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.{bstract. In perception research, various models have been designed for the encoding of, for
example. visual patterns, in order to predict the human interpretation of such patterns. Each of
these encoding models provides a few coding rules to obtain codes for a pattern, each code
expressing regularity and hierarchy in that pattern. Some of these models employ the minimum
principle which states that the human interpretation of a pattern is reflected by the simplest
code for that pattern. ie the simplest code according to a given complexitv metric. In rhis paper
a new complexitv metric is proposed. This metric is based on a formal analysis of the concept
of regularitv. Some conclusions of this analysis are sketched. The new metric does not depend
on artifacts of the coding rules. [t accounts for the amounts of irregularity and hierarchy as
represented in a code of a pattern. such that these two amounts can be added to determine the
complexity of a code. An experiment is discussed that shows that the new metric performs
significantly better than the metrics used previously. In particular, the new metric predicts more
local pattern organizations than the old metrics. This implies that various local pattern
organizations do not falsif-v the minimum prirrciple anymore.

I Introduction
Regulariry is a rather intuitive concept that seems to delv formal description. This
aspect becomes relevant when regularity explicitly plays a crucial role, as it does in
many formal models of perception (Simon and Kotovsky 1963: Vitz 1966; Vitz and
Todd 1969: Leeuwenberg 1969, L97i: Garner 1970; Restle 1970, 1979; Jones and
Zamostnv 1975:  Deutsch and Feroe 1981;  Palmer 1983:  Leyton 1986a.  1986b) .
These models are designed to explain the phenomenon that although, in principle, a
pattern can be interpreted in many wavs, usually one interpretation is preferred (see
figure I for an example in visual shape perception). This preference is assumed to be
guided by the regularity that is present in a pattern. For instance, in figure 1, the
usually preferred interpretation is assumed tcj be induced by the repetition, ie the
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Figure l. In visual shape perception. a major problem is how to predict the preferred interpre-
tation of a pattern which. in principle, can be interpreted in many ways. Here. two possible
interpretations of a line drawing are visualized. Usually, the triangle interpretation is preferred,
not the ziezag interpretation.
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regular occurrence of the triangle part. This assumption is in line with the minimum
principle (Hochberg and McAlister 1953) which, historical ly. f i ts in with the tradit ion
of Gestalt psychology iWertheimer 1912; Kohler 1920; Koffka 1935). The minimum
principle states that the preferred interpretation of a pattern is reflected by the
simplest descript ion of that pattern. Now, for each model mentioned above, i t  hoids
that patterns are described in terms of a formal ' language' designed to express
reeularity in patterns. Yet, the models show great variety in the formal definition and
in the justi f ication of the complexitv metric that is used to decide which of the
possible descript ions is the simplest one. The fact that, for many of these metrics, the
predict ions are rather similar iSimon L972) is. in our view. not verv surprising since.
for ai l  metrics. i t  holds more or less that a pattern descript ion is simpler i f  i t
expresses a larger amount of regularitv in the pattern. However, in each model.
regularity is incorporated and discussed only in terms of examples showing only a few
kinds of regularity l ike repetit ions and symmetries). These few kinds of reqularity
may be relevant in perception, but represent only a choice out of manv possible kinds
of reqularity. This choice may be plausible and mav even be empirical lv supported.
yet i t  is not the same for al l  models. That is, as long as regularitv as such is nor
specified, one can hardly assign psychological significance to a specific choice
concerning pattern descript ions and complexity metrics (Simon 1972). In the presenr
paper. we will propose a solution to this problem. which may be introduced briet-lv as
fol lows.

In the paper of van der Helm and Leeuwenberg (1991), the intuit ive concept of
reqularity has been formalized within the framework provided by the structural
information model of Leeuwenberg i1969. 1971.). This model is an encoding model,
focusing mainly on visual shape perception. In this model. a pattern can be described.
in several ways. by means of coding rules expressing regularitv in the pattern. In
agreement with the minimum principle and given a complexity metric, the simplest
pattern description. or simplest code. is assumed to reflect the preferred interpreta-
tion of the pattern. So. the structural information model consists of the minimum
principle plus an operationalization ol the minimum principle, and the operational-
ization consists of coding rules plus a complexity metric. In the present paper.
we rvi l l  not compare Leeuwenberg's model with other models [for a review
on these topics and for references to related literature, see van der Helm and
Leeuwenberg {1991)]. Instead. we wil l  focus primari ly on the choice of a psychologi-
cally significant complexity metric, on the basis of an analysis of the intuitive concepr
of regularity. To that end, first we will go into the structural information model
in some detail. Second. we will sketch the results of an analysis- of regularity.
The actual analysis is presented in van der Helm and Leeuwenberg {1991). Third. rve
will propose a new metric of complexity. This metric stems from the analysis of
regularity. Finally. we will discuss an experiment that was designed to test how well
preferred interpretations can be predicted by the new complexity metric. In the
experiment, subjects had to indicate their preference for one out of three
segmentations of patterned sequences of. for example, black and white dots.

2 The structural information model
The encoding of visual patterns, as performed in the structural information model
(Leeuwenberg 1969. I97l), proceeds as fol lows. In order to describe regularity in a
pattern. the pattern is first represented by a symbol series. For instance, in figure 3.
the contour of the pattern consists of subsequent angles and line segments, each of
which is labelled with a symbol. Angles or line segments of equal size are labelled
rvith an identical symbol. These symbols wil l  be called pattern symbols, indicating
that a symbol refers only to a pattern part and not to its meaning in. for example. the
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Roman alphabet. Now. tracing the contour in a clockwise direction would yield the
symbol series 'kalckalckalc', representing the pattern. Note that, in theory, a pattern
is not considered to be mapped onto a symbol series. On the contrary, the symbol
series has to be such that the pattern can be reconstructed by substituting the acrual
sizes of angles and l ine segments for the pattern symbols (cf Leyton 1986a, 1986b).
This substitution is called the semantic mapping from the symbol series onto the
pattern. The semantic mapping as such may already give rise to several questions, for
instance with respect to the number of possible symbol series by which a pattern can
be represented. In the present paper, however. we will not deal with these questions.
In particular, in the experiment to be discussed in this paper, we chose stimuli for
which the semantic mappine does not raise problems.

The actual encoding consists of describing regularity in terms of identical symbols
in the symbol series which. because of the semantic mapping, corresponds to the
regularity in the pattern. In the structural information model, only three classes
of regularities play an essential role, namely iterations, symmetries, and so-called
alternations. Each of these three classes is described by means of one coding rule.
As we will argue in the next section. these three coding rules are indeed the proper
ones to use according to the formalization of regularity as elaborated in the paper of
van der Helm and Leeuwenberg (1991). Next. we wil l  proceed by giving the
definitions of these coding rules, and the way in which these coding rules can be
applied to symbol series.

First. the iteration rule. which can be applied to express that a series contains
successive identical symbols. is defined as follows:

k k k . . . k k  - . V x r k ; .

called an l-form. in which N equals the
Ieft-hand side (N ) 2), while (k) is called
the iteration rule. the series 'aaaaa' can be

Second. the symmetry rule. which can be applied to express that a series contains
pairs of identical symbols. nested around a so-called pivot. is defined as follows:

k , k ,  . . . k ^ p k ,  . . . k = k ,  -  S [ ( k ,  ) ( k = )  . . . ( k , ) ,  ( p ) ]  .

The expression on the right-hand side is called an S-form, in which (p) is the pivot,
and the ser ies (k , ) (kr )  . . . ik" ) is  ca l led the S-argument  and consis ts  of  e lements (k i ) ,

Figure 2. Tracing the contour of the pattern (the arrow indicates the starting point and direc-
tion) yields the symbol series'kalckalckalc'. This symbol series represents the subsequent angles
and line segments in the contour so that. by substituting the actual values for the symbols, the
pattern can be reconstructed. According to Leeuwenberg's structural information model, inter-
pretations of the pattern can be obtained by encoding the symbol series.

519

The expression on the right hand side is
number of symbols 'k' in the series at the
the l-argument. For instance. according to
encoded as 5 x (a).

I



520 P A van der Helm, R J van Lier, E L J Leeuwenberg

where i  :  1 ,2, . . . .  n  1n )  l ) .  For  instance,  the ser ies 'kapmpak'can be encoded as
St (k ) (a ) (p ) ,  (m)1 .

Third, there is the alternation rule which can be applied to express that a series
contains successive subseries that either al l  begin or al l  end identical ly. Both cases
are given in the following definitions:

kx,  kx.  . . .  kx ,  -  1( tc t l ' ( (x , ) (x : )  . . .  (x , ,  ) )  .

and

x,k  r .k  . . .  xn k  -  / (x ,  ) (x :  )  . . .  (x , ,  ) )  1( t1 ; ;  .

The expression on the right-hand side is called an A-form, in which the series (x,)(x,,r
. . .  i .x") is cal led the A-argument and consists of elements (xi),  where i :  1,, ?, . . . .  n
(n > 2) .  For  instance.  rhe ser ies 'arasar 'can be encoded as ( (a) )  t ( r i (s) ( t ) ) ,  and the
reversal of that series. ie' tasara', can be encoded as ((t)(st(r))r ((a)).

In applying the coding rules to a symbol series, one should take notice of rhe
following two aspects. First, in the definition of the coding rules. rhe symbols are
considered to be variables standing for arbitrary subseries (with identical symbols
standing tor identical subseries). This implies that the coding rules can be applied not
just to express the identity of single symbols but, in general, to express the identity of
subseries in a series. For instance:

a b a b a b  -  3 x i a b r .

and

badpqvwpqbad -  St (bad)(pq) ,  (vwr l  .

Note that the parentheses in an l-form, S-form, or A-form (which we shall call an
ISA-iormt yield an unambiguous notation. Any subseries between parentheses in
an ISA-form is called a chunk. It should be noted that the pivot in an S-form is a
chunk which, as a limiting case and without distorting the symmetrical strucrure, may
be'emptv'. This implies that. for instance. the series 'abppab' can be encoded into an
S-form denoted by S[(abt(p)].

