the following operations.

• For every v ∈ WOPT , PaD
∗

v = PaD
OPT

v

• For every v ∈ V \WOPT , PaD
∗

v = ∅.

Because the parent set of every v ∈ V \WOPT is the empty set, we observe the following.

Observation 3 D∗ is a subgraph of DOPT and D∗ is compatible with every bucket order PWOPT

whereWOPT is the last bucket.

3. If n is not divisible with k, then the sets V1, . . . , Vk are “almost equally sized” in the sense that their sizes differ by at
most 1, that is, |Vi| = dn/ke or |Vi| = bn/kc.

6

TIME–APPROXIMATION TRADE-OFFS FOR LEARNING BAYESIAN NETWORKS

Specifically, D∗ is compatible with the partial order PWOPT
defined in Algorithm 1 whenWOPT is

the last bucket.
Let s∗1, s

∗
2, . . . , s

∗
k be the scores corresponding to V1, V2, . . . Vk respectively in D∗. Since the

parent set of every vertex v ∈ WOPT in D∗ is same as that in DOPT ,

∑̀
i=1

s∗i =
∑̀
i=1

si.

The following lemma shows that the total score of D∗ is at least `k times the score of the optimal
DAG.

Lemma 4 Assuming that the local scores are non-negative, f(D∗) ≥ `
k · f(DOPT).

Proof

f(D∗) =
∑̀
i=1

s∗i +

k∑
j=`+1

s∗j

≥
∑̀
i=1

s∗i (Since
∑k

j=`+1 s
∗
j ≥ 0)

=
∑̀
i=1

si (Since
∑`

i=1 s
∗
i =

∑`
i=1 si)

≥ `

k
· f(DOPT). (Via Observation 2)

Now, we are ready to prove our main result.

Theorem 5 Assume that the local scores fv(S) ≥ 0 for all v ∈ V and S ⊆ V \ {v} and the size of
the input is |I|. Algorithm 1 has an approximation ratio `

k and running time O∗(k`(|I|+ 2n`/k)).

Proof Approximation ratio. Algorithm 1 considers all bucketsWi that are unions of ` sets out of
V1, . . . , Vk. Therefore, Algorithm finds a DAG D′ which is compatible with a partial order whose
last bucket isWOPT . In other words,Wi = WOPT for some i; Let us denote the partial order by
PWOPT

. By Lemma 1, D′ is an optimal DAG compatible with PWOPT
. By Lemma 4, the score

f(D′) ≥ `
k · f(DOPT). Algorithm 1 returns a DAG D that is the highest scoring DAG found while

looping over partial orders. Thus, f(D) ≥ f(D′) ≥ `
k · f(DOPT).

Running Time. There are
(
k
`

)
= O(k`) sets Wi. For a fixed Wi, the maximum bucket

size is ` · n/k, therefore, by Lemma 1, an optimal DAG compatible with PWi can be found in
O∗(|I|+ 2n`/k) time. Therefore, the overall running time is O∗(k`(|I|+ 2n`/k)).

We notice that the algorithm does not require us to bound the number of parents. As long as the
number size of F is moderately exponential or less (that is, less than 2n`/k), the running time of the
algorithm is dominated by the dynamic programming part.

7

KUNDU PARVIAINEN SAURABH

Figure 1: Running times and approximation ratios. The x-axis presents the approximation ratio `/k which
varies between 0 (no guarantees) and 1 (exact algorithm). The running time of the algorithm is O(rn) where
r = `/k. The y-axis of the figure presents the base r.

Given the values of ` and k, we get approximation ratio `
k and running time O∗(rn) where

r = 2
`
k . For example, if ` = 1 and k = 3, then we get an algorithm that runs in timeO∗(1.26n) with

an approximation ratio 1/3. Increasing ` to ` = 2 and keeping k = 3 gives us a slower algorithm that
runs in time O∗(1.59n) but with a better approximation ratio 2/3. Figure 1 illustrates the trade-off
between approximation ratio and running time.

4. Algorithm for Πd + kv-BNSL

In this section, we design an approximation algorithm for Πd + kv-BNSL, that is, finding an optimal
DAG whose moralised graph can be partitioned into connected components of size at most d by
removing at most k vertices.