Second. the subseries inside a chunk in an
symbol series, for instance:

bapabapa *  2  x  ibapa)  -  2x (US[(at ,  (p) ] )  ,

and

ISA-form can be encoded iust like anv

aabppaab  *  s [ (aab ) (R) ]  -  S t (2  x (a )b ) (p ) l  .

ln such cases, the lSA-forms are said to be hierarchically nested. Similarly, but less
triviallv, a hierarchical nesting of ISA-forms may result in the following. Whereas an
I-argument consists of only one chunk, an S-argument or A-argument is, in general, a
series consisting of several chunks. Such a chunk series can be encoded the same way
as a symbol series. Consider, for instance, the following encoding:

ababbaba -  S[ (a)(b)(a)(b) ]  *  S[2 x  ( (a) (b)) ]  .

In this example, the S-argument (a)(b)(a)(b) constirutes a chunk series 'xyxy' in which
the chunk 'x' : (a) and the chunk 'y' : (b). Just like a symbol series, the chunk
series 'xyxy' can be encoded by applying the coding rules. This yields, for example,
the code 2 x (xy) which, by substituting (a) for 'x' and (b) for 'y', yields the code
2x((a)(b)), as given in the example. Similarly, the argument of an A-form can be
encoded. Whereas the symbol series is said to represent the lowest hierarchical level.
an l-argument. S-argument. or A-argument is said to represent a higher hierarchical
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level, and the encoding of an S-argument or an A-argument leads to still higher
hierarchical levels.

Now that we have considered the way in which the coding rules can be used to
encode symbol series into codes, we can go into the meaning of the codes in more
detail. First of all, by expressing identities in a series, a code provides a description
of regularity in that series. However, this is not the ultimate meaning of a code. The
ultimate meaning of a code is constituted by the fact that a code provides a means of
obtaining a classification and an organization of the series, which together reflect an
interpretation of the pattern that is represented by the series. This may be illustrated
as follows.

First. for the four-symbol series 'aaba', the code 2 x (a)ba expresses just the identity
of the first and second symbols. which corresponds to all the identity in a four-symbol
series like 'ppqr'. Thus. 'ppqr' can be seen as a representative of the class of
symbol series to which 'aaba' belongs according to the code 2 x (a)ba (cf Collard and
Buffart 1983). In general. such a class representative can be found as follows. First,
replace all pattern symbols in the code by arbitrary but different symbols; then,
decode the code. For instance:

a a b a  -  l x  a j b a  -  ? x i p ) q r  -  p p q r .

Note that. accordinq to another code, the svmbol series 'aaba' belonss to another
class. For instance:

aaba -  aS[ ia i ,  ib) ]  -  pS[(q) ,  ( r ) ]  -  pqrq.

According to this classification. the second and fourth symbols are taken as being
identical. Whether 'aaba' is encoded and classified in the first way or in the second
wav is determined by some complexiry metric. That is. in agreement with the
minimum principle, the humanlv preferred interpretation of a pattern is assumed to
be ret-lected by the simplest code for the pattern. We will discuss complexiry metrics
in a later section.

Second. a code not onlv prescribes a classification. but also an organization of a
pattern. For the series 'ababab', the code 3 x (ab) expresses that 'ababab' is similar
to 'yyy' rvhere 'y' = 'ab'. So. the code can be said to induce the organization
(ab)(ab)(abrin the series. ie a part i t ioning of the series into chunks. Such organizing
in terms of chunks wil l  be called a chunking icf Geissler et al 1978). In general, the
chunking induced by an ISA-form can be found by decoding the ISA-form without
removing the parentheses in the ISA-form. eg:

badpqvwpqbad - S[(bad)(pq)), (vw)] - (bad)(pqXvw)(pq)(bld),

and

hkghkpq -  i (hk)) r ( (e) (pq))  *  (hk)(e)(hk)(pq)  .

As illustrated in figure 3. the chunking of a symbol series reflects an organization in
the pattern that is represented by the symbol series. Note that, perceprually, 'ababab'

does indeed seem to consist of the three repetitions of (ab) in line with the chunking
(ab)(ab)(ab)  as induced by the code 3 x(ab) ,  but  that 'abababpqqp'seems to consis t  o f
the parts 'ababab' and 'pqqp' which does not imply a chunking in the above sense.
Yet the latter organization is relevant too (Leeuwenberg and van der Helm 199i)and
will be called clustering. One aspect of clustering is that each ISA-form is considered
to induce a cluster containing all the chunks needed to construct that ISA-form. For
instance, for isub)series'ababab', the I-form 3x(ab) groups the three chunks (ab) into
one c luster  ( (ab)(ab)(ab)) .

521
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Another aspect of clustering is related to the intrinsic character of a regulariry
structure, and has consequences for S-forms and A-forms only. (I-forms are too
simple to show such an extra aspect.) First, we will discuss the S-forms. We stated
that an S-form indicates that a symbol series contains pairs of identical subseries
nested around a pivot. For instance, the series 'abcpbca' can be encoded into the
S-form S[(a)(bc), (p)j,  inducing the chunking (a)(bc)(p)(bc)(a). Now, wirh respect
to that chunking, the S-form can also be said to induce a tri-partitioning into
the S-argument (a)(bc), the pivot-chunk(p), and rhe reversed S-argument (bc)(a).
Therefore, the S-form will be said to induce the grouping of the chunks in the
S-argument into one cluster ((at(bcl), as well as rhe grouping of the chunks in the
reversed S-argument into one cluster ((bc)(a)). This clustering can be indicated in the
chunk series by ((a)(bc))(p)((bc)(at). We also stated that an A-form expresses that a
symbol series contains successive subseries which either all begin or all end iden-
tically. Let us focus on the 'all-beein-identically'-case. (The 'all-end-identically'-case

is completeiy analogous.) For instance, the series 'abpqabrsabt' can be encoded by the
A-form ( (ab)) r ( (pqt ( rs) ( t ) ) ,  which induces the chunking (ab)(pqt(ab)( rs) (ab)( t ) .  Now,
in that chunking, each of the above-mentioned 'successive subseries' is chunked into a
pair of chunks called an A-pair. So. each A-pair constitutes a unit that is character-
istic for the regularity described by the A-form. Moreover, as we will see later on. the
A-pairs are essential for understanding the hierarchical character of the A-ruie.
Therefore, the A-form above wil l  be said to induce a clustering by grouping
each A-pair into a ciuster, which can be indicated in rhe chunk series by
((ab, ipqt ) ( (abt ( rs i ) ( (abr t t ) ) .  So.  in  summary,  bes ides a chunking,  an ISA-form a lso
induces a clustering based on that chunking: each ISA-form induces one cluster con-
sisting of all chunks in that chunking; an S-torm induces two further clusters, namely
the S-argument and the reversed S-argument; and an A-form induces further clusters
by grouping each A-pair into a clusrer.

The perceptual organization of a pattern. as induced by a code of the pattern, will
be said to consist of the combination of the chunking and the clusrering induced by
that code. Furthermore. the dominant segmentation in a perceptual organization of a
pattern is said to be the segmentation that consists of at least two. maximally sized,
segments ichunks or clusters) present in that perceptual organization. As an i l lustra-
tion. we reconsider the pattern in figure l. The pattern in tigure l can be represented
by a symbol series in several ways: in this example. we will focus on the two most
relevant representations (see figure -l). Remember that a symbol series represents a
pattern. if that pattern can be reconstructed from the svmbol series by -substituting the

/

/ \

( a )  i b )

Figure3.  I f  the pat tern in  ia)  is  represented by rhe symbol  ser ies 'ka lckalckalc '
to  the st ructura l  in format ion model .  rh is  svmbol  ser ies can be encoded into
code induces.  in  the symbol  ser ies.  the organizat ion ika lcr(kalc)(kalc)  which.
corresponds to the organization as shown in ib i.

then, according
3 x (kalc).  This
in the pattern.
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actual sizes of angles and line segments for the pattern symbols. One way to
represent the pattern, is by means of the symbol series 'kakakakkakakakkakakak'

(see figure 4a). For all of the complexity metrics to be discussed later on, the
simplest code for this symbol series is 3 x (k3 x (ak)). This code yields the chunking
(kakakak)(kakakak)(kakakak) as the dominant segnrentation, corresponding to the
triangle interpretation of the pattern. Another way to represent the pattern is by
means of rhe symbol series 'kakbkakbkakbcl' (see figure 4b). The simplest code of this
symbol series is 3 x (((k))l((a)(b)))cl. This code yields the clustering (kakbkakbkakb)cl
as the dominant segmentation. corresponding to the zigzag interpretation of the
pattern. Now, the code that reflects the triangle interpretation is simpler than the
code that reflects the zigzag interpretation and, indeed, the triangle interpretation is
usually preferred.

kakakakkakakakkakakak

,3 x { lqj  x rnl i  r

kakakak ; ,  kakakak ;  r  kakakak

kakbkakbkakbcl

3 x i ( k ) )  / ( a ) ( b r ) r c l

r kakb kakb kakb tc I

I

i b li a )

---+

A A A
Figure ,1. The partern in figure I can be represented in two ways by means of the symbol series

shown in 'ar  and rb) .  For  each symbol  ser ies.  the s implest  code is  shown wi th the induced

dominanr segmenration in rhe symbol series and, correspondingly, in the pattern. The code

in (a) is simpler rhan the code in (b) and, indeed, reflects the usually preferred triangle

interpretation.

3 The concept of regularity
In the paper of van der Helm and Leeuwenberg (1991), a formalization of the
intuitive concept of regularity has been given within the framework provided by the
structural information model. In this section, we will summarize this formalization in
a nonformal way, ie we will, by means of examples, give a gist of the model in order

to pur the new complexity metric in perspective. The formalization is twofold: first,

the intrinsic character of regularity is specified by the formal notion of holographic

regularity, and second. the way in which cases of regularity can be related hierarchi-

cally is specified by the formal notion of transparent hierarchy. In this section, these
rwo formal notions will be discussed successively, after which several psychologically
relevant implications will be discussed.

3.1 Holographic regulariw
As we have seen. the structural information model represents a visual pattern by

means of a symbol series in which the symbols refer to pattern parts (the semantic

mapping). Therefore, an interpretation of the pattern is considered to be reflected in

the classification and organization of the symbol series which. because of the semantic
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mapping, corresponds to a classification and an organization of the pattern. By using
coding rules. the symbol series is classified and organized on the basis of a hierarchi-
cal description of regularity in the symbol series. Note that the symbol series only
represents information about the order and the identity of pattern parts. So, in this
context. the formalization of regularity can only be based on arrangements of identical
symbols in a symbol series. Now, the formalization proceeds as follows.

First. any arrangement of identical symbols in a series is formally called a case of
regularity, no matter whether or not it reflects something intuitively regular. That is,
we start with all theoretically possible cases, and eg a repetition of a specific some-
thing a specif ic number of t imes (such as nine t imes the svmbol 'p') is just one of
these cases. So, the arrangement of identical symbols in a series is formally called a
case of regularity, not only for series like 'aaaa' and 'abccba', but also for series like
'kpfzpkf' and 'kyppzfkf'. Now. for example. in the series 'vy', the arrangement of
identical symbols is formally denoted by the expression (1) : (2), which simply
indicates that the f irst svmbol is identical to the second symbol. The expression
( I i = I I ) is called an identity. Note that the same identitv denotes the arrangement of
identical chunks in. for example, the chunk series iabr(ab). A set of identit ies is cal led
an identity structure. i f  the set meets some formal requirements. One of the require-
ments is that the identit ies in the set are ordered. For instance. the case of reeularity
reflected by the arrangement of identical symbols in the series 'aaaa', is formally
deno ted  by  the  i den t i t v  s t ruc tu re  i ( l ' =  t 2 ) ,  t l )  :  3 ) ,  r3 )  :  t - l ) l  wh ich  cons i s t s  o f
three identities in the given order.

Second. all different cases of resularity are categorized into kinds of regularity.
which may be i l lustrated as fol lows. For the series 'abab'. the arrangement of identical
symbols can be denoted by, among others. the identity structure t(12) : (34)f which
indicates that the two subseries 'ab' are identical. In this identity structure, each of
the two subseries 'ab' is taken as one unit, just like when the series 'abab' would be
chunked into the chunk series , ab r/ ab r. In other words. the identity structure
e.xpresses that 'abab' is the same as 'vv' under the substitut ion of 'ab' for 'y ' .  Now.
observe that ,  in  the ser ies 'yy 'or  abr(3$) ,  the ident i ty  s t ructure t (1)  :  (2) l  actual ly
expresses the same as the identitv structure 1(12) = i3a)) in the symbol series'abab'.
namel."" the identitv of the two subseries 'ab'. Theretbre, although these two identity
structures describe different cases of regularity, they are said to describe the same
kind of regularity inamelv, in words. a repetit ion of two t imes an arbitrary something/.
Note that, formally. two times an arbitrary something is a different kind of regularity
from that of three times an arbitrary something. In summary, a repetitio-n of a specific
something a specific number of times is a case of regularity, and a repetition of an
arbitrary something a specific number of times is a kind of regularitv. As we will
argue next, repetition in general (an arbitrary something an arbitrary number of
times r. is a case of holographic regularitv.

Above, we saw that an identity structure reflects a property of a series, namelv
identity of elements in that series. Now. holographic regularity specifies a possible
property of identity strucnrres. Metaphorically, the notion of holographic regularity
may be illustrated by a jigsaw puzzle that is to represent a landscape consisting of a
green lawn and a sky with clouds. Each green piece in the disordered set of pieces
can be classified as a lawn-piece, since such a piece shows the holographic property
of having the same color as the entire lawn. In our view, such a holographic property
applies quite well to the intuitive concept of regularity. For instance, a repetition of
something is a repetition no matter whether the number of times that the something is
repeated is large (analogous to the jigsaw lawn) or small (analogous to the jigsaw
piece). The formal notion of holographic regularity has been elaborated as follows.
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An identity stnrcture can be seen as a chain of identities because it is an ordered
set. This implies that one can define a substructure of an identity structure as an
ordered subset of successive identities in the identity structure or, in other words, as a
subchain. For instance, the earl ier-mentioned identity structure {( l) :  (Z), (Z) : (3),
i 3 )  :  ( - l i f  has  f i ve  subs t ruc tu res ,  name ly  { (1 )  :  ( 2 ) , (2 )  :  ( 3 )1 ,  lQ )  :  ( 3 ) , (3 )  :  ( 4 ) } ,
i (1)  :  (2) i ,  { (2)  = (3) } ,  and { (3)  :  (4) }  (see a lso f igures 5 and 7) .  Analogous to  the
jigsaw puzzle and expressed simply, an identity structure is said to describe a holo-
graphic kind of regularity if its substructures all describe the same kind of regularity
i see also figure 5 ).

Observe the recursive character of the notion of holographic regularit-v; if an
identity structure describes a holographic kind of regularity, then any of its substruc-
tures describes a holographic kind of regularity too, since all substrucrures of the
identity structure {including the substructures of a substructure) describe the same
kind of regularity. This recursive character is essential for elaborating the formal
implications of the notion of holographic regularity. Without going into details, these
formal implications can be summarized as follows [for the details, see van der Helm
and Leeurvenberg ( t  99I ) j .

lnstead of considering all possible identity structures an infinite number), it is
more suitable and suffices to consider only all identity strucrures consisting of
precisely three identities (also an infinite number). One can prove, first, that the
infinite number of different cases of regularity, as described by these identity
structures consisting of three identities, can be categorized into precisely 648
different kinds of regularity and, second, that only 20 of these 648 kinds of regularity
are holographic. Then, because of the recursive character of holographic regularity,
one can prove two further things. First, for each of those 20 holographic kinds of
regularity, a representative identity strucrure (consisting, as before, of three identities)
can be generalized uniquely into an identity structure consisting of an arbitrary
number of identities (analogous to simply increasing the number of times in a repeti-
tion). Each of these 20 generalized identiw structures is called a case of holographic
regularity. Second. one can prove that these l0 cases constirute all possible cases of
holographic regularity. Figure 6 shows some of these. Finally, ignoring syntactical
variations in the definitions of specific coding rules lsince such variations are
irrelevant with respect to the meaning of coding rules), one can prove that each of the

r s t P t s r
i ( l  r  =  r 7 ) .  i 2 )  =  t 6 ) ,  r 3 )  :  t 5 ) i
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Figure 5. Holographic regularity. In (a), the arrangement of identical symbols in the series 'rstptsr'

is denoted by an identity structure consisting of three identities. Below this identity stnrcture
are shown its two substructures consisting of two identities each. Each of these substructures is
visualized by substituting, in 'rstptsr'. a dot for those symbols to which the substructure does
not apply. In (b) exactly the same procedure has been followed for the series 'kpfkfp'. In (a),
both substructures reflect the same arrangement of identical symbols. That is, the two symbols
'r' and the two symbols 's', in the visualization of the first substructure, are arranged in the same
way as the two symbols 's' and the two symbols 't ' in the visualization of the second
substructure. [n other words. both substructures describe the same kind of regulanty, which is
precisely the reason that the identity structure shown at the top is said to describe a holographic
kind of regularity. In contrast, in (b), the two substructures clearly do not reflect the same
arrangement. ie do not describe the same kind of regularity, so that the identity structure shown
at the top does not describe a holographic kind of regularitv.
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20 cases of holographic regularity can be described by precisely four different coding
rules. So, the final result is that only precisely eighty so-called holographic coding rules
exist. Among these eighty coding rules are the lSA-rules employed in the structural
information model. Figure 7 shows, for the iteration rule, a scheme that typically
holds for any holographic coding rule.

Now, if holographic regularity is accepted as being relevant and if eighty hologra-
phic coding rules exist, one might wonder why the structural information model
employs only the lSA-rules. Well, the answer lies in the fact that, above, only the
intrinsic character of regularity has been dealt with. So far. nothing has been said
about the way cases of regularity can be related hierarchically. The latter aspect is, in
the formalization, specified by the formal notion of transparent hierarchy. This
notion is, even more than the notion of holographic regularity, relevant with respect
to the complexity metric to be proposed, and will be discussed next.

nnnnn
a t l l ] i l a

r ] n n r ] r ]
a  a b  b c  c d  d e  e

ffi
a  b a  c b  d c  e d  e

Figure 6. Five characteristic visualizations of holographic regularity. In the five prototvpical
symbol  ser ies.  each ident i ty  re lat ionship between two svmbols is  v isuai ized by an arc.  For  each
series. the set of arcs shows a regular ordering. The holographic propertv of this ordering is
reflected by the fact that the first or the last arc in each set can be removed without distorting
the regular  order ing in  the set  of  arcs.

i ( l )  =  { 2 ) . r l )  =  i 3 t i
3 x t a ) a

i ( 2 )  :  i 3 ) .  i 3 )  :  1 { ) l
a 3 x { a )

1 ( l )  =  l r i
l x r a t a a

Figure 7. The holographic iteration rule. The series 'aaaa' can be encoded into the l-form
shown at the top. expressing the identity stmcture (chain) consisting of three identit ies. For
each substructure qsubchain) of this identity stmcture. an I-form exists such that it expresses
that substructure. This indicates that the iteration rule is a holographic coding rule.

3.2 Trarsparent hierarchy
Metaphorically, transparent hierarchy may be illustrated by the hierarchical structure
of an industrial organization. In such an organization, the position of the manager
may rely on that structure, but the manager can also be approached independently of
the other employees. The analogue in terms of symbol series may be illustrated as
fol lows.