We start by introducing an approximation algorithm for Πd-BNSL. The algorithm is based on the
observation that we can reduce Πd-BNSL to the MAX WEIGHT d-SET PACKING problem (WD-SP).
We assume that the local scores are non-negative.

WD-SP
Input: A universe U = {1, . . . , n}, a family S of subsets of U with |S| ≤ d for all S ∈ S , a
weight function w : S → R≥0
Question: Find H ⊆ S such that Hi ∩ Hj = ∅ for all Hi, Hj ∈ H, Hi 6= Hj and∑

H∈Hw(H) is maximised.

Suppose we are given a Πd-BNSL instance with vertex set V and a non-negative scoring function
fv : 2V → R≥0 for all v ∈ V . Now we can construct a WD-SP instance as follows. First, we set
U = V and S = {X|X ⊆ U, |X| ≤ d}. To compute the weight w(X) for the set X , we find the
highest scoring DAG on X . More precisely, let X be the set of all DAGs on the vertex set X . Then
the weight w(X) = maxDX∈X

(∑
x∈X fx(PaDX

x)
)
. This is a standard BNSL instance and can be

solved using dynamic programming in O(d22d) time (Silander and Myllymäki, 2006).

8

TIME–APPROXIMATION TRADE-OFFS FOR LEARNING BAYESIAN NETWORKS

Now it is easy to see that the instances are equivalent. Given a solution H to WD-SP, we can
construct the solution to Πd-BNSL by going through the sets H ∈ H and extracting the DAG D
that maximised the summation in computation of w(H). On the other hand, given a solution D to
Πd-BNSL, one can construct the solution to WD-SP by extracting the connected components in the
moralised graphM(D). Now, we present a greedy algorithm that finds a solution for Πd-BNSL via
WD-SP.

Algorithm 2

1. Given an instance of Πd-BNSL, construct an instance of WD-SP following the previous
reduction.

2. Order the sets in S into decreasing order based on their weights and break ties arbitrarily. Let
the ordering of sets in S be given by S1, . . . , Sβ . Note that β ≤ nd.

3. Let Q be an array indexed with elements of U . Initialize each cell of Q with 0. Further
initialise the WD-SP solutionH = ∅.

4. for i = 1 to β do as follows.

• If for each element e ∈ Si, we have that Q[e] = 0, thenH = H ∪ {Si}. And, for each
element e ∈ Si, set Q[e] := 1.

• Else, move to the next step.

5. FromH, construct a DAG D = (V,E) in the following way: for every H ∈ H, add the arcs
A(H) of the corresponding DAG that maximised the summation in computation of w(H).

6. Return D

Theorem 6 Algorithm 2 computes a 1
d -approximate solution to Πd-BNSL in time O((d2d + log n+

1)dnd).

Proof It is easy to observe that an approximate solution for WD-SP directly gives an approximate
solution for Πd-BNSL. So it is sufficient to prove the approximation ratio for WD-SP. To this end,
let H ⊆ S be a solution for WD-SP. Suppose H1, H2, . . . , Hq be the sets of H. Without loss of
generality, we can assume that w(H1) ≥ w(H2) ≥ . . . ≥ w(Hq). Let C ⊆ S with components
C1, C2, . . . , C` be an optimal solution with total weight w∗ and wlog we further assume that
w(C1) ≥ w(C2) ≥ . . . ≥ w(C`) . We can also assume that w(Cr) = 0 when r > `.

Because |Hi| ≤ d, it intersects with at most d sets in C. As H1 is the highest scoring set, it holds
that

w(H1) ≥ w(C1) ≥
w(C1) + w(C2) + . . .+ w(Cd)

d
.

Similarly, we have

w(H2) ≥ w(Cd+1) + w(Cd+2) + . . .+ w(C2d)

d
. . .

w(Hq) ≥
w(C(q−1)d+1) + w(C(q−1)d+2) + . . .+ w(Cqd)

d
.