3 l  x  1 a ) a

( 3 t  =  r - t ) l
a a l x ( a )
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ln encoding models like the structural information model, the coding rules yield
hierarchical descriptions of regularity in a symbol series. For instan".l u, we saw
before' the series'ababbaba'can be encoded into the S-form St(a)(b)(aXb)]. In this
S-form, the S-argument (a)(b)(a)(b) is said to represent a higher hierarchical level and
can be encoded into the I-form 2x((a)(b)). The latter code can be nested in the
S-form, yielding the hierarchical code S[2x((a)(b))].  Note that the S-form describes
regularity in the symbol series, but that the I-form describes regularity in the S-argu-
ment at a higher hierarchical level. So. one might wonder what the meaning of ihe
I-form is with respect to the description of regularity in the symbol series .ababbaba'.
Now. observe thar the l-form 2x((a)(b)) in the S-argument (a)(b)(a)(b) describes a
kind of regularity (a repetition of two times something) that is also described by the
I-form 2 x (ab) in the subseries 'abab' of the symbol series 'ababbaba'. This example
illustrates a general characteristic of the S-ruIe, namely that any kind of regularity in
the argument of an S-form corresponds unambiguously to the same kind of regularity
in the symbol series. So. in an almost visual sense, any S-form is .transparent,,
ie regularity in the symbol series can be 'seen through' the S-form. And indeed,
because of this general characteristic, the S-rule is called a transparent coding rule.
For the example above. this implies that the hierarchical code SiZx((a)(Ut)l  Jan be
seen as indicating that the S-form S[(a)(b)(a)(b)j and the I-form 2x(ab) can be related
hierarchical ly. Inversely, this implies rhat. instead of the l-form,2x((a)(bl), in the
S-argument. one could just as well consider the I-form, 2 x (ab), in the symbol series.
Thus. analogous to the manager in the metaphor, the higher-level I-iorm can be
considered independently of the lower-level S-form. Moreover, note that. in the
example above. the I-form 2x(ab) induces the chunking (ab)(ab) in the subseries'abab' of the symbol series 'ababbaba'. This chunking can be superimposed on the
chunking ia)(b)(ar(b)(b)(a)(b)(a) induced by the S-form in the symbol r.r i"r.  ro yield
the hierarchical chunking ((a)(b))((a)(b))(b)(a)(b)(a) in the symbol series (see f igure 8).
Such a hierarchical chunking can be assigned unambiguously to any hierarchical code
obtained by means of transparent coding rules and is, therefore, called a rransparenr
hierarchy. So' a hierarchical code obtained by means of transparent coding rules
indicates how different cases of regularity in a symbol series .un b. related hierarchi-
cally, and the resulting hierarchical code induces a hierarchical chunkine in the
symbolseries.

S i ( a i ( b t ( a r r b i l

S f  l  x  i i a r r b r r l

1 a  ) ( b  I t a ) ( b ) r b ) ( a )  l b t ( a )

3 :  r ( a ) t b t l  ( a r ( b ) )  r b ) ( a )  ( b l ( a )

Figure 8. The transParent svmmetry rule. The S-form S[(a)(b)(aXb)] induces a chunking in the
ievel I symbol series, represented by the level 2 series. The l-form, 2 x {(a)(b)), in the
S-argument corresponds unambiguously to the I- form.2x(ab),  in the level I  ser ies. inducing the
chunking {ab)(ab) which can be superimposed on the level 2 series. and leadins to rhe hierarchi-
cal chunking represented in level 3.

From the example just given, one may get the impression that, for coding rules,
transparency is only a plausible requirement and may even be rather trivial. This may
be the case for the S-rule but, for coding rules in general, transparency is far from
trivial. This may be illustrated by means of the so-called M-rule which is one of the
eighty holographic coding rules mentioned earlier, and is defined as follows:

k , x , k ,  k . x . k ,  . . k n x n k "  -  M [ ( k , ) ( k : ) . . . ( k , ) , ( x , ) ( x :  . .  ( x " ) ]  .

level

J
level

J
level

a bA D b ab a
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The M-rule can be applied to express that a series contains successive subseries
which each begin and end identically. Now, consider the symbol series 'ara bsb
ayabzb' which. by means of the M-rule, can be encoded into the M-form
M[(a)(b)(a)(b) ,  ( r ) (s) (VlQ1] .  The f i rs t  argument  of  th is  M-form,  (a) (b)(a)(b) ,  can be
encoded into the l-form 2 x((aribi). However, this I-form describes, in the f irst
M-argument, a kind of regularity ta repetition of something twice, ie two successive
identical subseries) which does not occur in the symbol series i tself.  Therefore, the
M-rule is not a transparent coding rule. In fact, one finds in this way that only nine
of the eighty holographic coding rules are transparent coding rules. among which are
the ISA-rules employed in the structuralinformation model.

Since the transparency of the ISA-rules is important with respect to the new
complexity metric. we will now go into the transparency of the l-rule and the A-rule
in some detail. The l-rule is transparent 'by default', since the l-argument of an
I-form consists of only one chunk so that. at the higher hierarchical level, no
regularity can be described. The transparency of the A-rule, however, is not that
trivial. We saw that the A-rule can be applied to express that a series contains
successive subseries rvhich either all begin or all end identically, as follows:

k x ,  k x ,  . . . k x n  -  : ' ( k t )  ( ( x , ) ( x : ) . . . . x " i )

x ,  k  x , k . . . X n k  -  . ( x , , ( . \ : )  . . . ( x ,  )  , ( k , ) .

Clearlv. the two cases are verv similar. and we wil l  discuss only the transparency for
the first case. Suppose the symbol series 'k.xkykykz' is encoded into the A-form
1(k1)  , i1" r (y t (yr (z t ) .  Then the subser ies y) (y)  in  the A-arsument  can be encoded in to
the I - torm 2xt (y  ) ,  v ie ld ine the h ierarch ica l  code { (k ; )  ( (x)2 x( (v i ) iz ; ) .  Now. observe
that  the l - form.2x( iy l ) .  in  the A-arsument  does not  correspond to an l - form,  lx iy l .
in the symbol series 'kxkykykz'. Yet the regularitv described by the I-form as in the
A-argument does correspond unambiguously to the same kind of regularitv in the
symbol series. That is. the l-form in the A-argument corresponds unambiguouslv to
the I-form. 2 x (kv1. in the symbol series. Note that. in the latter I-form. the
I-argument (ky) corresponds to an A-pair cluster as discussed before. Similarlv, in
general (see definit ion above), for an A-form ((k)) ((x,).. .(x,,)),  any regularity in the
argument  (x , ) (x : ) . . . ,x , , ,  corresponds unambiguously  to  the same k ind of  regular i ry  in
the ser ies ikx, ) (kx. ,  . . .  lkx , , ) ,  consis t ing of  A-pai r  c lusters.  Clear lv .  any k ind of
regularity in this cluster series corresponds unambiguously to the same kind of regu-
larity in the symbol series 'kx, kx. ... kxu', thus showing that the ,trule is indeed
a transparent coding rule. Furthermore. in the example above. the A-form
((k) )  ( ( .x) (y) (v) (z) )  induces the chunking (k) (x) (k) (V)(k) (y) (k) (z)  in  the symbol  ser ies.
whi le  the l - form 2x1ky)  induces the chunking (kv)(kV)  in  the subsedes 'kyky 'o f  the
symbol series. Clearly. the latter chunking can be superimposed on the former
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Figure 9.  The t ransparent  Al ternat ion ru le.  The A-form ((k))  ( (x) (V)(x))  induces a chunkine in
the level  I  ser ies.  represented by the level  2 ser ies.  The S-form S[( (xr) ,  i iy r ) j  in  the second
argument of the A-form corresponds unambiguously to the S-form S[(kxt,rkyl] in the level I
ser ies.  inducing the chunking (kx)(kvr(kx)  which can be super imposed on the level  2 ser ies.
leadine to the h ierarchical  chunking represented at  level  3.
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chunking, yielding the hierarchical chunking (k)(x)((k)(y))((t<)(V))(k)(z) (see also
figure 9). So, in order to understand the hierarchical character of the A-ruIe, one
should replace each chunk in the A-argument by the related A-pair, in order to obtain
the chunking at the higher hierarchical level.

3.3 Implications of formal regulairy
We have given an overview of the formalization of the intuitive concept of regularity,
specified by the formal notions of holographic regularity and transparent hierarchy.
Holographic regularity applies to the intrinsic character of regularity, and reflects the
fact that, for example, an arbitrary repetition belongs to the set of all repetitions.
Transparent hierarchy applies to the way different cases of regularity can be related
hierarchically, and implies that the hierarchical character of codes is not just a
syntactical artifact of the coding language, but a psychologically meaningful aspect of
the description of regularity. The result of the formalization is that only eighty coding
rules are such that they describe holographic regularity, and that only nine of these
eighty coding rules are such that they describe transparent hierarchy too. Among
these nine transparent holographic coding rules are the ISA-rules employed in the
structural information model. Actually. the other transparent holographic coding
rules are superfluous in the sense that they describe only identities that can also be
described bv the lSA-rules. whereas the lSA-rules can describe orher identities as well.
This implies that, according to the formalization, a set of appropiate coding rules may
consist of just the lSA-rules. This result as such is not very surprising since the kinds
of regularity described by the ISA-rules are widely accepted as being relevant in
perception and have been emphasized by various scientists (eg Wertheimer 1923;
Koffka 19351 Palmer 1977). The way this result has been obtained is what matters
here, because the lSA-rules now have a unique formal status which is psychologically
relevant. The psychological plausibility is supported by several further implications of
the formalization, as we will argue next.

If holographic coding rules are used to extract pattern information (regulariqvt from
a symbol series that represents a pattern, then the extraction is very easy, ie the
pattern information to be extracted is verv accessible. This may be illustrated by the
holographic I-ruIe, for which l-forms can be constructed in a simple stepwise fashion,
starting with any single identity and with each step adding just one identity, eg as
follows (see also figure 7):

a a a a  -  Z x ( a ) a a  *  3 x ( a ) a  -  4 x ( a )

So, for the i-forms, the construction proceeds from one I=form towards another
I-form, each step enlarging the expressed identity structure by one identity. Clearly,
this is possible because of the holographic property that any iteration belongs to the
collection of all iterations. Thus, complex combinations of identities do not have to
be matched. since the construction involves 'atomic' steps of one identity at a time.

Maybe even more than the notion of holographic regularity, the notion of transpar-
ent hierarchy results in the accessibility of pattern information as contained in a
symbol series. As we saw before, the transparency of coding rules implies that
regularity at a higher hierarchical level in a code of the series corresponds unambigu-
ously to the same kind of regularity in the series itself. Since the classification and the
organization of the series is based on the described regularity, the transparency
implies that higher cognitive levels will deal with (or have access to) basic partern
information itself. That is, the information that is considered to be passed on to
higher cognitive levels is not. as with an artifact of the employed model, based on just
regularity at a higher hierarchical level in a code, but on regularity in the pattern.
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Moreover, the notion of transparent hierarchy yields the possibility of a largely
parallel encoding process, as follows. As we saw before, the hierarchical code
S[2x1(a)(b)) l  can be seen as ind icat ing that  the S- form S[(at (b) (a)(b) ]  and the I - form
2 x (abt can be related hierarchical ly. This implies that the I-form and the S-form can
be constructed independently of each other, and ther- rest€d for hierarchical compat-
ibility. This shows that, in general, all single ISA-forms in a svmbol series can be
constructed in paral lel after which they can be tested. in paral lel.  in pairs for
hierarchical compatibi l ty. Thus, on the one hand. the encoding mav result in a
hierarchv consist ing of sequential ly ordered hierarchical levels. but. on the other
hand. this hierarchy does not have to be established in a strictly sequential way. This
i l lustrates that, in our view, the notion of hierarch-t should not be based on some
process model as such. as in. for example, the so-called hierarchical sequential search
model of Simon and Feigenbaum (196-t), or as in other so-called top-down models
that involve reasoning or unconscious inferences (von Helmholtz 1909/1962: Neisser
1966: Gresorv 197?: Rock 1983). Nor should hierarchv be seen, as suggested in
Buffart 11987), as a property of a single pattern representation in which several
different hierarchical levels can be dist inguished by decomposins that represenrarion

isee a lso van der  Helm 11988)1.  On the contrary .  h ierarchv should rather  be seen as a
relation between several dif ferent representations of the same pattern. That is.
several dif ferent [SA-forms. obtained in paral lel.  may be related hierarchical ly in
order to compose a hierarchy consist ing of several dif ferent hierarchical levels. In the
Iatter sense. the notion of hierarchv agrees with a bottom-up extraction of gradually
more structured information. That is. start ing from the single identit ies in a 'raw'

pattern registration. resularity is described first and then different kinds of regularity
are related hierarchical lv. result ing in a classif ication and an organization which can
be'embedded' in stored knowledge structures.

Another implication of the formalization is related to the problem that the
minimum principle seems to require an unrealist ic search for simplest codes since. for
an arbitrary symbol series. the number of possible codes is combinatorial ly explosive
(cf Hatf ield and Epstein 1985). This problem does not depend on the exact complex-
itv metric that is used. For instance, i f  a series can be encoded entirely into one
S-form ior A-form) then. in general. the series can be encoded entirely into an
exponential number of S-forms (or A-forms). Because of the notions of holographic
regularitv and transparent hierarchy. however. these S-forms ior A-forms) can al l  be
stored and encoded simultaneouslv. as i f  i t  were just one S-forn (or A-form). Thus,
the search for the simplest S-form (or A-form) becomes realist ic. since it  does not
involve an explosive amount of storage space or processing time. For detailed infor-
mation on this problem and its solution. we refer to van der Helm and Leeuwenberg
(  1986.  I  991 )  and van der  Helm (  1988 ) .

The discussion in this subsection shows that the formalization of regularity not
only provides a psychological basis for the choice of appropriate coding rules, but
also has further implications that are psychologically relevant. The implicarion that is
most relevant in the present paper is the fact that the formalization paves the way for
a new complexitv metric. This implication wil l  be discussed next.

4 The new complexit-v metric
In this section, we will discuss and evaluate complexity metrics on the basis of the
analysis in the previous section. First. in order to clarify the need for a new metric.
we consider three metrics that have been used more or less frequently in earlier
research on the structural information model. Then we introduce the new metric.
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4.1 I",o-load
In many studies concerning the structural information model, the complexity of a
code has been measured by means of the /o,o-load (Leeuwenberg l97L). This load
was meant to reflect the amount of memory space needed to represent a code, ie the
preferred pattern interpretation is assumed to be reflected by the code that requires a
minimum of storage space. Therefore, an assumption has been made with respect to
the relation between the syntactical components in a code and the memory space
needed to represent the code. as follows. First, the encoding of a series yields a
reduction of the series into a code such that not all of the pattern symbols in the
series, but only those in the code, need to be represented in memory. Second, the
means of establishing the reduction have to be taken into account as well. These means
consist of the ISA-forms, and are taken into account as follows. For decodirg u
stored I-form like 5 x (ab) into the series 'ababababab', the numeric value '5' has to be
known and is, therefore, assumed to be represented in just as much memory space as
each of the two pattern symbols, so that this l-form requires three units of memory
space. In decoding a stored S-form like S[(a)(b)(c)] into the series 'abccba', the
S-argument has to be reversed in order to produce the second half of the series; this
reversal operation is assumed to be represented in, again, just as much memory space
as each of the three pattern symbols, so that this S-form requires four units of
memory sPace. For decoding a stored A-form like ((at)i((r)(s)(t)) into the series'arasat'. the number of times that the part 'a' has to be repeated does not have to be
stored since this number is implicitly given by the number of elements in the
A-argument (r)(s)(t); therefore, the storage of this A-form requires only four units of
memory space. ie only for the four pattern symbols. So, for an arbitrary code, one
has to count the pattern symbols, the I-forms, and the S-forms in the code to deter-
mine the 1o,o-load of the code, ie the oomplexity of the code in terms of storage space.

The strucrural information model has gained empirical support by using rhe /o,o-
Ioad as a complexity metric. However, the /o,o-load gives rise to several conceprual
problems. First. the pattern symbols, the numeric value in an I-form, and the reversal
operation for an S-form, are given equal value but are in fact incomparable entities,
or at least very different entities. For example, why not assign the value of the
numeric value and of the reversal operation as being equal to two or more pattern
symbols? Second, the reversal operation for an S-form is counted, but not the
iteration operation for an I-form, nor the alternation operation of an A-form. These
conceptual problems indicate that the /o,6-load is based on a dgbious, and in our view
unacceptable, assumption concerning the relation between synractical components in
a code and the memory space needed to represent the code. That is, in our view [see
also Hatfield and Epstein (1985)] this assumption depends too much on artifacts of
the encoding language. Moreover, we think that the semantical implication of a code
(ie an interpretation) should not be judged on the basis of the required memory space
but, psychologically more meaningfully, on the basis of the semantical content of the
code (ie the description of regularity). The conceptual problems with respect ro the
.1,,,u-load have been reuognized in research concerning the structural information
model; the following complexity metric was devised to overcome these problems.

1.? P-load
In order to determine the P-load of a code, one simply counts the number of pattern
symbols in that code (cf Collard and Buffart 1983). For instance, for the code
3 x (ab), the value of the P-load, is P = 2, because it contains only two pattern
symbols, 'a' and 'b'. This metric implies a judgement of the resulting classification, as
follows. For instance, as we saw in the second section. if the series 'aaaaaa' is
encoded into the I-form 3 x (aa), for which p : 2, then the series is considered
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to be classified into the class of series that can be represented by, for example, the
series 'yzyzyz'. Occasionally, such a class representative has been called an abstract
code (cf Collard and Buffart 1983). Now note that, in the example above, the l-form
3x(aa) described regularity in the symbol series'aaaaaa'by expressing the identity
of the elements contained in the abstract code 'yzyzyz'. Therefore, the residual
nonidentity of elements in the abstract code can be regarded as the irregularity in the
symbol series (at least, according to the I-form). Now, the P-load of a code equals the
number of different elements in the corresponding abstract code and, therefore,
implies a judgement of the resulting classification by measuring irregularitv: the more
different elements. the more irregularity, the more complex.

So. the P-load applies to the output of the encoding model. ie i t  does not depend
on artifacts of the encoding language. Therefore, conceptually, the P-load seems
better than the In,o-load. Yet the P-load has not been used frequently because it
yields worse predictions than does the /.,u-load. A possible explanation for this leads,
as fol lows. to a third metric.

1.3 I  ̂ - load
On the one hand. the P-load accounts only for the result ing classif ication. not for the
result inq organization. Since both the classif ication and the organization are part of
the output. one could sav that the P-load is incomplete so that the P-load 51il l  gives

rise to a conceptual problem. On the other hand. the {,,u-load can be seen as
accounring for nor only the resulting classification but also, although only to some
extenr. for the resulting organization. as follows. First. note that the In,u-load of a

code equals the P-load of the code plus the number of l-forms and S-forms in
the code. That is. the d,,u-load can be seen as accounting for the classif ication in the
same wav as does the P-load. Now suppose that, instead of only the l-forms and
S-forms. the A-forms in a code are also counted. Let us call this adapted metric the
I*-load. Now. recall that the argument of an ISA-form represents a hieher hierarchi-
cal level i  in the code as rvel l  as. as we saw before. in the result ing organizationl. That
is. each ISA-form in a code yields a transition to a higher hierarchical level. Thus,
counting al l  [SA-forms in a code corresponds to counting al l  hierarchical levels.
In this wav the 1.-load can be seen as taking into account the resulting organization.
So. similarly, the {,,0-load can be said to account for the resulting organization
ithough only to some extent since the A-forms are not counted), which might explain
why it yields better predictions than does the P-load. For the same reason. we expect
(and hypothesize in the experiment to be discussed) that the /"-lo4d. which also
counts the A-forms. should yield better predictions than the /o,u-load.

However. this wav of accounting for the resulting organization gives rise. as before,
to a conceptual problem. Namely, hierarchical levels and pattern symbols are valued
equally but are, in fact. incomparable entities. That is, whereas the number of pattern
symbols refers directly to something (namely, irregularity) that is present in a symbol
series, the number of hierarchical levels refers only to the presence of those levels as
such. ie not to something that is present at those levels. The new complexity metric
does not show such a conceptual problem. as we will see next.

1.1 In *-load
To a large extent, the new complexity metric. the 1n.*-load, is based on the concept of
transparent hierarchy, as discussed in section 3.2. tn the present study, we have seen
that if a symbol series is encoded by means of the lSA-rules, then the resulting code
unambiguously induces a transparent hierarchy, ie a hierarchical chunking, in the
symbol series (see figures 8 and 9). Now. imposing the same hierarchical chunking on
the corresponding abstract code (as defined when discussing the P-load), yields an
orsanized class reDresentative which reflects both the resulting classification and
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the resulting organization of the symbol series. For instance, if the symbol series
'abcabcab' is encoded into the S-form S[(ab)(c), (ab)], then the classif ication is
represented by the abstract code 'xztpqtxz', whereas the organization is represented
by the chunk series (ab)(c)(ab)(c)(ab). Imposing this same chunking on the abstract
code vields the expression (xz)(t)(pq)(t)(xz). Such an expression wil l  be said to
represent an abstract chunking. Note that, in general, such an abstract chunking exists
only for codes obtained by means of transparent coding rules.