9

KUNDU PARVIAINEN SAURABH

Moreover, due to the construction ensuring that any two sets inH are mutually disjoint, it follows
that

w(H) = w(H1) + w(H2) + . . . w(Hq)

≥ 1

d

(
w(C1) + w(C2) + . . . w(Cqd)

)
=

1

d
w(C) =

w∗

d
.

As the solutions for Πd-BNSL and WD-SP are equivalent, Πd-BNSL has equivalent approximation
ratio.

Second, let us prove time complexity. In Step 1, computing a weight takes O(d22d) time, and
the weights are calculated for O(nd) sets. Thus, Step 1 can be computed in O(d22dnd) time. Step 2
involves sorting O(nd) sets which can be done in O(dnd log n) time. Initialization in Step 3 can be
carried out in O(n) time. The loop in Step 4 is executed at most β ≤ nd times. In each iteration, we
do at most d probes to the array Q, as well as change at most d entries, and thus the running time of
this step is upper bounded byO(ndd). This yields a total time requirementO((d2d+ log n+ 1)dnd).

Now we are ready to present an approximation algorithm for (Πd + kv)-BNSL. The algorithm
uses the core-periphery approach introduced by Korhonen and Parviainen (2015).

Let N1 ⊆ V be the set of vertices whose removal from the moralised graph leaves an induced
subgraphM[V \N1] whose every connected component has at most d vertices. Let N2 ⊆ V \N1 be
the set of vertices in V \N1 which are parents of N1 in D or are in the same connected component
with one of the parents inM[V \N1]. Finally, let N3 = V \ (N1 ∪N2). By definition, |N1| ≤ k.
Parents of a vertex v form a clique in the moralised graph. Thus, if a vertex had more than d parents
outside N1, there would be a connected components with more than d vertices inM[V \N1]. Thus,
each vertex in N1 can have at most d parents outside N1. As all parents of a single vertex are in the
same component inM[V \N1] and the size of a component is at most d, we know that |N2| ≤ dk.
Now, the algorithm will have N1 ∪N2 as the core and N3 as the periphery. Furthermore, we divide
also the arc set into core and periphery. That is, A = Ac ∪ Ap where Ac is the arc set for the core
and Ap is the arc set for the periphery.

The size of the core is at most (d+ 1)k. For fixed N1 and N2, it suffices that we enumerate all
DAGs over N1 ∪N2, for each of them check whether all the connected components of the induced
subgraph of the moralised graphM[N2] have at most d vertices, and select the highest scoring one
A∗c . There are O(((d+ 1)k)!2((d+1)k)2) DAGs which gives an upper bound for the time requirement.

The vertices in the periphery can have at most k parents from N1 and at most d− 1 parents from
N3. First, we do a preprocessing step and compute f ′v(S) = maxT⊆N1 fv(S ∪ T) for all v ∈ N3

and S ⊆ N3 \ {v} with |S| ≤ d − 1. Computing one score takes O(2k) time and we repeat this
O(nd) times. Thus, preprocessing can be done in O(2knd) time.

After preprocessing, it suffices to choose parent sets for the vertices in N3 using the scores f ′v.
Here, we use Algorithm 2 to find a solution A∗p.

Algorithm 3

• Initialize f(A∗) = −∞.

10

TIME–APPROXIMATION TRADE-OFFS FOR LEARNING BAYESIAN NETWORKS

• Iterate over all choices of N1 and N2. For each choice, do the following:

1. Find an optimal arc set A∗c for the core Nc = N1 ∪N2.

2. Find an arc set A∗p = V \Nc for the periphery Np using Algorithm 2.

3. If f(A∗c ∪A∗p) > f(A∗) then set A∗ = A∗c ∪A∗p and f(A∗) = f(A∗c ∪A∗p).

Theorem 7 Assume that the local scores fv(S) ≥ 0 for all v ∈ V and S ⊆ V \ {v}. Then,
Algorithm 3 returns a 1

d -approximate solution to (Πd + kv)-BNSL in O(ndk+k+d+1) time.

Proof By Theorem 6, the approximation ratio for the periphery is 1
d and the rest of the graph is

learned exactly. Thus, it is clear that the algorithm guarantees approximation ratio 1
d .