Now. in the new complexity metric, the /n.*-load, all the different elements over all
the hierarchical levels in such an abstract chunking are counted. For instance, for the
S-form above, /n.* : 7, since the abstract chunking contains the following seven
di f ferent  e lements:  'x ' . 'z ' . ' (xz) ' ,  ' t ' , 'p ' , 'q 'and ' (pq) ' .  Note that  the lower- level  e lement
't' is not different from the higher-level element'(t)' since, in this case, the parentheses
merely indicate a chunk that equals one symbol. That is. in addition to rhe different
single symbols. onlv the different chunks consisting of at least two symbols or chunks
are counted. This may be i l lustrated by two further examples. In f igure 8. we saw
that  the encoding of  the symbol  ser ies 'ababbaba' in to the code S[2x((a)(br) ]  y ie lds a
t ransparent  h ierarchy which is  represented by the express ion i (ar (b)) ( (a t (b i ) (b t (a) (b)(at .
Since the code characterizes all the identity of elements in the symbol series, the latter
expression also represents the abstract chunkinq. This abstract chunking contains
three d i f ferent  e lements.  namely, 'a ' . 'b ' .  and ' ( (a t (b) ) ' .  so that  the code has an 1n"*-
load value of /n.* = 3. Furthermore, in figure 9. we saw that the encoding of the
symbol series 'kxkykx' into the code ((k)) (S[((xi),  ((y))]) yields a transparenr hierarchy
which is  represented by the express ion i (k i (x t ) t (k i (y t ) ( (k i (x t ) .  Again.  the code charac-
terizes all the identity of elements in the symbol series, so that the latter expression
also represents the abstract chunking. This abstract chunkinq contains f ive different
e lemen ts .  name ly , ' k ' . ' x ' , ' ( ( k i ( x ) ) ' . ' y ' .  and ' ( ( k ) ( y ) ) ' .  so  tha t  t he  code  has  an . /n . * - l oad
value of 1n.* : 5.

Now that we have introduced the 1n"*-load. we first of all want to emphasize that
this complexitv metric does not depend on art i facts of the coding lanquaqe because it
is based solely on the output. ie on the classification and orqanization. Therefore, it
does not show the conceptual problems connected with the 1o,o-load. A better
account is now given of the hierarchical structure by counting not just hierarchical
levels but the different elements at those levels. Counting the different elements ar
some level corresponds, as we saw when discussing the P-load, to measuring the
irregularity at that level. In other words, the 1n"*-load can be-said to account for the
hierarchical structure by quantifying its contribution to pattern complexity in terms of
the irregularity at higher levels. In this way, the /n"*-load can be said to measure
pattern complexity adding irregularity and hierarchy.

In section 5, we will discuss an experiment that has been designed to test the new
complexity metric by considering the dominant segmentarion in the perceptual organi-
zation as predicted on the basis of the simplest code (as discussed before). We argueC
that one has to take notice of not only the chunking but also the clustering as part of
the perceptual organization of a pattern. That is, for instance, the series 'abab' is
chunked into (ab)(ab) in order to describe the iteration regularity by means of the
I-form 2 x (ab), which implies that the entire series 'abab' is clustered inro one
regularity structure which is represented by the cluster (abab). Note that clustering is
not taken into account in the new complexity metric. Whereas chunks are needed to
construct lSA-forms, clusters are 'only' a consequence of ISA-forms. Therefore,
clustering may be relevant in experimental settings but is not relevant with respect to
the complexity of ISA-forms.
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5 Experiment
The following experiment has been designed to test the structural information model

by using the new metric of complexity, ie the /n"*-load as discussed in the previous

section. This test comprises a comparison, with respect to preferred pattern

segmentations, between the new metric and the other metrics discussed in section 4,

ie the P-load, the 1.,0-load, and the 1o-load. Each pattern, as used in the experiment,
is a patterned sequence in which the elements are drawn from one of three different

sets of graphic symbois (see f igures l0 and l1). For each pattern. subjects were asked

to indicate the preferred pattern segmentation. In each trial, subjects were forced to

choose between two given pattern segmentations. Each of the two segmentations was

the dominant segmenration in the perceptual organization as induced by a code

obtained by means of the ISA-rules. So, given one of the complexity metrics. one

could check in each trial which of the two codes was the simpler one and whether or

not thar code indeed induces the preferred segmentation.Thus, one can investigate
which of the complexity metrics performs best.

Patterned sequences were chosen because a straightforward semantic mapping can

be assumed between a iserial) pattern code and the pattern. That is, st i l l  exist ing

unclarities with respect to the semantic mapping, eg for (nonserial) two-dimensional
parterns. or iserial) auditorv patterns, are excluded. The specif ic st imuli were selected

such that the various metrics mostly yield different predictions (except for the P-load
which. as wil l  be clear. is used as a sort of 'baseline').

oo x l l  o
set I  set I  set i

Figure 10. The three sers of graphic symbols used in the experiment. To construct a stimulus.

graphic symbols from one se! are drawn and composed into a patterned sequence. The graphic

iymbols within a set are verv distinctive phenomenally (short versus long; white versus black:

crossed versus parallel versus circular), so that they can be considered to be basic pattern

eiements.

ooo oo
ooooo

oooo
Figure l l .  A target (a) and response al ternat ives (b) used in the experiment.  The pattern

r.qu.n"" at the lift was constructed by assigning graphic symbols from set 2 in figure l0 to the

symbols in the svmbol series 'ababb'. In the segmentations (shown in b) a large space between
two graphic symbols indicates a border between two segments. Subjects were asked to indicate
which of the two segmentations they prefer as partitioning of the target into coherent parts.

( b )l a l
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5.1 Hypothesis
In line with the minimum p-rinciple we predict that the simpler the code of a pattern,
the greater the preference for the segmentation induced by that code. Now, for some
complexity metric M, let Gv be the goodness of M, ie, the amount of preferred
pattern segmentations that M predicts correctly. Then, on the basis of the theoretical
analysis in the previous sections, we hypothesize that:

Gp-t.u,t < Gq,,u-tr"c < Gl.-to"a ( G1"..-to"o .

A brief explanation of this is as follows: in the previous section, we argued that the
complexitv of a pattern code is constituted by the irregularity and the hierarchy
represented in that code. Schematically, the four metrics count the following code
components:

P-load -pattern svmbols.
/,,r-load -pattern svmbols plus l-forms and S-forms,
1r-load -pattern symbols plus lSA-forms.
/n"*-load-pattern symbols plus chunks .

Bv countins the pattern symbols, the four metrics all account in the same way for
irreqularitv. so that differences between the metrics have to be sought in the way of
accountinq for hierarchy. According to the theoretical analysis and the hvpothesis,
the successive metrics account for hierarchy in a better way: the P-load does not take
hierarchv into account: the /",0-load counts some of the higher hierarchical levels in a
code: the /n-load counts all higher hierarchical levels in a code; and the /nu*-load
counts hierarchv in terms of irregularity at higher hierarchical levels. Note that the
main issue will be to contrast the 1n.*-load with the {,,0-load, the most frequently used
metric in earlier empirical research on the structural information model. The less
lrequentlv used P-load and /*-load are considered mainly to obtain a more detailed
view of the adequateness of the theoretical analvsis in the previous sections.

5.2 .Vlethod
5.2.1 .Subjects. Thirty-one undergraduates received course credit to participate in the
experiment.

5.2.2.VIaterials. To construct the patterns for the experiment, ie the patterned
sequences of graphic symbols, three different sets of graphic symbols were used (see
figure l0). For each pattern, graphic symbols were drawn from one set of such
symbols to construct a sequence (see figure 11a). In each set, -lhe graphic symbols are
'semantically independent'. ie are very distinct phenomenally (set 1: short versus long;
set 2: white versus black: set 3: cross versus parallel versus circular). This ensures
that subsequent graphic symbols in a pattern will not be grouped together because of
the'visual distance'(cf Tversky and Gati 1982), such as for a regular increase of grey-
value. or because they consritute, for example, a complementary pair of parentheses.
This, together with the symmetry in each graphic symbol, implies that the symbols can
be considered as 'primitives', ie, as basic pattern elements which are not sensitive to
biases thirt are irrelevant with respect to the goal of this experiment. This ensures
that a straightforward semantic mapping can be assumed between such a patterned
sequence and a symbol series as used in the structural information model.
For instance, the pattern in figure 11a can be represented by the symbol series
'ababb'. This series can be encoded by the ISA-rules, to yield the code S[(a), (b)]
2x(b) or the code 2x(ab)b. The former code is the simplest code according to the
^fn"*-load. implying that laba)(bb) is the dominant segmentation, whereas the latter
code is the simplest code according to the /o,o-load, and implies that (abab)(b) is the
dominant segmentation. These two segmentations of the symbol series can be
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mapped straightforwardly onto two segmentations of the patterned sequence of
graphic symbols (see figure 11b in which the large space between two of the graphic
symbols stands for the border between the two segments). Thus, each stimulus can be
constructed from a patterned sequence of graphic symbols (the target) and two
relevant segmentations (response alternatives) out of which subjects can choose the
preferred segmentation. These preferences can be checked to determine which
complexity metric correctly predict them.

The total stimulus set consisted of 140 stimuli. derived from forty different symbol
series l ike the above-mentioned'ababb'(see also below). Among these forty series.
twenty-four contained two different symbols, and sixteen contained three different
symbols. The length of the series varied from five up to eighteen symbols. For each
of the forty series. three different segmentations were considered. For example, for
'ababb'the two sesmentations mentioned above. plus the segmentation (ab)(abb), as
induced bv the code 1(a)) ((b)(2 x(b))) were considered. Out of these three seg-
mentations. the three different pairs of segmentations were each used in a st imulus.
This  y ie lds l0x3 :  120 'symbol ic 's t imul i .  ie  s t imul i  in  terms of  symbols used in  the
structural information model and not yet in terms of graphic symbols used in the
experiment. Furthermore. from each of the 120 symbolic stimuli. one additional
symbolic st imulus was derived by reversing the order of the symbols both in the
symbol series and in the two segmentations. eg for the series 'ababb', the reversal of
the series is'bbaba'. and the reversal of the segmentation (ab)(abb) is lbba)(ba). Note
that  the la t ter  sesmentat ion is  induced by the ' reversed 'A- form ( (2x(b)) (b) ) r ( (a) ) ,  and
that any code can be reversed in a similar way. Thus. one gets a total of
l l0 x 2 : 2.10 svmbolic st imuli.

During the experiment. each of the 340 symbolic stimuli was assigned randomly to
one of the three graphic symbol sets. (Clearlv, symbolic stimuli containing
three different symbols can only be assigned to set 3 in figure 10.) Then, each of the
different symbols in the symbolic stimulus was assigned randomly to one of the
graphic symbols in that set. Thus. one obtains the actual st imulus set consist ing of
l40 stimuli. In order to cancel out any residual bias with respect to the graphic
symbols. this random transformation of the svmbolic stimuli into real stimuli was
pertormed for each subject individually. The transformation was performed by a
computer program that was developed to run the experiment and to present the
stimuli on a monitor.

For selecting the forty symbol series from which the 240 stimuli werg derived. and
for selecting the three segmentations for each of the forty series, three criteria were
used:
(i) For each symbol series, the three codes that induce the three segmentations should
have the same value tor P but different complexities according to each of the other
three metrics such that. for,each of these three metrics, the simplest code is included.
That is, the P-load was used as a baseline because the P-load takes irregularity into
account in the same way as do the other metrics but does not account for hierarchy,
whereas the other three metrics precisely differ in how they take into account
hierarchy. In this way the experimental results can be related to the differences
between the metrics.
(ii) The forty symbol series should be balanced with respect to the length of a
subseries that is covered by a specific ISA-ruIe. For instance, the series'ababb' shows
an iteration of the subseries 'ab' and a partly overlapping iteration of subseries'b'.
The preference for one of these iterations may depend on how prominent such an
iteration is in a series. Therefore, also included were series such as 'ababababb' and
'ababbbb'. in which one of the i terations is more redundantly present.
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(iii) For each of the fortv symbol series, each ISA-rule should be used in at least one
of the three codes, so that the results indeed apply to the entire encoding model.

These criteria are hard to meet simultaneously; thus they are met to a large extent
for the entire stimulus set but not for everv stimulus. This holds in particular for the
requirement for different complexities for each of the three codes, as given in the first
criterion. That is, in the set of 240 stimuli two subsets can be distinguished for each
metric. One subset contains the stimuli in which the two segmentations are induced
by equally complex codes so that the metric predicts ambiguity, ie no preference for
one of the two segmentations. The other subset contains the stimuli for which the
metric predicts nonambiquity, ie a preference for one of the two segmentations since
the two codes differ with respect to complexity. In the analysis of the results, these
two subsets are considered separately. In figure i2. the sizes of the two subsets are
shown for each of the metrics, except for the P-load. As mentioned above, the P-load
is used as the 'baseline'. and predicts ambiguity for almost all stimuli. Furthermore,
the P-load was alreadv known to be inadequate, so that the experimental results are
not verv interesting with respect to the P-load iunless, of course, the results showed
that most of the stimuli are indeed ambiguous but, as wilt be clear, this is not the
casel. Therefore. the P-load is not onlv omitted in f igure 12 but also in the analysis
of the results. To conclude this subsection on stimulus selection, some examples of
the symbol series, as used in the experiment. are given in f igure 13. Each symbol
series is encoded in three different ways. Each pair out of the three segmentations for
one series represents the response alternatives for the stimulus.

@ ambiguity set

I nonambiguitv set

/ro /^ 1n"_
Metric

Figure 12. For each complexity metric, the sizes of the two subsets (expressed as a percenrage
of the total 240 stimuli) that contain the stimuli for which that metric predicts nonambiguiiy
(ie preference for one of the mo response alternatives) and ambiguiiy (ie no prefereicej,
respectively. [n the analysis of the results, these subsets are dealt with si:paratelv.

Segmentation P 1.,,t 1\ /n"*

a b a b b  : x { a b r b  r a b a b t ( b r  3  I  - l  . t
S [ 1 a r . i b ) ] 2 x ( b )  { a b a r r b b r  3  5  5  3
, ( a l ) ( ( b r ( 2 x ( b ) ) )  t a b ) t a b b )  3  I  5  - t

a a b a a b b  : x i l x { a ) b ) b  ( a a b a a b ) ( b )  3  5  5  - t
S I 2  x  ( ( a ) ) ,  ( b l l 2  x  ( b r  ( a a b a a i  ( b b r  3  6  6  3
. ( ?  x  ( a ) ) ) i  ( ( b ) ( 2  x  ( b ) ) )  l a a b )  ( a a b b )  3  5  6  5

a b c a b c c  : x ( a b c ) c  r a b c a b c ) ( c )  {  5  5  5
S[ (abr .  i c t ]Z  x  i c t  (abcab)  i cc )  - l  6  6  5
. (ab t )  ( (c t (2  x  (c l ) )  (abc)  (abcc)  - l  5  6  6

t 0 0

!
't)

Code

Figure 13. Three examples of symbol series used in the experiment.
segmentations for one series represents the response alternatives.
metrics are given.

Each pai r  out  of  the three
The values for the four
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5.3 Procedure
All subjects were tested individually. As the total duration of the experiment was
about 1.5 h, there was a break halfuay through the experiment. All subjects were
given the same instructions, projected onto a monitor. Each stimulus was presented
as follows. First, only the target (a patterned sequence of graphic symbols) was
presented in the middle of the left-hand side of the screen. After 7 s, the response
alternatives (two segmentations of the target) were presented in addition, at the right-
hand side of the screen, one in the upper half and one in the lower half of the screen
(as in figure l1). The task was "to decide how you would partition the pattern into
coherent parts" (during the 7 s), and then "to select, from the two partitionings. the
partitioning that resembles your own partitioning most closely". Pilot investigations
showed that subjects had a clear preference within a period of 7 s. Subjects
responded by pressing one of two buttons on the table in front of them, the buttons
corresponding in position to the positions of the response alternatives on the screen
(top versus bottom).

First. l0 tr ials were presented so as to get acquainted with the task. then the actual
experiment began by the 2-10 stimuli being presented in a random order. As
mentioned before. the random transformation of the 240 symbolic stimuli into real
stimuli was performed for each subject individuallv. The position of each response
alternative (top or bottom) was randomized too. In the response alternatives, the
Iarger spaces between the segments were made such that the visual angle for both
response alternatives rvas always equal {as in f igure I I  ),  independent of the number of
segments. The computer registered not only each response. but also each response
time. this being the t ime between the onset of the response alternatives and pressing
the button.

5.-l Resrrlts
Each of the thirtv-one subjects pert'ormed all l-10 trials, so that the total number of
triais was 3l x ?-10 : 7-l-10 trials. As mentioned before, the P-load is not considered
and. for each of the other three metrics. the nonambiguity set and the ambiguitv set
are considered separately (see f igure l2). Since the subjects performed a forced-
choice task. the metrics cannot be tested for correcr predictions for stimuli in the
respective ambiguitv sets. Only if. experimentally, stimuli in an ambiguity set appear
to be signif icantly nonambiguous. can the respective metric be said ro have predicted
falsely. The latter cases will be dealt with together with the false predictions for
stimuli in the nonambiguity sets. First. the correct and false predictions for stimuli in
only the nonambiguity sets are considered.

Figure 1.4 shows. for each of the three nonambiguity sets. a histogram of the raw
data. In each histogram, the bars represent disjunct stimulus subsets, together
constituting the entire nonambiguity set. The height of a bar represents the size of the
subset. and the position on the horizontal axis represents the number of subjects for
which the respective metric correctlv predicted the responses to the stimuli in that
subset. For instance, the 1n.*-histogram applies to a nonambiguity set containing 186
of the 240 stimuli. From that histogram, one can read, for example, that, for one
subset of 15 of the 186 stimuli, the /n"*-load correctly predicted the responses of
twentv of the thirty-one subjects and that, for another (disjunct) subset of 15 of the
186 stimuli, the 1n"*-load gave the correct predictions for twenty-four of the thirty-
one subjects. So, from figure 14. one readily sees that the /o-load roughly performs
better than the {,,u-load since. in the 1.-histogram. larger subsets tend to be related to
a larger number of subjects. ie more of the responses were predicted correctly. In the
same way, one readily sees that the /n.*-load roughly performs better than the /o-load.
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So, at first glance, figure 1-l confirms the hypothesis. For a second glance, more
detailed statistics are presented next.

First, for each metric. the predictions were compared to choice at chance level
(p : 0.5). The results of the t-test performed with the data (pooled across subjects)
in table 1, show that the /",.- load scores are highly signif icantly false(!) (r:o = 7.785,
p < 0.00i), that the /^-load scores are just signif icantly correct (t:o : 2.088,
p < 0.05), and that the (..-load scores are highly significantly correct (/:o : 7.736,
p < 0.001). Furthermore, within subjects. and again compared to choice at chance
level, the 1n,o-load scored significantly i,p 10.05) more correct predictions for only
one subject. the 1o-load scored significantly more correct predictions for fifteen
subjects, and the 1n"*-load scored significantly more for twenty-four subjects.

, {

Number  o f  sub iec ts

Number of subjects

Figure 14. Histograms of the raw data for each metric on its nbnambiguity set. [n each
histogram the bars represent disjunct stimulus subsets. together constituting the entire non-
ambiguity set. For each subset the histogram shows the size of the stimulus subset and the
number of subjects for which the respective metric correctlv predicted the responses to the
stimuli in that subset. In each histogram. the eleven leftmost horizontal positions show the
subsets for which the respective metric prediction was significantly false. and the eleven
rightmost horizontal positions show the subsets for which the respective metric prediction was
significantly correct.

Table l .  The means (+SDiand percentages of  responses a l l  predicted correct ly  by each metr ic
for stimuli in the respective nonambiguiry set.