We iterate over all possible choices for sets N1 and N2 which takes
(
n
k

)(
n−k
dk

)
= O

(
n(d+1)k

)
iterations. For each iteration, the core can be found in time O(((d + 1)k)!2((d+1)k)2) and the
periphery in time O(nd+1) (Theorem 6). This yields total time requirement O(ndk+k+d+1).

In this paper we choose to give a self-contained greedy algorithm for WD-SP for completeness.
However, we could have used the known algorithm by Berman (2000) for WD-SP. He gave an
algorithm with an approximation factor of 2/d running in time nO(d). Using this algorithm directly
as a black box we can obtain a 2

d -approximate solution to (Πd + kv)-BNSL in O(ndk+k+d+1) time.

5. Conclusion

In this paper, we studied approximation algorithms for learning Bayesian networks. First, we gave a
moderately exponential time algorithm with running time O(2

`
k
n) that has an approximation ratio

`
k where n is the number of vertices and ` and k are user-defined parameters with ` ≤ k. That
is, we give time–approximation trade-offs for learning Bayesian networks. Second, we present a
polynomial time algorithm with an approximation ratio 1

d to find an optimal graph whose connected
components have size at most d.

Acknowledgments
Parts of this work have been done in the context of CEDAS (Center for Data Science, University of
Bergen, UiB).

References

P. Berman. A d/2 approximation for maximum weight independent set in d-claw free graphs. Nord.
J. Comput., 7(3):178–184, 2000.

D. M. Chickering. Learning Bayesian networks is NP-complete. In Learning from data, pages
121–130. Springer, 1996.

M. Chickering, D. Heckerman, and C. Meek. Large-sample learning of Bayesian networks is NP-hard.
Journal of Machine Learning Research, 5, 2004.

C. K. Chow and C. N. Liu. Approximating discrete probability distributions with dependence trees.
IEEE Transactions on Information Theory, 14(3):462–467, 1968.

11

KUNDU PARVIAINEN SAURABH

S. Dasgupta. Learning polytrees. In UAI’99: Proceedings of the Fifteenth conference on Uncertainty
in artificial intelligence, 1999.

R. G. Downey and M. R. Fellows. Parameterized computational feasibility. In Feasible mathematics
II, pages 219–244. Springer, 1995.

N. Grüttemeier and C. Komusiewicz. Learning Bayesian networks under sparsity constraints:
A parameterized complexity analysis. In Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence, pages 4245–4251, 2020.

M. Koivisto and P. Parviainen. A space–time tradeoff for permutation problems. In Proceedings of the
Twenty First Annual ACM-SIAM Symposium on Discrete Algorithms, pages 484–492. Association
for Computing Machinery, 2010.

J. H. Korhonen and P. Parviainen. Learning bounded tree-width Bayesian networks. In 16th
International Conference on Artificial Intelligence and Statistics (AISTATS), 2013.

J. H. Korhonen and P. Parviainen. Tractable Bayesian network structure learning with bounded vertex
cover number. Advances in Neural Information Processing Systems, 28:622–630, 2015.

C. Meek. Finding a path is harder than finding a tree. Journal of Artificial Intelligence Research, 15:
383–389, 2001.

S. Ordyniak and S. Szeider. Parameterized complexity results for exact Bayesian network structure
learning. Journal of Artificial Intelligence Research, 46:263–302, 2013.

P. Parviainen and M. Koivisto. Finding optimal Bayesian networks using precedence constraints.
Journal of Machine Learning Research, 14(1):1387–1415, 2013.

T. Silander and P. Myllymäki. A simple approach for finding the globally optimal Bayesian network
structure. In Conference on Uncertainty in Artificial Intelligence (UAI), 2006.

V. Ziegler. Approximation algorithms for restricted Bayesian network structures. Information
Processing Letters, 108(2):60, 2008.

12

	Introduction
	Preliminaries
	Notation
	Bayesian Network Structural Learning (BNSL)
	Parameterised Complexity

	Moderately exponential-time approximation algorithms for BNSL
	Partial Orders
	Approximation Algorithm for BNSL

	Algorithm for Pid-BNSL
	Conclusion