Metr ic Size of set Responses predicted correctly

mean t SD ot
, o

l 0

3 l

)

I
't)

i l

{,r,r
/A

/n"*

1 5 0
r 3 6
r 8 6

3  7 . 3
54.9
66.9

5 6 . 0  t  1 3 . 6
7 1 . 6 +  t 7 . 6

l ' t  I  I  !  1 a  t
L  - 4 . 1  !  - - .  I
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Second. the metrics were compared by considering the respective proportions of

signif icantly (a :0.05) false and correct predict ions (pooled across subjects); these
results are presented in figure 15. All differences between the proportions are highly

significant, both for the significantly false predictions (/" compared with Ionl

I :  .1.56.1, p < 0.001; 1n.* compared with In: z = 5.253, p < 0.001) as well as for

the signif icantly correct predict ions (1o compared with 1o,o: i  :  5.071, p < 0.001;
/n.* compared with I^: z:3.682, p < 0.005). Note that this analysis may seem to

be tricky because of dependencies between the three nonambiguity sets. However, for

the given stimulus set. it is clear a priori that a more complex analysis to account for

those dependencies would yield an even stronger effect. The same argument applies

to the next test.
Third. in figure 16, the proportions of significantly false predictions for stimuli

in the respective nonambiguity sets are plotted again, but now together with the

proportions of significantly false predictions for stimuli in the respective ambiguity

sets. The differences between the latter proport ions l ie for just the ambiguity sets) are

not signif icanr, bur the differences between the summed proport ions iambiguity set

pius nonambiguity set) are highlv signif icant r1^ compared with l .ral :  :  3.776-

p < 0.005;  /n"*  compared wi th  ̂ 1 . :  :  =  5.511.  p  < 0.001) .
Fourth and finally, each metric was tested for a possible differentiation in response

time between responses predicted correctly and responses predicted falsely (which can

Q significantlv correct

f 
significantly false

r''o 
"i;" 

/"'"

Figure 15. The proportions of significantly false and significantly correct predictions for the
stimuli in the respective nonambiguity set for each metric. All differences between proportions
are significant.

I ambiguity set

S nonambiguity set

1',u 1. 1n"*
Metric

Figure 16. The proportions of significantly false predictions for the entire stimulus set. ie for

both the ambiguity set and the nonambieuity set. for each metric. For just the ambiguitv sets.

the differenc.j b"t*een rhe proportions are not significant. but for the entire stimulus set the

differences are sienificant.

z

:<

z
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be done only for the nonambiguity sets). Figure 17 shows, for each metric, the
average response times over all responses predicted correctly and over all responses
predicted falsely; for the /o,o-load, 'false' response times tend to be shorter than
'correct' response times, whereas the other metrics yield an opposite tendency. A
MANOVA was performed to check whether these tendencies might be influenced by
the number of different elements in a target (two or three symbols) or by the total
number of elements in a target (ie target'length' which varied from five to eighteen
symbols). The factor Length was set to four levels, and the factor Symbols was set to
two levels. Then, for the /n.*-load only, the factor Prediction (two levels: false or
correct) yields a significant differentiation in response times (uexOve over
4 x 2 x 7 : 16 cells; f ive subjects were rejected because of empty cel ls): F,.r,  :  5.88,
p < 0.05). The factor, Prediction, does not interact with the factor Length nor with
the interaction term Length x Symbols.

_5.00

false correct faise corTecl ialse correct

541

1

I/ot,l

Figure 17. The average response times over all responses predicted falselv and over all
responses predicred correctly l only for the respective nonambiguitv sets ) for each metric.

5.5 Discussion
The experimental results confirm the hypothesis. That is. the results not only confirm
that the In.*-load is significantly better than both the /^-load and the 1o,o-load, but
also that the /o-load is already significantly better than the /o,o-load. The P-load
scored 58-2/" significantly false predictions for the stimuli in its ambiguity set which,

as indicated before, almost equals the entire stimulus set. This implies that the P-load

scored worst of all (see also figure 16), and supports the earlier mentioned reasons for

excluding the P-load from the analysis. For the three metrics considered in the
analysis, the ordering in the goodness of the metrics is significant with respect to both
the number of significantly correct predictions for the respectively nonambiguity sets.
as well as the number of significantly false predictions for the entire stimulus set (see

figures 15 and 16).
The superiority of the In.*-load is supported further by its differentiation in

response times between falsely and correctly predicted responses for stimuli in its

nonambiguity set (see figure 17). In general. we assume that such a differentiation
takes place for a good predictor. That is, if subjects have more doubt about their
preference, then an increase in response time results. So, inversely, if such an

increase occurs consistently in cases of false predictions, then the predictions may

have been false but are apparently still good enough to 'compete' with the actual

responses. In the present experiment, the MANOVA on the response times showed a

significant increase in response time on ralsely predicted responses for the 1n"*-load

only. So, adopting the assumption above, the response time results support the /n.*-

load onlv.
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The goodness of the (.*-load may seem to be undermined somewhat by the fact
that this metric scored 'onlv' 57.5"/" significantlv correct predictions for stimuli in its
nonambiguity set (see figure 15). However, as mentioned before, the selected stimuli
had to be rather critical with respect to the metrics. For an arbitrary stimulus set. the
predictions of the metrics are not very different. and the metrics score much better, as
shown in earlier experimental work on the structural information model. Moreover,
the main issue in this experiment was to compare the In.*-load with the 1o,o-load
which scored the five times smaller percentage of LI.3Yo significantly correct predic-
tions (see figure 1 5 ).

One further remark in connection with the stimulus selection is that, as mentioned
before. one of the criteria for selecting a target was that all the lSA-rules should be
used to generate the three possible response alternatives. so that the results indeed
apply to rhe entire encoding model. Now, for all stimuli (target plus two response
alternatives) in which one of the response alternatives is based mainly on the I-rule.
the number of responses predicted correctly by the In.*- load is about two t imes as
high as the number of responses predicted falsely. E.ractly the same hoids for the
S-rule. and also for the A-rule, So. the 1n.*-load 'treats' the tSA-rules in an equivalent
rvav. which gives further confidence in the correctness of this metric.

Finally, the confirmation of the hypothesis implies strong support for the theoretical
analysis of regularity and hierarchy. as elaborated in van der Helm and Leeuwenberg
(1991). As argued in the previous sections, that analysis leads directly to the ordering
of the metrics according to goodness, that is now confirmed experimentally. So. the
I".*-load is not only a good metric. but it also has a firm theoretical basis which is
supported by the experimental results.

6 Summar.v and conclusion
In this paper. we introduced a new metric to measure the complexity of serial
parterns. Such a complexity metric is needed in pattern encoding models. such as

Leeuwenberg's i969. 1971) structural information model. Such models employ
several coding rules to describe possible structures of a pattern, and adopt the
minimum principle by assuming that the simplest code of a pattern retlects the
humanly preferred inrerpretation of that pattern. In brief. pattern interpretations are
given in terms of pattern parts. ie a pattern segmentation (parts plus relations between
parts) represenrs rhe pattern structure according to an interpretation. and the simplest

code of a pattern is a code that describes the largest amount of regularity in that
partern. In such encoding models. the employed complexity metrics qre generally just
'good guesses', formulated in terms of the encoding syntax and lacking an intrinsic
psychological justi f icarion. whereas regularity is discussed merely in an intuit ive sense.

The new complexity metric introduced in this paper, however. is based on a strictly
formal analysis of regularity and hierarchy in patterns, as elaborated in the paper of
van der Helm and Leeuwenberg (199i). This formal analysis resulted in the notions

of holographic regularity and of transparent hierarchy. The notion of transparent
hierarchy applies to the conditions under which different but (partly) overlapping
regulariry structures can be combined hierarchically. The notion of holographic
regularity represents a formalization of the intuitive notion of regularity, and results in

a restricred number of basic kinds of regularity. Assuming that holographic regularity

and transparent hierarchy are psychologically relevant notions, only three coding
rules are needed to describe pattern structures, namely the iteration rule, the

symmetry rule. and the alternation rule, as used in Leeuwenberg's structural informa-
tion model. The kinds of regularity described by these three coding rules were
already widely accepted (intuitively) as being psychologically relevant but now aPpear
to have a unique formal status too. That is, in a strictly formal way, precisely these
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kinds of regularity result from the notions of holographic regularity and transparent
hierarchy. This implies that these two notions can be seen as the underlying psycho-
logical basis of the description of pattern structures.

The plausibility of the formal analysis is supported further by two facts. First, it
allows for a largely parallel encoding process. This supports the analysis since the
fascinating speed with which the human perceptual system processes patterns is
generally thought to result from parallel processing. Second, it allows for the elimina-
t ion of combinatorial explosions. That is. i t  enables the selection of a simplest code
out of the exponential number of possible codes, by taking into account al l  codes but
without generating every code separately. This also implies support of the analyses
since it shows that the minimum principle is realistic in the sense that it does not
require an unrealistic search for simplest codes.

All in all, the formal analysis constitutes a firm basis for further research. In the
present paper, we elaborated the fact that the formal analysis enables a detailed
investigation into the wav in which pattern complexity is quantified by means of the
complexity metrics used in earl ier research. This investigation resulted in proposing a
new complexity metric which. according to the formal analysis, should be superior to
the metrics used betore. That is. the new metric quantifies complexity by taking
into account the irregularity in a code in the same way as in the other metrics, but
it accounts for the hierarchv in a code in a better wav. In particular, this improved
account of hierarchy is relevant with respect to so-called local-effect cases, ie cases in
which (rvith the other metncsr an a priori  pattern part i t ioning has to be assumed in
order for the simplest code to reflect the preferred interpretation. This requirement
contradicts the minimum principle. With the new metric, simplest codes tend to
represent less hierarchically organized pattern stnrctures and. therefore, tend to look
like codes obtained by encoding pattern parts separately. This suggests that many local
effects may 'disappear' with the new metric, since it is not necessary to assume the
proper pattern segmentation a priori because it follows directly from the simplest code.

The experiment discussed in this paper shows that the new compledry metric is
indeed sienificantly better than the metrics used before. Moreover, and equally
important. the experiment significantly supports the ordering of the metrics with
respect to goodness. as was hypothesized on the basis of the formal analysis. This
implies that we may conclude that the new metric is not merely a 'better guess', but a
plausible choice based on a formal analysis which is supported by experimental
results.
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